10. Kleinman L., Bylander D.M. Efficacious Form for Model Pseudopotentials // Phys. Rev. Lett. - 1982. - V. 48. - № 20. -P. 1425-1428.
11. Hamann D.R. Generalized norm-conserving pseudopotentials // Phys. Rev. B. - 1989. - V. 40. - № 5. - P. 2980-2987.
12. Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations // Phys. Rev. B. - 1976. - V. 13. - № 12. - P. 5188-5192.
13. Lu G., Orlikowski D. e. a. Energetics of hydrogen impurities in aluminum and their effect on mechanical properties // Phys. Rev. B. -2002. - V. 65. - № 6. - P. 064102-1-064102-7.
14. Хирт Дж., Лоте Й. Теория дислокаций. - М.: Атомиздат, 1972. - 599 с.
15. Ichimura M., Katsuta H., Sasajima Y., Imabayashi J. Hydrogen and deuterium solubility in aluminum with voids // Phys. Chem. Solids.
- 1988. - V. 49. - № 10. - P. 1259-1267.
16. Yong G.A., Scully J.R. The Diffusion and Trapping of Hydrogen in High Purity, Polycrystalline Al // Acta Mater. - 1998. - V. 46. -№ 18. - P. 6337-6349.
17. Ruda M., Farkas D., Abriata J. Embedded-atom interatomic potentials for hydrogen in metals and intermetallic alloys // Phys. Rev. B.
- 1996. - V. 54. - № 14. - P. 9765-9774.
18. Теория неоднородного электронного газа / Под ред. С. Лунд-квиста, Н. Марча и др. - М.: Мир, 1987. - 259 с.
УДК 539.238
ЦВЕТНЫЕ ПОКРЫТИЯ НА ОСНОВЕ КОМПЛЕКСНОГО СОЕДИНЕНИЯ ФЛУОРЕСЦЕИНАТА ЦИРКОНИЯ (IV)
С.А. Кузнецова, В.В. Козик
Томский государственный университет Е^У: [email protected]
Проведено физико-химическое исследование процессов формирования пленкообразующего раствора на основе комплексного соединения флуоресцеината циркония (IV). Показана возможность использования этих соединений для получения цветных пленок. Установлены оптимальные условия синтеза покрытий от ярко-желтого до красного цветов.
В современной технике в качестве пленочных материалов широко применяют оксидные, нитрид-ные и металлические покрытия [1, 2]. Функциональные возможности таких пленок - это изменение химических, электрических и оптических свойств поверхности материала, повышение его устойчивости и долговечности при эксплуатации в агрессивных средах. Нанесение тонких цветных пленок позволяет решать задачи по перераспределению спектрального состава и интенсивности световых потоков, создавать источники света с необходимым спектром излучения [3]. Такие покрытия могут быть получены на основе цветных оксидов, но диапазон цветности окрашенных оксидов все еще невелик.
Целью настоящей работы было получение пленок, позволяющих расширить диапазон цветности в видимой области изделий из стекла. В качестве исходных систем для решения этих задач были выбраны комплексные соединения с органическими красителями, которые широко применяют в текстильной и лакокрасочной промышленности [4]. Цветные пленки получали из пленкообразующих растворов комплексных соединений (ПОРКС) на основе ZrOCl2.8H2O и ксантенового красителя -флуоресцеина. Структура флуоресцеина представлена на рис. 1.
Выбор флуоресцеина основан на том, что это соединение может образовывать окрашенные комплексы, в его строении присутствуют две функциональные группы (-ОН, -СООН), по которым воз-
можно комплексообразование. Наличие п-сопря-женной системы трех бензольных колец предполагает хорошую адгезию ПОРКС с поверхностью подложки [5] в момент ее вытягивания, что в практическом отношении очень важно. Цирконий (IV) является хорошим комплексообразователем. Ок-сихлорид циркония растворяется в этиловом спирте, склонен к гидролизу с последующей конденсацией. Это приводит к управлению вязкостью (практически важной технологической характеристикой ПОРКС) и дает возможность получать качественные пленки требуемой толщины.
C
oh
Рис. 1. Структура флуоресцеина: а) флуоресцеин жёлтый (хиноидная форма), б) диоксифлуоран бесцветный (лактонная форма)
ПОРКС готовили путем растворения в 96 мас. % этиловом спирте флуоресцеина и оксих-лорида циркония марки «хч» в мольном соотношении 20:1 соответственно. Растворы выдерживали в течение получаса в термостате при 308 К до приобретения оранжевой окраски. Процессы формирования ПОРКС исследовали фотометрически [6] с помощью фотоколориметра ФЭК-2 при А=440 нм,
а также методом ИК-спектроскопии. ИК-спектры измеряли при помощи спектрофотометра Регкт-Е1шег-595 в области 200...4000 см-1, УФ-спектрофо-тометра СФ-20 в области длин волн 220...340 нм. Отнесение частот поглощения V в ИК-спектрах проводили в соответствии с литературными данными [7-9]. Пленкообразующую способность ПОРКС изучали методом вискозиметрии. Кинематическую вязкость п измеряли при 298 К с использованием вискозиметра ВПЖ-2. Ошибка измерения составляла ±0,06 мм2/с. Термический анализ высушенного ПОРКС при 333 К проводили с помощью дериватографа Q-1500, в температурном интервале 298...973 К.
Пленки получали из ПОРКС путем вытягивания стеклянных подложек со скоростью 2 мм/с. Термическую обработку подложек с нанесенной пленкой проводили в сушильном шкафу и муфельной печи при 333 и 598 К, соответственно. Рентге-нофазовый анализ пленок выполняли с использованием дифрактометра ДРОН-3М (Сика-излуче-ние, №-фильтр). Толщину и показатель преломления пленок определяли по стандартной методике с использованием лазерного эллипсометра ЛЭФ-3. Ошибка определения толщины и показателя преломления составляет 0,1 и 0,015 % [10]. Адгезию пленок оценивали по методу иглы и риски с использованием микротвердомера ПМТ-3. Спектры пропускания записывали на спектрофотометре СФ-20 в области длин волн 250...750 нм.
Установлено, что раствор флуоресцеина в этиловом спирте, окрашенный в желтый цвет, не обладает пленкообразующей способностью. Введение в этот раствор ZrOC12.8H2O позволяет получать равномерные по толщине пленки. Раствор приобретает пленкообразующую способность, когда вязкость (рис. 2, кривые 2, 3) достигает значений 2,58...3,20 мм2/с. Полученный ПОРКС не требует времени для созревания и может быть использован со дня его приготовления. С целью установления процессов, протекающих в ПОРКС, исследовалось изменение вязкости спиртовых растворов (рис. 2) оксихлорида циркония (кривая 1), флуоресцеина (кривая 2) и ПОРКС (кривая 3). Уменьшение вязкости в этанольном растворе флуоресцеина в первые трое суток может быть обусловлено процессами структурного изменения растворителя за счет введения растворенного вещества [11]. Как видно из рис. 2 (кривая 2), на пятые сутки система приходит в состояние равновесия, и вязкость стабилизируется. Рост вязкости к пятым суткам, возможно, связан с ориентационным взаимодействием спирта с флуоресцеином и электростатическим притяжением между образовавшимися соль-ватированными ионами:
С20Н1205+пС2Н50Н= =[С20Н1105.(С2Н50Н)1]-+[(С2Н50Н)УН]+.
В спиртовом растворе Zr0C12.8H20 (рис. 2, кривая 1) все процессы замедляются по истечении двух суток. Согласно данным работы [12] в растворе образуются устойчивые мицеллы полимерного ги-
дроксида циркония следующих составов ^г4(0Н)п(С2Н50Н)х(Н20)ш-х]С1к, где п=8, 12; ш=16, 12; к=8, 4 и ^Г4(0Н)16(С2Н50Н)х(Н20)в_1].
Отличие зависимости вязкости ПОРКС от времени (рис. 2, кривая 3) от зависимости вязкости этанольных растворов оксихлорида циркония (кривая 1) и флуоресцеина (кривая 2) во времени свидетельствует о протекании химического взаимодействия между катионом циркония (IV) и анионом флуоресцеина, что подтверждается и данными ИК-спектроскопии.
4
3,5 3 2,5 . 2 1,5 1
tr
10
15
20
25
30 х, сутки
Рис 2. Изменение вязкости растворов во времени: 1) ZrOCh 8H2O-CH5OH; 2) C20H2O5-C2H5OH; 3) ПОРКС-ZrOCI 8HO-C20H2O-C2H5OH
Анализ ИК-спектров ПОРКС (табл. 1) указывает на наличие частот, характерных для связей в сложном органическом соединении - флуоресцеи-не, и на существование комплексного соединения, образующегося за счет связи циркония с кислородом флуоресцеина (Zr-O v=550...580 см-1). Преобладание в растворе комплекса состава 1:1 подтвердили и фотометрические исследования с использованием метода Остромысленского-Жоба. Экстремум кривой AD - состав (где AD - отклонение оптической плотности от D при отсутствии комплек-сообразования) находится при соотношении металл : лиганд = 1:1. Таким образом, несмотря на то, что ПОРКС содержит избыток оксихлорида циркония, а флуоресцеин может вести себя как бидентат-ный лиганд, комплексообразование идет по одной карбоксильной группе -COO-, как более реакцион-носпособной. Строение комплексной частицы в ПОРКС представлено на рис. 3.
/ ,OH
'О-
OH
+
Рис 3. Строение комплексной частицы дигидроксофлуорес-цеината циркония (IV)
Характер изменения вязкости ПОРКС свидетельствует о наличии трех этапов формирования раствора (рис. 2, кривая 3). Первый этап, сопровождающийся незначительным уменьшением вязкости, может быть связан с конкурирующими процессами структурного изменения растворителя, диссо-
3
2
0
5
циации и сольватации флуоресцеина, гидролиза ок-сихлорида циркония, а также комплексообразова-ния. Увеличение вязкости на втором этапе объясняется поликонденсацией. Данное предположение подтверждается анализом ИК-спектров ПОРКС (табл. 1), в которых представлены колебания основных групп согласно этапам изменения вязкости.
Таблица 1. Полосы поглощения в ИК-спектрах спиртового раствора оксихлорида циркония с флуоресцеи-ном
Отнесение частот Частота полос, см-'
6 сут. 12 сут. 20 сут.
Н2О, либо ^г-0(Н)2], ^г-ОН] 440 440 440
Zr-O (связь с флуоресцеином) 550.580 590.690 660
С-Н бензольного кольца 700,810 7'0, 8'0 720, 8'0
Zr-OH 890 890 890
С-О, либо Zr-OH '050 '050 '050
С-ОН, либо Zr-OH ''00 ''00 ''00
С-О ароматического кольца '300 '300 '300
Фенолы С-ОН,
С-Н бензольного кольца '420 '420 '420
С=О '660 '665 '620
-СОО- '930 '900 '890
-ОН 2240.2400
2490...2550 2050.2350
2500...2650 20'0.2350
2490.2690
бензольное кольцо 2850.2950 2850.2950 2950
Н2О 3'00.3550 3250.3400 3250.3400
С6Н5ОН 3609 3400 3400
В сравнении с литературными данными [8] v колебания СОО-, С=О групп красителя на шестые сутки смещены в низкочастотную область, что связано с влиянием растворителя. Смещение валентных колебаний связей С=О (Avlt 12 сут=5 см-1, Avlt 20су1=45 см-1), СОО- (Av 12 сут=30 см-1, Av 20 су1=10 см-1) на различных этапах формирования ПОРКС, согласно изменению вязкости, указывает на образование полимеров между комплексными частицами флуоресцеината циркония (IV). Таким образом, формирование ПОРКС сводится к процессам гидролиза оксихлорида циркония, сольватации флуоресцеина, комплексообразо-вания и, в конечном счете, поликонденсации комплексных частиц.
Из ПОРКС, взятого после 20 сут. выдержки со дня его приготовления, при нагревании до 393 К в течение 30 мин формируются пленки ярко-желтого цвета. При температуре отжига 573 К в течение 10 мин образуются пленки оранжевого цвета. Увеличение времени отжига до 20 мин при этой же температуре позволяет получать пленки ярко-красного цвета. При нагревании до 773 К пленка теряет окраску в течение 10 мин. Это связано с разрушением комплекса органического красителя, что доказывается данными рентгенофазового анализа. При этой температуре образуется ZrO2 моноклинной модификации.
При увеличении времени отжига пленок и повышении температуры их формирования, изменение цвета покрытий от ярко-желтого до красного цветов связано с термическим разрушением высушенного ПОРКС. Как видно из рис. 3, на всех кривых термограммы отчетливо фиксируются три стадии разложения.
300 400 500 600 700 800
т, к
Рис. 3. Термограмма разложения высушенного ПОРКС
Первая стадия сопровождается ярко выраженными эндоэффектами в интервале температур 503...573 К и, видимо, связана с десорбцией молекул растворителя (С2Н5ОН), Н2О, а также HCl, который образовался по обменной реакции комплексообразо-вания оксихлорида циркония с флуоресцеином. Вторая стадия в области 623...670 К сопровождающаяся экзоэффектом, по видимому, соответствует разложению комплекса путем удаления флуоресцеина с последующим его окислением. На третьей стадии до 780 К происходит дальнейшее разрушение комплекса с образованием диоксида циркония. Таким образом, данные термического анализа указывают на то, что изменение цвета пленок в температурном диапазоне 393...573 К связано с удалением адсорбированных молекул растворителя и продуктов реакций ком-плексообразования и поликонденсации.
Физические свойства пленок представлены в табл. 2, спектры пропускания - на рис. 4. T, %
200 300 400 500 600 700
X, нм
Рис. 4. Спектры пропускания пленок: 1) желтая, 2) оранжевая, 3) красная
Анализ спектров пропускания пленок показал, что их максимальное поглощение находится в видимой области 450...500 нм. Полученные цветные покрытия аморфны, обладают диэлектрическими свойствами, высокой адгезией, механической прочностью и химической стойкостью. Случаев растрескивания и отслаивания пленок от подложки во времени не наблюдалось.
Таблица 2. Физические свойства плёнок
Условия получения пленок Цвет Толщина, нм Показатель преломления Сила адгезии, кг/мм2
7=393 К, т=30 мин желтый 75,86 1,92 6,1
7=573 К, т=10 мин оранжевый 94,62 1,98 6,6
7=573 К, т=20 мин красный 69,42 1,92 6,8
Выводы
1. Методом вытягивания из пленкообразующего этанольного раствора на основе ZrOCl2.8H2O и флуоресцеина получены на стекле цветные по-
крытия флуоресцеината циркония (IV). Они являются химически стойкими диэлектриками с высоким показателем преломления.
2. Оптимизированы технологические параметры (температура, время отжига) синтеза желтых (393 К, 10 мин), оранжевых (573 К, 10 мин) и красных (573 К, 20 мин) пленок.
3. Методами ИК-, УФ-спектроскопии, фотометрии и вискозиметрии установлены закономерности формирования пленкообразующего раствора во времени, включающие: гидролиз ок-сихлорида циркония, комплексообразование между ионом циркония и флуоресцеином в спиртовой среде и поликонденсацию.
СПИСОК ЛИТЕРАТУРЫ
1. Верещагин В.И., Козик В.В., Сырямкин В.И. и др. Полифункциональные неорганические материалы на основе природных и искусственных соединений. - Томск: Изд-во Том. ун-та, 2002. - 359 с.
2. Niyomsoan S., Grant W, Olson Dt., Mishza B. Variation of color in titanium and zirconium nitride decorative thin films // Thin Solid Films. - 2002. - V. 415. - P. 187-194.
3. Bertaux S., Reynders P., Heintz J. Sintering and color properties of nanocrystalline CeO2 films // Thin Solid Films. - 2005. - V. 473. -P. 80-88.
4. Мельников Б.Н., Виноградова Г.И. Применение красителей. -М.: Химия, 1986. - 238 с.
5. Занберг Э.Я., Нездюров А.Л., Палеев В.И., Пономарев Д.А. Поверхностная ионизация ароматических углеводородов // Теоретическая и экспериментальная химия. - 1988. - Т. 55. -Вып. 6. - С. 733-738.
6. Костромина Н.А., Кумок В.Н., Скорик Н.А. Химия координационных соединений. - М.: Высшая школа, 1990. - 432 с.
7. Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений. - М.: Мир, 1991. - 456 с.
8. Казицина Л.А., Куплетская Н.Б. Применение УФ-, ИК- и ЯМР-спектроскопии в органической химии. - М.: Высшая школа, 1971. - 241 с.
9. Бурков К.А., Кожевникова Г.В., Лилич Л.С. и др. Колебательные спектры тетрамерного гидроксокомплекса циркония (IV) // Журнал неорганической химии. - 1982. - Т. 27. - Вып. 6. -С. 1427-1431.
10. Аканов А.В. Алгоритмы и программы для численного решения некоторых задач эллипсометрии. - М.: Наука, 1980. - 192 с.
11. Эрдей-Груз Т. Явления переноса в водных растворах. - М.: Мир, 1976. - 595 с.
12. Елисон С.В., Петров К.И. Аналитическая химия Zr и Hf. - М.: Наука, 1965. - 240 с.
УДК 541.64
ТЕКСТУРНО-ФРАКТАЛЬНЫЙ АНАЛИЗ МИКРОСКОПИЧЕСКИХ СРЕЗОВ ОБРАЗЦОВ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ, НАПОЛНЕННЫХ ТЕХНИЧЕСКИМ УГЛЕРОДОМ
А.Ю. Бортников, Н.Н. Минакова
Алтайский государственный университет, г. Барнаул E-mail: [email protected]
Приведены результаты изучения макроструктуры композиционных материалов наполненных техническим углеродом по их микрофотографиям с помощью текстурного и фрактального анализов.
Композиционные материалы, содержащие технический углерод, служат основой для производства разнообразных изделий [1, 2]. Получение материалов с заданным комплексом свойств требует знания механизма формирования основных эксплуатационных характеристик, преобладающая часть которых относится к структурночувствитель-ным, непосредственно связанным с особенностями распределения частиц наполнителя в матрице. Корректное распознавание топологии дает воз-
можность прогнозировать закономерности изменения механических и электрофизических характеристик материалов.
Анализ макроструктуры композиционных материалов зачастую достаточно сложен. Прямые методы исследования макроструктуры мало информативны, поэтому их приходится дополнять косвенными [1]. В частности это касается полимерных композиционных материалов, наполненных техническим углеродом. Такие материалы широко приме-