Научная статья на тему 'TRANSFORMABLE FIRE BARRIERS IN BUILDINGS AND STRUCTURES'

TRANSFORMABLE FIRE BARRIERS IN BUILDINGS AND STRUCTURES Текст научной статьи по специальности «Строительство и архитектура»

CC BY
130
15
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Magazine of Civil Engineering
Scopus
ВАК
RSCI
ESCI
Ключевые слова
FIRE CURTAINS / FIRE BARRIERS / FIREPROOF DOORS / INTUMESCENT FIRE RETARDANT COATING

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Gravit M.V., Nedryshkin O.V., Ogidan O.T.

Fire curtains are used in case of fire to create a temporary barrier in open technological openings, openings of buildings and structures. The paper presents the results of tests for fire resistance of samples of fire curtains. The ability of intumescent formulations to effectively prevent the spread of heat has been studied. The article presents the results of testing various compositions of Intumescent fire retardant coating (IFRC) with the addition of latex for fire curtains based on silica fiber. The temperature of samples from the non-heated side did not exceed 260 °C (the temperature in the furnace of the test facility did not exceed 1200 °C). The temperature of the sample with the addition of TiO2 at the end of the test did not rise above 196 °C. The results obtained in the work are compared with similar tests of other researchers for the period 2012–2017 fire curtains based on silica fiber.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ТРАНСФОРМИРУЕМЫЕ ПРОТИВОПОЖАРНЫЕ ПРЕГРАДЫ В СООРУЖЕНИЯХ И СТРОЕНИЯХ

Трансформируемые противопожарные преграды (противопожарные шторы) используется в случае пожара для создания временного барьера в открытых технологических проемах, проемах зданий и сооружений. В работе представлены результаты испытаний на огнестойкость образцов противопожарных штор. Изучена способность вспучивающихся составов эффективно предотвращать распространение тепла. В статье представлены результаты испытаний различных композиций интумесцентного вспучивающегося состава с добавлением латекса для противопожарных штор на основе кремнеземного волокна. Температура образцов с не обогреваемой стороны не превышала 260 °С (температура в печи испытательной установке не превышала 1200 °С). Температура образца с добавлением TiO2 по окончанию испытания не поднялась выше 196 °С. Результаты, полученные в работе, сравниваются с аналогичными испытаниями других исследователей за период 2012–2017 противопожарных штор на основе кремнеземного волокна.

Текст научной работы на тему «TRANSFORMABLE FIRE BARRIERS IN BUILDINGS AND STRUCTURES»

doi: 10.18720/MCE.77.4

Transformable fire barriers in buildings and structures

Трансформируемые противопожарные преграды в сооружениях и строениях

Abstract. Fire curtains are used in case of fire to create a temporary barrier in open technological openings, openings of buildings and structures. The paper presents the results of tests for fire resistance of samples of fire curtains. The ability of intumescent formulations to effectively prevent the spread of heat has been studied. The article presents the results of testing various compositions of Intumescent fire retardant coating (IFRC) with the addition of latex for fire curtains based on silica fiber. The temperature of samples from the non-heated side did not exceed 260 °C (the temperature in the furnace of the test facility did not exceed 1200 °C). The temperature of the sample with the addition of TiO2 at the end of the test did not rise above 196 °C. The results obtained in the work are compared with similar tests of other researchers for the period 2012-2017 fire curtains based on silica fiber.

Аннотация. Трансформируемые противопожарные преграды (противопожарные шторы) используется в случае пожара для создания временного барьера в открытых технологических проемах, проемах зданий и сооружений. В работе представлены результаты испытаний на огнестойкость образцов противопожарных штор. Изучена способность вспучивающихся составов эффективно предотвращать распространение тепла. В статье представлены результаты испытаний различных композиций интумесцентного вспучивающегося состава с добавлением латекса для противопожарных штор на основе кремнеземного волокна. Температура образцов с не обогреваемой стороны не превышала 260 °С (температура в печи испытательной установке не превышала 1200 °С). Температура образца с добавлением TiO2 по окончанию испытания не поднялась выше 196 °С. Результаты, полученные в работе, сравниваются с аналогичными испытаниями других исследователей за период 2012-2017 противопожарных штор на основе кремнеземного волокна.

As practice shows, the most effective way of simultaneous provision of safe evacuation of people in case of fire and preservation of material values is the measures established by Federal Law No. 123-FZ [1] to limit the spread of fire, within the framework for which provision is made for the installation of fire barriers - building structures with a standard fire resistance limit.

Fire protection is aimed at finding the most effective, economically feasible and technically sound methods and means of preventing fires and their elimination with minimal damage with the most rational use of forces and technical means of extinguishing [2-7]. Automatic fire curtains are designed to divide sections of premises and structures into fire compartments for the purpose of localizing a fire, as well as filling openings in fire barriers. If a fire occurs, due to a signal from a fire alarm sensor or a signal from a fire station, the blind automatically falls and locates the fire. In [8] the statistics of fires in the cultural and entertainment facilities, and describes the various options for action in case of fire. One of the most

M.V. Gravit, O.V. Nedryshkin, O.T. Ogidan,

Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

Канд. техн. наук, заместитель заведующего кафедры по НИРС М.В. Гравит,

аспирант О.В. Недрышкин, студент О.Т. Огидан,

Санкт-Петербургский политехнический университет Петра Великого, г. Санкт-Петербург, Россия

Key words: fire curtains; fire barriers; fire resistance; fireproof doors; Intumescent fire retardant coating; IFRC

Ключевые слова: противопожарные шторы; противопожарные барьеры; противопожарные двери; вспучивающееся огнезащитное покрытие

1. Introduction

important is a method to increase the evacuation of people from buildings. It involves the use of indoor fire barriers.

In the proposed article [9], the basic advantages of using fire-prevention curtains, as well as prospects for their development. After this are the main technical characteristics of fire barriers.

The authors of [10-12] bring the characteristics of modern fire-prevention structures used to improve the fire safety of buildings and structures. Also described are the design features of fire protection gates, doors, windows, curtains.

The authors [13] developed a mathematical model that describes the physical processes occurring in the fire curtain in the fire and determine its fire. The effectiveness of fire curtains investigated by the authors in [14-19]. With CUrisk model, the authors in [20] analyzed the development of the fire, the model is able to provide data about the failure of fire curtains and calculate the possible options for the spread of hazards fire. In his articles [21-23], the authors consider the materials of which can be made passive fire protection, as well as describe the testing methods of fire barriers in fire conditions.

Such curtains are made of fireproof sheet, which consists of glass fibers. In the initial position, the firewall is wound on a shaft of steel. The shaft is housed in a galvanized case made of steel sheet. Mounted on a wall, ceiling, suspended ceilings. The curtain fabric at the lower end has a special cutting bar. It allows you to keep the canvas unfolded. Bottom edges do not bend, do not let smoke pass. In the collapsed state, the tire is hidden among the recesses of the hull structure, so it is not visible.

Fireproof curtains are often designed as part of engineering and technical measures when developing special technical conditions.

Traditional fire protection solutions with curtains:

• separation of spaces into fire compartments;

• overlapping of window, door, elevator and other openings;

• fencing atriums, escalators, stairs;

• as a fire curtain for the separation of the auditorium and the stage space;

• the formation of pockets for collecting smoke in the under-ceiling space;

• protection against fire from nearby and adjacent buildings;

• protection of openings in fire walls, incl. when the conveyors are installed in them;

• protection of places of increased fire danger;

• as an alternative to glass fire barriers, fireproof windows and fireproof gates.

Fire-prevention curtains are used in production and logistics complexes, in parking lots and at gas stations, at railway stations, in film-concert complexes, museums, in hotel, trade and multifunctional complexes.

The purpose of this work is the development of a flame retardant polymer composition for the treatment of the silica core of a fire curtain, which will increase the fire resistance of the structure.

2. Methods

Testing of experimental samples of fire curtains with intumescent composition was carried out to determine the limiting states of the samples presented on the basis of the test method of the national standard of Russia 53307-2009 Fire doors and gates. Test methods for fire resistance [24] with certain assumptions. The furnace temperature, according to ISO 834-1: 1999, Fire-resistance tests - Part 1: General requirements [25], must be monitored and controlled in such a way that it corresponds to the ratio 1.

T = 3451og10(8i +1) + 20 (1)

where

T - is the average furnace temperature, degrees Celsius;

t - is the time, un minutes.

3. Results and Discussion

Tests have been carried out on the development of an intumescent type fire retardant composition that can become the backbone of a fire retardant curtain when applied to a silica fiber. Under fire conditions, the fireproof composition significantly expands in volume with the formation of a heat-insulating foam-coke layer. The expansion process takes place with a significant endothermic effect, and the resulting heat-insulating layer has a thermal conductivity close in value to the thermal conductivity of the air. According to a number of authors [26], the heat transfer towards the protected surface is reduced by up to 100 times due to the foam box. Before application of the intumescent compound to the sample of the fire curtain, it was mixed with a latex solution to obtain a 4: 1 ratio to achieve elasticity.

Intumescent compositions have been manufactured and tested, the formulations of which are given in Table 1.

Table 1. Shows the comparative information about the Intumescent composition

Content,%

№ Name Sample Sample Sample Sample

№ 1 № 2 № 3 № 4

1 Graphite IR - 12 - -

2 Vermiculite - 8 - -

3 Pentaerythritol 10 8 - -

4 Melamine 10 8 - -

5 Titanium dioxide 5 5 12 15

6 Ammonium 25 21 10 12

polyphosphate

7 Dispersant 0.02 0.02 0.02 0.03

8 Defoamer 0.02 0.02 0.02 0.05

9 Biocide 0.02 0.02 0.02 0.03

10 Thickener 0.03 - 0.03 0.04

11 Aluminum hydroxide - - 21 18

12 Vinyl Dispersion 30 30 32 30

13 Plasticizer 4 5 5 3

14 Coalescent 1 - 1 1

15 Microtalk 4 2 5 6

Previously, samples of fire retardants were applied to pieces of 10 to 10 cm foil for testing for flexibility, swelling and ignition. The composition was applied evenly over the entire area of the foil until a thickness of 1 mm was reached. The results are shown in Table 2.

Table 2. Study of intumescent formulations for flexibility, flammability and intumescence

№ Name Sample № 1 Sample № 2 Sample № 3 Sample № 4

1 Cracked Yes No No No

2 Flammable No No No No

3 Height of foam coke No 3mm 5 mm 5mm

These compositions were applied to a silica cloth, a dry film thickness of 1 mm was achieved. After this, the intumescent properties of the web were tested. For fire tests, the composition was applied to silica cloth 10 x 10 cm on both sides with one layer. The test results were taken as the mean temperature over the area from the unheated side of the samples.

Tools, equipment for testing.

• micrometer;

• gas burner with sample chamber;

• Stopwatch;

• pyrometer ADA TemPro 550;

• ruler.

A visual inspection of each sample for uniformity and homogeneity of the application of the flame retardant coating was carried out. The color of each sample is fixed.

The tests were performed alternately for each sample.

The sample was fixed around the perimeter of the fire chamber. The length of the burner flame was preset within 40-60 mm. When the burner was switched on, the stopwatch was turned on at the same time. The flame temperature of the butane burner is up to 1200 °C. The test flame retention time is 60 min. During the experiment, visual observation of the sample was carried out and recorded:

• intensity of smoke evolution;

• the presence of dropping;

• burning of the sample;

• temperature on the unheated side of the sample.

At the end of the experiment, the area of flame damage was measured.

Sample No.1 before fire test, exposure to flame in the test installation, formed foam with unheated side and state of the silica/glass fiber from the heated side (about 1200 ° C) after the tests are presents on Figures 1-4.

Based on the test results, the temperature curves are plotted (Fig. 5). At the entrance of the test, the intensity of the smoke was low / moderate. Combustion of samples 1-2 was not observed throughout the entire experiment.

Figure 1. Sample No.1 before fire test Figure 2. Exposure to flame in the test

installation

Figure 4. The state of the silica/glass fiber from Figure 3. Formed foam with unheated side the heated side (about 1200 ° C) after the tests

Figure 5. Temperatures curves

Гравит М.В., Недрышкин О.В., Огидан О.Т. Трансформируемые противопожарные преграды в сооружениях и строениях // Инженерно-строительный журнал. 2018. № 1(77). С. 38-46.

Sample No. 1, fire curtain with Intumescent composition (Pentaerythritol, melamine, titanium dioxide, ammonium polyphosphate, dispersant, defoamer, biocide, thickener, vinyl dispersion, plasticizer, coalescent, microtalk): During the tests, there was no sign of loss of integrity (E), as well as loss of thermal insulation (I). The maximum temperature of 219 °C was recorded at the 53 minute test. The temperature from the unheated side of the sample averaged 196 °C on the average in the 60th minute of the test. Sample No. 2 fire curtain with Intumescent composition (graphite IR, pentaerythritol, melamine, titanium dioxide, ammonium polyphosphate, dispersant, defoamer, biocide, vinyl dispersion, plasticizer, coalescent, microtalk): At the 40th minute of the test, there were signs of loss of integrity (E) and signs of loss of thermal insulation (I) did not come. The maximum temperature of 208 °C was recorded on the 26th and 38th minute of the test. The temperature from the unheated side of the sample averaged 183 °C on the average in the 40 minute test. Sample No. 3, fire curtain with Intumescent composition (Vermiculite, graphite IR, pentaerythritol, melamine, titanium dioxide, ammonium polyphosphate, dispersant, defoamer, biocide, thickener, vinyl dispersion, plasticizer, microtalk, aluminum hydroxide): On the 20th minute of the test, there were signs of loss of integrity (E) and signs of loss of thermal insulation (I) did not come. The maximum temperature of 215.4 °C was recorded on the 20th minute of the test. Sample No. 4 fire curtain with Intumescent composition (Vermiculite, graphite IR, pentaerythritol, melamine, ammonium polyphosphate, dispersant, defoamer, biocide, thickener, vinyl dispersion, plasticizer, microtalk, aluminum hydroxide): During the 23 minute test, there were signs of loss of integrity (E) and signs of loss of thermal insulation (I) did not come. The maximum temperature of 260 °C was recorded on the 23 minute test.

In [27-28] the author investigates the characteristics of intumescent composition, the qualitative difference of which is the addition of fiberglass to the composition. One of the presented intumescent compositions provided thermal insulation protection of the steel sample to 197 °C.

This paper [29] described the thermal efficiency of alumina and kaolin clay filler based on Intumescent fire retardant coating. Results showed that by using small quantity of fillers; physically good char structure with uniform expansion was achieved as illustrated by furnace test and it was stable for 2h. Under conditions of heat exposure of 500 °C, the samples of the compositions provided thermal insulation in the range from 100 to 200 °C.

The work [30-31] describes the tests of the intumescent composition in the temperature range 950-1100 °C. Published results are comparable with those obtained in the present work. The temperature of the samples with the intumescent residue presented did not rise above 150 °C. With the exception of the applicability of the formulation to the transformable fire-resistant structures such as fire curtains.

This paper [33-35] discuss the synergistic effects of titanium dioxide (TiO2) and zinc borate on thermal stability and water resistance of intumescent fire retardant coatings. As in Ref. [35], we used in our Sample No. 1 5 % TiO2. The composition in [35] protects the surface during testing and the sample temperature does not rise above 150 °C. The comparison results paper [27, 29, 30, 35] are shown in Figure 6.

Temperature with unheated sample side

250 197 200 196

0 200 145 150

1 I I I I I

Ref. 27 Ref. 29 Ref. 30 Ref. 35 M. Gravit

et.al (Sample No 1)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Figure 6. Comparison results of maximum temperature

The results obtained in present work are comparable with similar studies also in the presented work the composition contains latex for maintaining the elasticity, which influenced the nature of intumescence and fireproof properties.

4. Conclusions

The obtained results testify to the effectiveness of applied composition No. 1 (Pentaerythritol, melamine, titanium dioxide, ammonium polyphosphate, dispersant, defoamer, biocide, thickener, vinyl dispersion, plasticizer, coalescent, microtalk). This will be used in the design of a full-scale experiment where the temperature field on the unheated side of the fire curtain of 9 m2 will be investigated. Previously, tests were conducted to study the thermosetting of silica tissue. When field tests of silica cloth without special treatment and without coating by intumescent composition, the shrinkage corresponds to the declared range of the manufacturer [36].

References

1. The Federal law of 22 July 2008 № 123-FZ «Technical regulations on fire safety requirements». Rossiyskaya gazeta. 2008. No. 163.

2. Korolchenko A.Yu., Getalo D.P. Protivopozharnyye shtory (obzor) [Fire curtains (overview)]. Fire and Explosion Safety. 2015. No. 24. Pp. 55-66. (rus)

3. Zaykin S.V., Strakhov V.L. Transformiruyushchiyesya ognezashchitnyye zashchitnyye konstruktsii povyshennoy ognestoykosti [Transforming fire retardant designs with increased fire resistance]. Vestnik MGSU. 2009. No. 4. Pp. 107-112. (rus)

4. Barakovskiy S.A., Ivanov V.A. Razrabotka ustroystv dlya oslableniya teplovogo izlucheniya pri protivopozharnoy zashchite obyektov neftegazovogo kompleksa [Development of devices for the attenuation of thermal radiation in the fire protection of oil and gas facilities]. Izvestiya vysshikh uchebnykh zavedeniy. Neft i gaz. 2011. No. 1. Pp. 61-66. (rus)

5. Zharov S. Osobennosti i problemy avtomaticheskoy protivopozharnoy zashchity skladov s vysotnym stellazhnym khraneniyem [Features and problems of automatic fire protection of warehouses with high-bay storage]. Algoritm bezopasnosti. 2006. No. 5. Pp. 6-9. (rus)

6. Almiyeva L.P., Ashirova A.D. Metody zashchity atriumov [Methods of protecting atriums]. Sovremennyye tekhnologii obespecheniya grazhdanskoy oborony i likvidatsii posledstviy chrezvychaynykh situatsiy. 2015. No. 1(6). Pp. 53-56.

7. Krivkov Yu.V., Ladygina I.R., Pivovarov V.V. Protivopozharnyye i protivodymnyye shtory i ekrany [Fire and smoke protection screens and screens]. Moscow: «NITs« Stroitelstvo », 2012. 84 p. (rus)

8. Sultanova S.F. Pozharnaya opasnost i sistemy protivopozharnoy zashchity kulturno-zrelishchnykh uchrezhdeniy [Fire danger and fire protection systems of cultural and entertainment establishments]. Sovremennyye tekhnologii obespecheniya grazhdanskoy oborony i likvidatsii posledstviy chrezvychaynykh situatsiy. 2014. No.1(5). Pp. 166-169. (rus)

9. Sergunina T. V. Ogne- i dymozashchitnyye pregrady [Fire and smoke protective barriers]. Pozharnaya bezopasnost v stroitelstve. 2010. No. 1. Pp. 42-45. (rus)

10. Krutova Ye.V., Sevostyanova K.V. Arkhitekturno-stroitelnyye resheniya po pozharnoy bezopasnosti [Architectural and Building Solutions for Fire Safety]. Materials of the Interuniversity Scientific and Technical Conference. No.1. SPb.:SPBGPU, 2006. P. 136. (rus)

11. Jimenez M. et. al. Characterization of the performance of an intumescent fire protective coating. Surface & Coating Technology. 2006. Vol. 201. Pp. 979-987.

12. Lyapin A.V. Sovremennyye ogne- i dymozashchitnyye pregrady [Modern fire and smoke protective barriers]. Fire and Explosion Safety. 2008. No. 17. Pp. 49-56. (rus)

Литература

1. Федеральный закон от 22.07.2008 № 123-Ф3 «Технический регламент о требованиях пожарной безопасности» // Российская газета. 2008. № 163.

2. Корольченко А.Ю., Гетало Д.П. Противопожарные шторы (обзор) // Пожаровзрывобезопаность 2015. № 24. С. 55-66.

3. Зайкин С.В., Страхов В.Л. Трансформирующиеся огнезащитные защитные конструкции повышенной огнестойкости // Вестник МГСУ. 2009. № 4. С. 107-112.

4. Бараковский С.А., Иванов В.А. Разработка устройств для ослабления теплового излучения при противопожарной защите объектов нефтегазового комплекса // Известия высших учебных заведений. Нефть и газ. 2011. № 1. С. 61-66.

5. Жаров С. Особенности и проблемы автоматической противопожарной защиты складов с высотным стеллажным хранением // Алгоритм безопасности. 2006. № 5. С. 6-9.

6. Алмиева Л.П., Аширова А.Д. Методы защиты атриумов // Современные технологии обеспечения гражданской обороны и ликвидации последствий чрезвычайных ситуаций. 2015. № 1(6). C. 53-56.

7. Кривков Ю.В., Ладыгина И.Р., Пивоваров В.В. Противопожарные и противодымные шторы и экраны. М.: «НИЦ« Строительство », 2012. 84 с.

8. Султанова С.Ф., Пожарная опасность и системы противопожарной защиты культурно-зрелищных учреждений // Современные технологии обеспечения гражданской обороны и ликвидации последствий чрезвычайных ситуаций. 2014. № 1(5). С. 166-169.

9. Сергунина Т.В. Огне- и дымозащитные преграды // Пожарная безопасность в строительстве. 2010. № 1. С. 42-45.

10. Крутова Е.В., Севостьянова К.В. Архитектурно-Строительные решения по пожарной безопасности // Материалы Межвузовской научно-технической конференции. № 1. СПб.: Изд-во СПБГПУ, 2006. С. 136.

11. Jimenez M. et. al. Characterization of the performance of an intumescent fire protective coating // Surface & Coating Technology. 2006. Vol. 201. Pp. 979-987.

12. Ляпин А.В. Современные огне- и дымозащитные преграды // Пожаровзрывобезопасность. 2008. № 17. С. 49-56.

13. Страхов В.Л., Заикин С.В. Расчет оптимальных параметров огнестойкого экрана противопожарных штор и укрытий // Транспорт на альтернативном топливе. 2010. № 3. С. 20-24.

14. Ройтман В.М. Инженерные решения по оценке огнестойкости проектируемых и реконструируемых зданий. М.: Ассоциация «Пожарная безопасность и наука», 2001. 385 с.

15. Гравит М.В., Еремина Т.Ю., Дмитриева Ю.Н. Конструктивные средства огнезащиты. Анализ

13. Strakhov V.L., Zaikin S.V. Raschet optimalnykh parametrov ognestoykogo ekrana protivopozharnykh shtor i ukrytiy [Calculation of the optimal parameters of the fire-resistant screen of fire curtains and shelters]. Transport na alternativnom toplive. 2010. No. 3. Pp. 20-24. (rus)

14. Roitman V.M. Inzhenernye reshenija po ocenke ognestojkosti proektiruemyh i rekonstruiruemyh zdanij [Engineering solutions for assessing the fire resistance of designed and reconstructed buildings]. Moscow: Associacija «Pozharnaja bezopasnost' i nauka», 2001. 385 p. (rus)

15. Gravit M.V., Yeremina T.Yu., Dmitriyeva Yu.N. Konstruktivnyye sredstva ognezashchity. Analiz yevropeyskikh normativnykh dokumentov [Constructive means of fire protection. Analysis of European regulations]. Fire and Explosion Safety. 2012. No. 9. Pp. 31-36. (rus)

16. Korsun V., Vatin N., Franchi A., Korsun A., Crespi P., Mashtaler S. The strength and strain of high-strength concrete elements with confinement and steel fiber reinforcement including the conditions of the effect of elevated temperatures. Procedia Engineering. 2015. Vol. 117. Pp. 970-979.

17. Gravit M. V., Khasanov I.R., Yeremina T.Yu., Makeyev A.A. Ispolzovaniye printsipa rasshirennogo primeneniya rezultatov ispytaniy stroitelnykh konstruktsiy i materialov v yevropeyskoy sisteme normirovaniya pozharnoy bezopasnosti [Use of the principle of extended application of test results of building structures and materials in the European system of fire safety rating]. Architecture and construction of Russia. 2013. No. 3. Pp. 24-28. (rus)

18. Gravit M.V. Rasprostraneniye rezultatov ispytaniy na ognestoykost svetoprozrachnykh ograzhdayushchikh ne nesushchikh konstruktsiy [Dissemination of test results to fire resistance of translucent enclosing non-load-bearing structures]. Fire and Explosion Safety. 2014. No. 11. Pp. 42-45. (rus)

19. Turco M., Lhotsky P., Hadjisophocleous G. Investigation into the use of a water curtain over openings to prevent fire spread. MATEC Web of Conferences. 2016. No. 46. Pp. 1-11.

20. Li X., Sun X., Wong C.F., Hadjisophocleous G. Effects of fire barriers on building fire risk - a case study using CUrisk. Procedia Engineering. 2016. No. 135. Pp. 445-454.

21. Mrôz K., Hager I., Korniejenko K. Material solutions for passive fire protection of buildings and structures and their performances testing. Procedia Engineering. 2016. No. 151. Pp. 284-291.

22. Kandola B.K., Akonda M.H., Horrocks A.R. Fibre-reinforced glass/silicate composites: effect of fibrous reinforcement on intumescence behaviour of silicate matrices as a fire barrier application. Materials and Design. 2015. No. 86. Pp. 80-88.

23. Kozlowski R., Malgorzata M., Bozena M. Comfortable, flexible upholstery fire barriers on base of bast, wool and thermostable fibres. Polymer Degradation and Stability. 2011. No. 96. Pp. 396-398.

24. National standard of Russia 53307-2009 Smoke shields. Elements of building constructions. Fire doors and gates. Fire resistance test method. Information on http://docs.cntd.ru/document/1200071942 (on Russian).

25. ISO 834-1:1999 Fire-resistance tests - Elements of building construction - Part 1 : General requirements. System requirements: Web browser, URL: http://www.iso.org/iso/home/store/catalogue_tc/catalogue_ detail.htm?csnumber=2576

26. Shkulin S.et al. Intumescent coatings and processes taking place in them. Chemical fibers. 2004. Pp. 33-38.

27. Ahmad F., Ullah S., Hamizol M.S. To study the effect of aluminium trihydrate and fumed silica on Intumescent fire retardant coating. J. Appl. Sci. 2012. Vol. 12. Pp. 2631 -2635.

европейских нормативных документов // Пожаровзрывобезопасность. 2012. № 9. С. 31-36.

16. Korsun V., Vatin N., Franchi A., Korsun A., Crespi P., Mashtaler S. The strength and strain of high-strength concrete elements with confinement and steel fiber reinforcement including the conditions of the effect of elevated temperatures // Procedia Engineering. 2015. Vol. 117. Pp. 970-979.

17. Гравит М. В., Хасанов И. Р., Еремина Т. Ю., Макеев А. А. Использование принципа расширенного применения результатов испытаний строительных конструкций и материалов в европейской системе нормирования пожарной безопасности // Архитектура и строительство России. 2013. № 3. С. 24-28.

18. Гравит М.В. Распространение результатов испытаний на огнестойкость светопрозрачных ограждающих не несущих конструкций // Пожаровзрывобезопасность. 2014. № 11. C. 42-45.

19. Turco M., Lhotsky P., Hadjisophocleous G. Investigation into the use of a water curtain over openings to prevent fire spread // MATEC Web of Conferences. 2016. № 46. Pp. 1-11.

20. Li X., Sun X., Wong C.F., Hadjisophocleous G. Effects of fire barriers on building fire risk - a case study using CUrisk // Procedia Engineering. 2016. № 135. Pp. 445-454.

21. Mrôz K., Hager I., Korniejenko K. Material solutions for passive fire protection of buildings and structures and their performances testing // Procedia Engineering. 2016. № 151. Pp. 284-291.

22. Kandola B.K., Akonda M.H., Horrocks A.R. Fibre-reinforced glass/silicate composites: effect of fibrous reinforcement on intumescence behaviour of silicate matrices as a fire barrier application // Materials and Design. 2015. № 86. Pp. 80-88.

23. Kozlowski R., Malgorzata M., Bozena M. Comfortable, flexible upholstery fire barriers on base of bast, wool and thermostable fibres // Polymer Degradation and Stability. 2011. № 96. Pp. 396-398.

24. ГОСТ Р 53307-2009 Конструкции строительные. Противопожарные двери и ворота. Метод испытаний на огнестойкость

25. ISO 834-1:1999 Fire-resistance tests - Elements of building construction - Part 1 : General requirements. System requirements:

26. Shkulin S.et al. Intumescent coatings and processes taking place in them // Chemical fibers. 2004. Pp. 33-38.

27. Ahmad F., Ullah S., Hamizol M.S. To study the effect of aluminium trihydrate and fumed silica on Intumescent fire retardant coating // J. Appl. Sci. 2012. Vol. 12. Pp. 2631-2635.

28. Amira N. et.al. Effects of hybrid fibre reinforcement on fire resistance performance and char morphology of intumescent coating // MATEC Web of Conferences. 2016. Vol. 38. 03001.

29. Aziza H. et.al. Effect of kaolin clay and alumina on thermal performance and char morphology of intumescent fire retardant coating // MATEC Web of Conferences. 2014. Vol. 13. 04013.

30. Ullah S. et al. Development and testing of intumescent fire retardant coating on various structural geometries // Applied Mechanics and Materials. 2016. Vol. 699. Pp. 360-365.

31. Ullah S. et al. Effects of ammonium polyphosphate and boric acid on the thermal degradation of an intumescent fire retardant coating // Progress in Organic Coatings. 2017. Vol. 109. Pp. 70-82.

32. Puri R.G., Khanna A.S. Effect of cenospheres on the char formation and fire protective performance of water-based intumescent coatings on structural steel // Progress in Organic Coatings. 2016. Vol. 92. Pp. 8-15.

33. Aziz H. et al. Effect of titanium oxide on fire performance of

28. Amira N. et.al. Effects of hybrid fibre reinforcement on fire resistance performance and char morphology of intumescent coating. MATEC Web of Conferences. 2016. Vol. 38. 03001.

29. Aziza H. et.al. Effect of kaolin clay and alumina on thermal performance and char morphology of intumescent fire retardant coating. MATEC Web of Conferences. 2014. Vol. 13. 04013.

30. Ullah S. et al. Development and testing of intumescent fire retardant coating on various structural geometries. Applied Mechanics and Materials. 2016. Vol. 699. Pp. 360-365.

31. Ullah S. et al. Effects of ammonium polyphosphate and boric acid on the thermal degradation of an intumescent fire retardant coating. Progress in Organic Coatings. 2017. Vol. 109. Pp. 70-82.

32. Puri R.G., Khanna A.S. Effect of cenospheres on the char formation and fire protective performance of water-based intumescent coatings on structural steel. Progress in Organic Coatings. 2016. Vol. 92. Pp. 8-15.

33. Aziz H. et al. Effect of titanium oxide on fire performance of intumescent fire retardant coating. Advanced Materials Research. 2014. Vol. 935. Pp. 224-228.

34. Apaydin K., Laachachi A., Ball V., Jimenez M., Bourbigot S., Ruch D. Layer-by-layer deposition of a TiO2-filled intumescent coating and its effect on the flame retardancy of polyamide and polyester fabrics. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2015. Vol. 469. Pp. 1-10.

35. Amir N., Ahmad F. et.al. Synergistic effects of titanium dioxide and zinc borate on thermal degradation and water resistance of epoxy based intumescent fire retardant coatings. Key Engineering Materials. 2017. Vol. 740. Pp. 41 -47.

36. Nedryshkin O., Gravit M., Lyapin A., Voronin V. Overview of fire curtains in constructions. MATEC Web of Conferences IPICSE-2016. 2016. № 86. 04052.

intumescent fire retardant coating // Advanced Materials Research. 2014. Vol. 935. Pp. 224-228.

34. Apaydin K., Laachachi A., Ball V., Jimenez M., Bourbigot S., Ruch D. Layer-by-layer deposition of a TiO2-filled intumescent coating and its effect on the flame retardancy of polyamide and polyester fabrics // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2015. Vol. 469. Pp. 1-10.

35. Amir N., Ahmad F. et.al. Synergistic effects of titanium dioxide and zinc borate on thermal degradation and water resistance of epoxy based intumescent fire retardant coatings // Key Engineering Materials. 2017. Vol. 740. Pp. 41-47.

36. Nedryshkin O., Gravit M., Lyapin A., Voronin V. Overview of fire curtains in constructions // MATEC Web of Conferences IPICSE-2016. 2016. № 86. 04052.

Marina Gravit,

+7(921)912-64-07; [email protected] Oleg Nedryshkin,

+7(999)205-58-52; [email protected] Olamipe Ogidan,

+7(911)096-77-45; [email protected]

Марина Викторовна Гравит,

+7(921)912-64-07;

эл. почта: [email protected]

Олег Вячеславович Недрышкин,

+7(999)205-58-52;

эл. почта: [email protected]

Оламипе Тимоти Огидан,

+7(911)096-77-45;

эл. почта: [email protected]

© Gravit M.V.,Nedryshkin O.V.,Ogidan O.T., 2018

i Надоели баннеры? Вы всегда можете отключить рекламу.