Научная статья на тему 'THERMAL CRACKING RESISTANCE IN MASSIVE FOUNDATION SLABS IN THE BUILDING PERIOD'

THERMAL CRACKING RESISTANCE IN MASSIVE FOUNDATION SLABS IN THE BUILDING PERIOD Текст научной статьи по специальности «Строительство и архитектура»

CC BY
63
11
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Magazine of Civil Engineering
Scopus
ВАК
RSCI
ESCI
Ключевые слова
MODULUS OF DEFORMATION / MASSIVE CONCRETE AND REINFORCED CONCRETE STRUCTURES / THERMAL CRACKING RESISTANCE / HARDENING TEMPERATURE

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Bushmanova A.V., Barabanshchikov Yu.G., Semenov K.V., Struchkova A.Y., Manovitsky S.S.

The article deals with the research of the thermal cracking resistance of massive concrete and reinforced foundation slabs of buildings and structures in the building period. The article examines the results of the analysis of the thermal stress state of a massive foundation slab with a fixed thickness of thermal insulation as well as the results of changing the minimum thickness of the insulation on a surface, providing the cracking resistance of the structures on different plate heights, with and without taking into account the hardening temperature influence on the concrete modulus of the deformation. The article authors determined that the solution of the problem of definition the thermal stress state of the massive foundation slab in the building period without the hardening temperature influence on the modulus of deformation may cause a significant distortion of the real diagram of the thermal stresses and elongation deformations in the structures body. It was indicated that the calculation error essentially depends on the height of the foundation slab. Additionally it was established that in case the slab height exceeds 1.25 m the problem should be solved in a strict setting, which would allow to minimize the insulation layer.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ТЕРМИЧЕСКАЯ ТРЕЩИНОСТОЙКОСТЬ МАССИВНЫХ ФУНДАМЕНТНЫХ ПЛИТ В СТРОИТЕЛЬНЫЙ ПЕРИОД

Работа посвящена исследованию термической трещиностойкости массивных бетонных и железобетонных фундаментных плит зданий и сооружений в строительный период. В статье рассматриваются результаты анализа термонапряженного состояния массивной фундаментной плиты при фиксированной толщине теплоизоляции, а также результаты изменения минимальных толщин поверхностной теплоизоляции, обеспечивающих трещиностойкость конструкции, при различных высотах плиты с учетом влияния температуры твердения смеси на модуль деформации бетона и без данного учета. Авторами установлено, что решение задачи определения термонапряженного состояния массивных фундаментных плит в строительный период без учета влияния температуры твердения бетона на модуль деформации может привести к существенному искажению действительных эпюр распределения термонапряжений и деформаций удлинения в теле конструкции. Показано, что погрешность в расчетах существенно зависит от высоты фундаментной плиты. Также определено, что при высотах плит, превышающих 1,25 м, расчеты необходимо проводить только в строгой постановке задачи, что приводит к существенной экономии необходимой специальной теплоизоляции.

Текст научной работы на тему «THERMAL CRACKING RESISTANCE IN MASSIVE FOUNDATION SLABS IN THE BUILDING PERIOD»

doi: 10.18720/MCE.76.17

Thermal cracking resistance in massive foundation slabs

in the building period

Термическая трещиностойкость массивных фундаментных

плит в строительный период

A.V. Bushmanova, Yu.G. Barabanshchikov, K.V. Semenov, A.Ya. Struchkova, S.S. Manovitsky,

Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

Студент А.В. Бушманова,

д-р техн. наук, профессор

Ю.Г. Барабанщиков,

канд. техн. наук, доцент К.В. Семенов,

студент А.Я. Стручкова,

студент С.С. Мановицкий,

Санкт-Петербургский политехнический

университет Петра Великого,

г. Санкт-Петербург, Россия

Key words: modulus of deformation; massive Ключевые слова: модуль деформации; concrete and reinforced concrete structures; массивные бетонные и железобетонные thermal stressed state; thermal cracking конструкции; термонапряженное состояние; resistance; hardening temperature термическая трещиностойкость; температура

твердения

Abstract. The article deals with the research of the thermal cracking resistance of massive concrete and reinforced foundation slabs of buildings and structures in the building period. The article examines the results of the analysis of the thermal stress state of a massive foundation slab with a fixed thickness of thermal insulation as well as the results of changing the minimum thickness of the insulation on a surface, providing the cracking resistance of the structures on different plate heights, with and without taking into account the hardening temperature influence on the concrete modulus of the deformation. The article authors determined that the solution of the problem of definition the thermal stress state of the massive foundation slab in the building period without the hardening temperature influence on the modulus of deformation may cause a significant distortion of the real diagram of the thermal stresses and elongation deformations in the structures body. It was indicated that the calculation error essentially depends on the height of the foundation slab. Additionally it was established that in case the slab height exceeds 1.25 m the problem should be solved in a strict setting, which would allow to minimize the insulation layer.

Аннотация. Работа посвящена исследованию термической трещиностойкости массивных бетонных и железобетонных фундаментных плит зданий и сооружений в строительный период. В статье рассматриваются результаты анализа термонапряженного состояния массивной фундаментной плиты при фиксированной толщине теплоизоляции, а также результаты изменения минимальных толщин поверхностной теплоизоляции, обеспечивающих трещиностойкость конструкции, при различных высотах плиты с учетом влияния температуры твердения смеси на модуль деформации бетона и без данного учета. Авторами установлено, что решение задачи определения термонапряженного состояния массивных фундаментных плит в строительный период без учета влияния температуры твердения бетона на модуль деформации может привести к существенному искажению действительных эпюр распределения термонапряжений и деформаций удлинения в теле конструкции. Показано, что погрешность в расчетах существенно зависит от высоты фундаментной плиты. Также определено, что при высотах плит, превышающих 1,25 м, расчеты необходимо проводить только в строгой постановке задачи, что приводит к существенной экономии необходимой специальной теплоизоляции.

Introduction

In general practice the calculation of thermal fields is often based on the heat equation solution as well as thermal stresses definition [1-7], linked with calculation of cracking resistance massive of concrete in construction period. A change in the thermal state of such structures occurs due to the heat

liberation from cement hydration during the concrete hardening process, as well as outside temperature fluctuations, solar exposure, various technological factors, etc. [8-13]. Emerging thermal stresses may cause damage to the structural integrity [14-20].

Due to a number of technological and manufacturing reasons, it is preferable to concrete massive foundation mats and other massive structures as a single block of equal height. However, it causes a considerable heat rise in the mass concrete as the result of an exothermic reaction during the concrete hardening. Consequently, the irregular temperature distribution arises along with the block height, which leads to the dangerous tensile strain first on the surface of the foundation slab and then in its central zones [21-29].

Deal with a problem of cracking it applied a complex of technological measures (the heat enclosure, a peripheral electric heating, cooling of concrete mix, tubing cooling of concrete etc.). However, before setting the optimal complex of measures it necessary to calculate the thermal stressed state of construction in a strict definition of the problem. Such a formulation presupposes taking into account the hardening temperature influence on thermophysical [30] and deformation characteristics of concrete.

The modulus of deformation is important characteristic of concrete, which has a significant running value in the building period. Many researches explored the modulus of deformation [31-37].

Modulus of elasticity is part of many static calculations and has close relation to other physical and mechanical characteristics of concrete as are creeping, shrinking, frost resistance etc. Final value of the modulus of elasticity of concrete depends on many influences [37], for example concrete aggregate [35 -36]. One of the most important factors influencing the modulus of elasticity is the ambient temperature during concrete setting and hardening [31-34].

Nowadays in practice of calculating the thermal stressed state of the building period used function

[17]:

E(t) = Emax(l-e«tY) (1)

where Emax - is the limit value of deformation of concrete, setting by rules;

a, y- are functional dependency parameters;

t - current time.

The paper [31] deal that modulus of deformation significant depend on temperature of hardening. There is also suggested to take into account the dependency of «reduced time» hypothesis, which a real time replaced on reduced time a function of hardening temperature. The temperature function is of the form:

U = (2)

where £ - is the characteristic temperature difference.

For the foregoing reasons, estimation of hardening temperature influence on modulus of concrete deformation in calculating the thermal cracking resistance of massive reinforced concrete structured in the building period is the vital task. Since the solution of the problem of definition the thermal stress state of the massive foundation slab in the building period without the hardening temperature influence on the modulus of deformation may cause a significant distortion of the real diagram of the thermal stresses.

The purpose of article is estimation of hardening temperature influence on modulus of concrete deformation in calculating the thermal cracking resistance of massive reinforced concrete structured in the building period and calculated validity of the necessity of such accounting.

As initial data (thermophysical and stress-related characteristics of concrete, cement heat radiation) the results or research, obtained in laboratory "Polytech-SKiM-Test" in CUBS department by professor Barabanschikov Y.G. were accepted.

Methods and Materials

This paper demonstrates calculation of the foundation mat thermal stressed state with the help of TERM software developed by the Institute of Civil Engineering at the Peter the Great St.Petersburg Polytechnic University [18]. This software calculates nonstationary fields of temperature and thermal stresses in slabs. An essential feature of the TERM software is the consideration of temperature influence on thermophysical and stress-related concrete characteristics.

Considering horizontal mats sizes significantly exceed their height, we can study a one-dimensional structural model for the mat central part with the reasonable degree of accuracy. In this model, stress and temperature are functions of the vertical coordinate space [38].

In order to estimate the cracking resistance of the foundation mat, we would use the deformation criterion suggested by P.I. Vasiliev [21]. According to this criterion, concrete elongation deformations, determined in view of the concrete creep factor and variable deformation modulus, should not exceed the ultimate concrete elongation.

The article examines the results of the analysis of the thermal stress state of a massive foundation slab with a fixed thickness of thermal insulation as well as the results of changing the minimum thickness of the insulation on a surface, providing the cracking resistance of the structures on different plate heights, with and without taking into account the hardening temperature influence on the concrete modulus of the deformation.

Consider B35 foundation slab 2 m high with the cement consumption of 340 kg/m3 constructed in summer. The foundation slab is supported by the concrete bedding layer B12.5 with the grade foundation.

Thermal and physical characteristics of the concrete B35 are defined by the concrete thermal conductivity Л = 2.67 W/(m0C) and thermal capacity c = 1.0 kJ/(kg 0C). For modulus of concrete deformation Emax = 34500 Мпа, a = -0.37, y = 0.72 [17].

Concrete creep account according to straight line inherited theory of aging using the relaxation function:

R(t,T) = A(l - e-^a) + (B1 + D1e-^^a)e-yi(t-^) + (B2 + (3)

Where functional dependency parameters are as follows: A = 0.7; B1 = 0.2; D1 = 0.4; B2 = 0.1; D2 = 0.3; a = 0.67; в = 3.61x10-6 с-1; Y1 = 1.17x10-5 с-1; Y2 = 2.33x10-7 с-1.

The heat dissipation process follows the I.D. Zaporozhets equation [16].

__^ (4)

qt(t) = Qmax{l - [l+A20H;FQ[T(T)dT]]} m-1

The equation parameters I.D. Zaporozhets gets from experimental evidence on concrete heat dissipation [20] Qmax = 157500 kJ/m3, А20=4.1х10-6 с-1.

The following technological specifications of concrete pouring were taken into account: inside the heat enclosure, the concrete mix is poured as a single 2.0 m high block with the concrete mix temperature is 20 0С and air temperature is 20 0С. After concreting the surface is covered with insulation, which thickness is determined by the cracking prevention condition.

Results

Evaluation of thermal stressed state with a fixed thickness of thermal insulation

Calculations of this paragraph provide for the same thickness of thermal insulation layer for the case with influence of hardening temperature on modulus of concrete deformation and without such influence. Figure 1 shows graphs of variation in time the thermal stresses in the control points of the base slab without the special insolation. Solid line is the thermal stresses determined with the influence of temperature of hardening on modulus of deformation. Dash line is the thermal stresses without of such influence.

Analyze of a result show us:

1. Character of changing the thermal stresses with time is the same in cases with and without temperature influence on modulus of deformation;

2. The maximum stresses without taking into account the influence of temperature on the modulus deformation for exothermal heating moment (3 days) is: tensile on the surface of the slab is 2.25 MPa, compressive in the center of the slab is 0.86 MPa;

3. Similarly, in the case with taking into account the influence of temperature: tensile stresses on the surface is 3.41 MPa, compressive in the center is 1.38 MPa;

In such a way, problem solution in the simple definition leads to decrease of tensile stresses on the surface to 1.16 MPa (or to 34 %), but compressive tensile to 0.52 MPa (or to 38 %).

Changing thermal stresses in the center and on the top of the plate with the influence of temperature of hardening on modulus of deformation and without of such influence

4

3

CD 1 CL

S 0

to

a) 1

55 .o

-3 -4

-5

3.41 / 2.25

✓ V > >

L 10 11 12 13 14 15 16 17 18 19 20 2 1 2 0 3 2

.38

Time, days

center, without influence -center, with influence

on the top. without influence ■

■ on the top. with influence

Figure 1. Graph of changing thermal stresses in the center and on the upper surface of the slab (solid line with the influence of temperature of hardening, dash line without of such influence)

With a special heat insulation on the surface of the foundation slab the relative elongation deformations changed not so obviously (Fig. 2). Deformations calculated with the hardening temperature influence on the modulus become less than deformation determined without such influence. If a thickness of insulation layer is 4.7 cm than such reducing is 3.9*10-4 (or 8 %). This is effect because relative deformations calculate as stresses divided by modulus of deformation. Using of the heat insulation reduce the temperature difference "center-surface of the slab" and accordingly the stresses themselves. Reducing of numerator (that is stresses) equally for methods with taking into account temperature influence and without that. At the same if we use the hypothesis of "reduced time" than denominator (modulus of deformation) increase in a greater degree.

Changing of relative deformations on the surface slab with taking account temperature influence on the modulus of deformation and without such influence

ö 6

X

to

c o 5

ro

E 4

i_

o

a> T3 3

a>

>

TO 2

a>

Qi

1

0

5.12

/jr 4.73

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

8 9 10 11 12 13 14

Time, days

■without influence with influence

Figure 2. Dependency graph of relative deformations on the surface slab by time with taking account temperature influence on the modulus of deformation and without such influence

(thickness of heat insulation 4.7 cm)

Selection of the required insulation thickness

Calculation is performed for the thermal insulation of foam polystyrene density 40 kg/m3, with a coefficient of heat conductivity: A = 0.030 W/m*°C. In this part of the work for more information thicknesses of the foundation slabs varied in the range from 1.0 to 2.5 m at a pitch of 0.5 m. Figure 3 shows graphs of the minimum safe (in terms of cracking) surface insulation thicknesses depending on the thickness of the foundation slab.

Changing of the thickness of insulation with taking account of the temperature influence on the modulus of defrmation and without such influence

Height of the slab (H), m 9 without influence ♦ with influence Figure 3. Graph of changing the required thickness of insulation on the surface of the slab

Analyze of a results show us:

1. At low heights of the foundation slab (1.0-1.25 m) the effect of the hardening temperatures on the thickness safety insulation layer is not significant, solve the problem in a simplified variant will cause an error not exceeding the accuracy of the base line (5 %);

2. For the thickness of the slabs from 1.5 m the effect of hardening temperature becomes very significant: so for a foundation slab thickness of 2.0 m not taking into account the hardening temperature influence leads to an overestimation of the necessary thickness of thermal insulation by 2.2 cm (or by 38 %) and for a foundation slab thickness of 2.5 m by 5.2 cm (or 55 %).

Discussion

According to the work [31-37] the elastic modulus is not a constant, in fact, it can reach very different values in concrete of the same strength class. It is thus important to have knowledge of aspects, which have the greatest influence on it. According to studies, the solution of the problem of definition the thermal stress state of the massive foundation slab in the building period without the hardening temperature influence on the modulus of deformation may cause a significant distortion of the real diagram of the thermal stresses and elongation deformations in the structures body. Thereby one of the most important factors influencing the modulus of elasticity is the hardening temperature during concrete setting and hardening [31-34].

Conclusion

The results of the conducted experiments allow us to make following conclusions:

1. Solving the problem of thermal stressed state of the massive foundation slabs in the building period without taking into account the influence of concrete hardening temperature on the modulus of deformation may cause to significant deviation of the real diagram of the thermal stresses and elongation deformations in the structures body;

2. The calculation error significant depends on the heights of the foundation slab. At the heights from 1 to 1.5 m calculations of thermal cracking resistance can make in the simple definition without taking into account the influence of the hardening temperature on the modulus of deformation. At heights of slabs large 1.5 m calculations must be carried out only in the strict definition of problem;

3. Calculation of thermal cracking resistance of foundation slab with taking into account the influence of hardening temperature on the modulus of concrete deformation leads to (for the slabs higher than 1.5 m) significant economy of the special required heat insolation. Volume of economy depends on thickness of the foundation slab because for a slab of 2.0 m height it is 38 %.

References Литература

1. Vatin N.I., Nemova D.V., Rymkevich P.P., Gorshkov A.S. 1. Ватин Н.И., Немова Д.В., Рымкевич П.П., Горшков А.С. Vliyanie urovnya teplovoy zashchity ograzhdayushchikh Влияние уровня тепловой защиты ограждающих konstruktsiy na velichinu poter' teplovoy energii v zdanii конструкций на величину потерь тепловой энергии в

yS 3.6 4.3

- -1

[Influence of building envelope thermal protection on heat loss value in the building ]. Magazine of Civil Engineering. 2012. No. 8. Pp. 4-13. (rus)

2. Petrosova D.V., Kuzmenko N.M., Petrosov D.V. Eksperimental'noe issledovanie teplovogo rezhima legkoy ograzhdayushchey konstruktsii v naturnykh usloviyakh [A field experimental investigation of the thermal regime of lightweight building envelope construction]. Magazine of Civil Engineering. 2013. No. 8. Pp. 31-37. (rus)

3. Vatin N.I., Gorshkov A.S., Nemova D.V. Energoeffektivnost' ograzhdayushchikh konstruktsiy pri kapital'nom remonte [Energy efficiency of envelopes at major repairs]. Construction of Unique Buildings and Structures. 2013. No. 3(8). Pp. 1-11. (rus)

4. Nemova D.V., Vatin N.I., Gorshkov A.S., Kashabin A.V., Rymkevich P.P., Tseytin D.N. Tekhniko-ekonomicheskoe obosnovanie meropriyatiy po utepleniyuograzhdayushchikh konstruktsiy individual'nogo zhilogo doma [Technical and economic assessment on actions for heat insulation of external envelops of an individual house]. Construction of Unique Buildings and Structures. 2014. No. 8(23). Pp. 93-115. (rus)

5. Vatin N.I., Nemova D.V. Povyshenie energoeffektivnosti zdaniy detskikh sadov [Increase of power efficiency of buildings of kindergartens]. Construction of Unique Buildings and Structures. 2012. No. 3. Pp. 1-11. (rus)

6. Gorshkov A.S., Rymkevich P.P., Vatin N.I. Modelirovanie protsessov nestatsionarnogo perenosa tepla v stenovykh konstruktsiyakh iz gazobetonnykh blokov [Simulation of non-stationary heat transfer processesin autoclaved aerated concrete-walls]. Magazine of Civil Engineering. 2014. No. 8. Pp. 38-48. (rus)

7. Platonova M.A., Vatin N.I., Nemova D.V., Matoshkina S.A., Iotti D., Togo I. Vliyanie vozdukhoizolyatsionnogo sostava na teplotekhnicheskie kharakteristiki ograzhdayushchikh konstruktsiy [The influence of the airproof composition on the thermo technical characteristics of the enclosing structures]. Construction of Unique Buildings and Structures. 2014. No. 4(19). Pp. 83-95. (rus)

8. Teplova Z.S., Solovyeva K.I., Nemova D.V., Trubina D.A., Petrosova D.V. Teplotekhnicheskiy raschet ograzhdayushchey konstruktsii obshcheobrazovatel'noy shkoly [Thermo technical calculation of enclosure structure of comprehensive school]. Construction of Unique Buildings and Structures. 2014. No. 4(19). Pp. 96-108. (rus)

9. Gorshkov A., Vatin N., Nemova D., Tarasova D. The Brickwork Joints Effect on the Thermotechnical Uniformity of the Exterior Walls from Gas-Concrete Blocks. Applied Mechanics and Materials. 2015. Vol. 725-726. Pp. 3-8.

10. Vatin N., Petrichenko M., Nemova D., Staritcyna A., Tarasova D. Renovation of educational buildings to increase energy efficiency. Applied Mechanics and Materials. 2014. Vol. 633-634. Pp. 1023-1028.

11. Korsun V., Korsun A. The influence of precompression on strength and strain properties of concrete under the effect of elevated temperatures. Applied Mechanics and Materials. 2015. Vol. 725-726. Pp. 469-474.

12. Korsun V., Vatin N., Korsun A., Nemova D. Physical-mechanical properties of the modified fine-grained concrete subjected to thermal effects up to 200 C. Applied Mechanics and Materials. 2014. Vol. 633-634. Pp. 1013-1017.

13. Korsun V., Korsun A. The influence of precompression on strength and strain properties of concrete under the effect of elevated temperatures. Applied Mechanics and Materials. 2015. Vol. 725-726. Pp. 469-474.

14. Barabanshchikov Y.G., Sokolov V.A., Vasiliev A.S., Shevelev M.V. Regulirovanie srokov skhvatyvaniya tsementa khimicheskimi dobavkami [Adjustment of cement setup time with chemical admixtures]. ALITINFORM: Tsement, Beton, Sukhie smesi. 2012. No. 3(25).

здании // Инженерно-строительный журнал. 2012. № 8(34). С. 4-14.

2. Петросова Д.В., Кузьменко Н.М., Петросов Д.В. Экспериментальное исследование теплового режима легкой ограждающей конструкции в натурных условиях // Инженерно-строительный журнал. 2013. № 8(43). С. 31-37.

3. Ватин Н.И., Горшкв А.С., Немова Д.В. Энергоэффективнсть ограждающий конструкций при капитальном ремонте // Строительство уникальных зданий и сооружений. 2013. № 3(8). С. 1-11.

4. Немова Д.В., Ватин Н.И., Горшков А.С., Кашабин А.В., Рымкевич П.П., Цейтин Д.Н. Технико-экономическое обоснование мероприятий по утеплению ограждающих конструкций индивидуального жилого дома // Строительство уникальных зданий и сооружений. 2014. № 8(23). С. 93-115.

5. Ватин Н.И., Немова Д.В. Повышение энергоэффективности зданий детских садов // Строительство уникальных зданий и сооружений. 2012. № 3. С. 1-11.

6. Горшков А.С., Рымкевич П.П., Ватин Н.И. Моделирование процессов нестационарного переноса тепла в стеновых конструкциях из газобетонных блоков // Инженерно-строительный журнал. 2014. № 8. С. 38-48.

7. Платонова М.А., Ватин Н.И., Немова Д.В., Матошкина С.А., Иотти Д., Того И. Влияние воздухоизоляционного состава на теплотехнические характеристики ограждающих конструкций // Строительство уникальных зданий и сооружений. 2014. № 4(19). С. 83-95.

8. Теплова Ж.С., Соловьева К. И., Немова Д.В., Трудина Д.А., Петросова Д.В. Теплотехнический расчет ограждающей конструкции общеобразовательной школы // Строительство уникальных зданий и сооружений. 2014. № 4(19). С. 96-108.

9. Gorshkov A., Vatin N., Nemova D., Tarasova D. The Brickwork Joints Effect on the Thermotechnical Uniformity of the Exterior Walls from Gas-Concrete Blocks // Applied Mechanics and Materials. 2015. Vol. 725-726. Pp. 3-8.

10. Vatin N., Petrichenko M., Nemova D., Staritcyna A., Tarasova D. Renovation of educational buildings to increase energy efficiency // Applied Mechanics and Materials. 2014. Vol. 633-634. Pp. 1023-1028.

11. Korsun V., Korsun A. The Influence of Precompression on Strength and Strain Properties of Concrete under the Effect of Elevated Temperatures // Applied Mechanics and Materials. 2015. Vol. 725-726. Pp. 469-474.

12. Korsun V., Vatin N., Korsun A., Nemova D. Physical-mechanical properties of the modified fine-grained concrete subjected to thermal effects up to 200 C // Applied Mechanics and Materials. 2014. Vol. 633-634. Pp. 1013-1017.

13. Korsun V., Korsun A. The Influence of Precompression on Strength and Strain Properties of Concrete under the Effect of Elevated Temperatures // Applied Mechanics and Materials. 2015. Vol. 725-726. Pp. 469-474.

14. Барабанщиков Ю.Г., Соколов В.А., Васильев А.С., Щевелев М.В. Регулирование сроков схватывания цемента химическими добавками // ALITINFORM: Цемент, бетон, сухие смеси. 2012. № 3(25). С. 32-41.

15. Александровский C.B. Расчёт бетонных и железобетонных конструкций на изменения температуры и влажности с учётом ползучести. М.: Стройиздат, 1973. 444 с.

16. Запорожец И.Д., Окороков С.Д., Парийский А.А. Тепловыделение бетона. М.: Стройиздат, 1966. 316 с.

17. Малинин Н.А. Исследование термонапряженного состояния массивных бетонных конструкций с переменными деформативными характеристиками: Дис. на соиск. учен. степ. к. т. н.: Спец. 05.23.01. Л.,

Pp. 32-41. (rus)

15. Aleksandrovskiy S.V. Raschet betonnykh i zhelezobetonnykh konstruktsiy na izmeneniya temperatury i vlazhnosti s uchetom polzuchesti [Calculation of temperature change and humidity in terms of concerete creep in concrete and reinforced concrete structures]. Moscow: Stroyizdat, 1973. 444 p. (rus)

16. Zaporozhets I.D., Okorokov S.D., Pariyskiy A.A. Teplovydeleniye betona [Heat Liberation by Concrete]. Moscow: Stroyizdat, 1966. 316 p. (rus)

17. Malinin N.A. Issledovaniye termonapryazhennogo sostoyaniya massivnykh betonnykh konstruktsiy s peremennymi deformativnymi kharakteristikami. Diss. na soisk. uchen. step. kan. teh. nauk: Spets 05.23.01 [Research of thermal stressed state of mass concrete structures with changing deformations characteristics. Cand. tech. sci. diss.]. Leningrad, 1977. 186 p. (rus)

18. Semenov K.V. Temperaturnoye i termonapryazhennoye sostoyaniye blokov betonirovaniya korpusa vysokogo davleniya v stroitelnyy period: Dis. na soisk. uchen. step. kan. teh. nauk: Spets 05.23.01 [Temperature and thermal stressed state of concreting blocks in a high pressure shell during the building period]. Leningrad, 1990. 156 p. (rus)

19. Barabanshchikov Y.G., Semenov K.V. Increasing the plasticity of concrete mixes in hydrotechnical construction. Power Technology and Engineering. 2007. No. 41(4). Pp. 197-200.

20. Barabanshchikov Y.G., Semenov K.V., Shevelev M.V. Termicheskaya treshchinostoykost betona fundamentnykh plit [Thermal cracking resistance of concrete foundation mats]. Popular Concrete Science. 2009. No. 1. Pp. 70-76.

21. Vasilyev P.I., Ivanov D.A., Kononov Yu.I., Semenov K.V., Starikov O.P. Raschetnoye obosnovaniye razmerov blokov i posledovatelnosti betonirovaniya korpusa reaktora VG-400 s proverkoy na modeli 1/5 naturalnoy velichiny [Calculation analysis of concreting blocks and VG-400 reactor shell concreting sequence using a 1/5 scale model]. Problems of Atomic Science and Technology. 1988. No. 1. Pp. 62-68. (rus)

22. Trapeznikov L.P. Temperaturnaya treshchinostoykost massivnykh betonnykh sooruzheniy [Thermal cracking resistance of mass concrete structures]. Moscow: Energoatomizdat, 1986. 272 p. (rus)

23. Semenov K.V., Barabanshchikov Y.G. Termicheskaya treshchinostoykost massivnykh betonnykh fundamentnykh plit i yeye obespecheniye v stroitelnyy period zimoy [Maintenance of thermal cracking resistance in massive concrete base slabs during winter concreting]. Construction of Unique Buildings and Structures. 2014. No. 2(17). Pp. 125-135. (rus)

24. Semenov K., Barabanshchikov Y. Thermal cracking resistance in massive concrete structures in the winter building period. Applied Mechanics and Materials. 2015. Vol. 725-726. Pp. 431-441.

25. Russian State Standards SP 41.13330.2012. Concrete and reinforced concrete structures of hydroengineering facilities.

26. Larson M. Thermal crack estimation in early age concrete -models and methods for practical application. Division of Structural Engineering, Lulea University of Technology, Doctoral Thesis, 2003. 190 p.

27. Miyazawa S., Koibuchi K., Hiroshima A., Ohtomo T., Usui T. Control of thermal cracking in mass concrete with blastfurnace slag cement. Concrete Under Severe Conditions. 2010. No. 7-9. Pp. 1487-1495.

28. Shengxing W., Donghui H. Estimation of cracking risk of concrete at early age based on thermal stress analysis. Journal of Thermal Analysis and Calorimetry. 2011. Vol. 105. No. 1. Pp. 171-186.

29. Zhang Z., Zhang X., Wang X., Zhang T., Zhang X. Merge concreting and crack control analysis of mass -concrete

1977. 186 с.

18. Семенов К.В. Температурное и термонапряженное состояние блоков бетонирования корпуса высокого давления в строительный период: Дис. на соиск. учен. степ. к. т. н.: Спец. 05.23.01. Л., 1990. 156 с.

19. Barabanshchikov Y.G., Semenov K.V. Increasing the plasticity of concrete mixes in hydrotechnical construction // Power Technology and Engineering. 2007. № 41(4). Pp. 197-200.

20. Барабанщиков Ю.Г., Семенов К.В., Шевелев М.В. Термическая трещиностойкость бетона фундаментных плит // Популярное бетоноведение. 2009. № 1. С. 7076.

21. Васильев П.И., Иванов Д.А., Кононов Ю.И., Семенов К.В., Стариков О.П. Расчетное обоснование размеров блоков и последовательности бетонирования корпуса реактора VG-400 с проверкой на модели 1/5 натуральной величины // Вопросы атомной науки и техники. 1988. № 1. С. 62-68.

22. Трапезников Л.П. Температурная трещиностойкость массивных бетонных сооружений. М.: Энергоатомиздат, 1986. 272 с.

23. Семенов К.В., Барабанщиков Ю.Г. Термическая трещиностойкость массивных бетонных фундаментных плит и ее обеспечение в строительный период зимой // Строительство уникальных зданий и сооружений. 2014. № 2(17). С. 125-135.

24. Semenov K., Barabanshchikov Y. Thermal Cracking Resistance in Massive Concrete Structures in the Winter Building Period // Applied Mechanics and Materials. 2015. Vol. 725-726. Pp. 431-441.

25. СП 41.13330.2012. Бетонные и железобетонные конструкции гидротехнических сооружений.

26. Larson M. Thermal crack estimation in early age concrete -models and methods for practical application. Division of Structural Engineering, Lulea University of Technology, Doctoral Thesis, 2003. 190 p.

27. Miyazawa S., Koibuchi K., Hiroshima A., Ohtomo T., Usui T. Control of thermal cracking in mass concrete with blast -furnace slag cement // Concrete Under Severe Conditions. 2010. № 7-9. Pp. 1487-1495.

28. Shengxing W., Donghui H. Estimation of cracking risk of concrete at early age based on thermal stress analysis // Journal of Thermal Analysis and Calorimetry. 2011. Vol. 105. № 1. Pp. 171-186.

29. Zhang Z., Zhang X., Wang X., Zhang T., Zhang X. Merge concreting and crack control analysis of mass -concrete base slab of nuclear power plant // Applied Mechanics and Materials. 2011. № 94-96. Pp. 2107-2110.

30. Барабанщиков Ю.Г., Семенов К.В., Стручкова А.Я., Мановицкий С.С. Оценка учёта влияния температуры твердения на процесс тепловыделения в расчетах термонапряженного состояния массивных бетонных и железобетонных конструкций в строительный период // Приволжский научный вестник. 2017. № 1(65). С. 11-17.

31. Кононов Ю.И. Зависимость модуля мгновенных деформаций от температуры твердения и ее влияние на термонапряженное состояние ебтонных массивов гидротехнических сооружений: Автореф. дис. ... канд. тех. наук. Л., 1963. 16 с.

32. Maruyama I., Sasano H., Nishioka Y., Igarashi G. Strength and Young's modulus change in concrete due to long-term drying and heating up to 90 °C // Cement and Concrete Research. 2014. Vol. 66. Pp. 48-63.

33. Kocab D., Danek P., Misak P., Topolar L., Possl P. Experimental analysis of the development of elastic properties and strength under different ambient temperature during the hardening of concrete // Procedia Engineering. 2017. Vol. 195. Pp. 102-107.

34. Kocab D., Kucharczykova B., Misak P., Zitt P., Kralikova M. Development of the elastic modulus of concrete under

base slab of nuclear power plant. Applied Mechanics and Materials. 2011. No. 94-96. Pp. 2107-2110.

30. Barabanshchikov Y.G., Semenov K.V., Struchkova A.Y., Manovitsky S.S. Otsenka ucheta vliyaniya temperatury tverdeniya na protsess teplovydeleniya v raschetakh termonapryazhennogo sostoyaniya massivnykh betonnykh i zhelezobetonnykh konstruktsiy v stroitelnyy period [Estimate of hardening temperature impact on the heat dissipation process in the calculations of thermal stressed state of massive concrete and reinforced concrete structures in the building period]. Privolzhsky scientific newsletter. 2017. No. 1(65). Pp. 11-17

31. Kononov Yu.I. Zavisimost modulya mgnovennykh deformatsiy ot temperatury tverdeniya i yeye vliyaniye na termonapryazhennoye sostoyaniye betonnykh massivov gidrotekhnicheskikh sooruzheniy: Avtoref. dis. kan. teh. nauk [Dependence of the instantaneous strain modulus on the hardening temperature and its effect on the thermal stressed state of concrete massifs of hydraulic structures]. Leningrad, 1963. 16 p. (rus)

32. Maruyama I., Sasano H., Nishioka Y., Igarashi G. Strength and Young's modulus change in concrete due to long-term drying and heating up to 90 °C. Cement and Concrete Research. 2014. Vol. 66. Pp. 48-63.

33. Kocab D., Danek P., Misak P., Topolar L., Possl P. Experimental analysis of the development of elastic properties and strength under different ambient temperature during the hardening of concrete. Procedia Engineering. 2017. Vol. 195. Pp. 102-107.

34. Kocab D., Kucharczykova B., Misak P., Zitt P., Kralikova M. Development of the elastic modulus of concrete under different curing conditions. Procedia Engineering. 2017. Vol. 195. Pp. 96-101.

35. Piasta W., Gora J., Budzynski W. Stress-strain relationships and modulus of elasticity of rocks and of ordinary and high performance concretes. Construction and Building Materials. 2017. Vol. 153. Pp. 728-739.

36. Yildirim H., Sengul O. Modulus of elasticity of substandard and normal concretes. Construction and Building Materials. 2011. Vol. 25. No. 4. Pp. 1645-1652.

37. Hunka P., Kolisko J., Vokac M., Rehacek S. Test and technological influences on modulus of elasticity of concrete - recapitulation. Procedia Engineering. 2013. Vol. 65. Pp. 266-272.

38. Bushmanova A.V., Videnkov N.V, Semenov K.V., Barabanshchikov Yu.G., Dernakova A.V., Korovina V.K. The thermo-stressed state in massive concrete structures. Magazine of Civil Engineering. 2017. No. 3. Pp. 51-60.

different curing conditions // Procedia Engineering. 2017. Vol. 195. Pp. 96-101.

35. Piasta W., Gora J., Budzynski W. Stress-strain relationships and modulus of elasticity of rocks and of ordinary and high performance concretes // Construction and Building Materials. 2017. Vol. 153. Pp. 728-739.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

36. Yildirim H., Sengul O. Modulus of elasticity of substandard and normal concretes // Construction and Building Materials. 2011. Vol. 25. № 4. Pp. 1645-1652.

37. Hunka P., Kolisko J., Vokac M., Rehacek S. Test and technological influences on modulus of elasticity of concrete - recapitulation // Procedia Engineering. 2013. Vol. 65. Pp. 266-272.

38. Бушманова А.В., Виденков Н.В., Семенов К.В., Барабанщиков Ю.Г., Дернакова А.В., Коровина В.К. Термонапряженное состояние массивных бетонных конструкций // Инженерно-строительный журнал. 2017. № 3(71). С. 51-60.

Aleksandra Bushmanova, +7(981)822-34-63; [email protected]

Yuriy Barabanshchikov, +7(812)534-12-86; [email protected]

Kirill Semenov,

+7(921)781-19-57; [email protected]

Александра Васильевна Бушманова, +7(981)822-34-63; эл. почта: [email protected]

Юрий Германович Барабанщиков, +7(812)534-12-86; эл. почта: [email protected]

Кирилл Владимирович Семенов, +7(921)781-19-57; эл. почта: [email protected]

Ayyyna Struchkova, Айыына Яковлевна Стручкова,

+7(999)229-56-01; [email protected] +7(999)229-56-01;

эл. почта: [email protected]

Sergey Manovitsky,

+7(981)980-37-34; [email protected] Сергей Сергеевич Мановицкий,

+7(981)980-37-34;

эл. почта: [email protected]

© Bushmanova A.V.,Barabanshchikov Yu.G.,Semenov K.V.,Struchkova A.Y.,

Manovitsky S.S., 2017

i Надоели баннеры? Вы всегда можете отключить рекламу.