Научная статья на тему 'The study of histotopography of glycoconjugates in the perspective of the development of local therapy of stomatological maxillary sinusitis'

The study of histotopography of glycoconjugates in the perspective of the development of local therapy of stomatological maxillary sinusitis Текст научной статьи по специальности «Фундаментальная медицина»

CC BY
69
16
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
LECTINHISTOCHEMISTRY OF THE SCHNEIDERIAN MEMBRANE / IATROGENIC MAXILLARY SINUSITIS / LABELED MEDICINES

Аннотация научной статьи по фундаментальной медицине, автор научной работы — Varzhapetyan S.D., Gulyuk A.G.

Lectin can act as address agents, or vectors. The distribution of carbohydrate residues with high concentration in the regions of the mucous membrane of the maxillary sinus of 129 (100.0 %) patients, which were distributed according to etio-pathogenetic groups of stomatogenic maxillary sinusitis. The study showed that the saturation of N-acetylneuraminic acid dominates only in the basal cells of the Schneider membrane in the case of an odontogenic maxillary sinusitis. Sialyl(α2-6) galactose had high expression with traumatic form of iatrogenic maxillary sinusitis towards the other carbohydrate determinants, β-D-galactose was only in ciliary cells of patients with medical form of iatrogenic sinusitis. Most often, in Schneiderian membrane structures, L-fucose, and α-D-monozy had high expression of observed in all forms of dental maxillary sinusitis.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «The study of histotopography of glycoconjugates in the perspective of the development of local therapy of stomatological maxillary sinusitis»

11. Michael CA, Dominey-Howes D, Labbate M. The antibiotic resistance crisis: causes, consequences, and management. Front Public Health.[Internet] 2014 Sep 16 [cited 2018 Feb. 11];2:145. Available from: https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC4165128/

12. Muzammil S, Hayat S, Fakhar-E-Alam M, Aslam B, Siddique MH, Nisar MA, et al. Nanoantibiotics: Future nanotechnologies to combat antibiotic resistance. Front Biosci (Elite Ed). 2018 Mar 1;10:352-74.

13. Rolston KVI. Infections in Cancer Patients with Solid Tumors: A Review. Infect Dis Ther. 2017 Mar; 6(1):69-83.

14. Rossolini GM, Arena F, Pecile P, Pollini S. Update on the antibiotic resistance crisis. Clin Opin Pharmacol. 2014 0ct;18:56-60.

15. Sandhu A, Samra AK. Opportunistic infections and disease implications in HIV/AIDS. IJPSI. 2013 May;2(5):47-54.

16. Steele RW. Managing infection in cancer patients and other immunocompromised children. Ochsner J. 2012 Fall;12(3):202-10.

17. Wright GD. Something old, something new: revisiting natural products in antibiotic drug discovery. Can J Microbiol. 2014 Mar;60(3):147-54.

МЕТИЛЭТИЛПИРИДИНОЛА СУКЦИНАТ КАК ПОТЕНЦИАЛЬНЫЙ АДЬЮВАНТ ПРОТИВОМИКРОБНЫХ СРЕДСТВ Важничая Е.М., Лобань Г.А., Боброва Н.А., Ганчо О. В.

Статья посвящена изучению действия метилэтилпири-динола сукцината (мексидола) и его комбинаций с антибиотиками на развитие культур эталонных штаммов E. coli АТСС 25922 и S. aureus АТСС 25923 стандартными методами серийных разведений и диско-диффузионным. Показано, что препарат имеет угнетающее действие на указанные штаммы стафилококка и кишечной палочки, что свидетельствует о наличии у него антимикробных свойств и их широкий спектр с минимальной подавляющей концентрацией 1250 мкг/мл. Он способен усиливать чувствительность микроорганизмов к антибиотикам различного механизма действия, а именно E. coli АТСС 25922 - к цефтазидиму и доксациклину, S. aureus АТСС 25923 - к цефтазидиму, ванкомицину, фузидину, норфлоксацину. Это дает основания полагать, что метилэтилпиридинола сукцинат целесообразно применять как адъювант противомикробной терапии. Очевидно, потенцирование эффекта антибиотиков вместе с антиоксидантным, антитоксическим и противовоспалительным действием препарата на организм больного будет способствовать повышению эффективности терапии гнойно-инфекционных заболеваний.

Ключевые слова: метилэтилпиридинола сукцинат, мексидол, антимикробное действие, эталонные штаммы микроорганизмов.

Стаття надшшла 4.03.18 р.

METHYLETHYLPYRIDINOL SUCCINATE AS A POTENTIAL ADJUVANT OF ANTIMICROBIAL AGENTS

Vazhnycha E.M., Loban G.A., Bobrova N.A, Gancho O.V.

The paper is devoted to study of the action of methylethylpyridinol succinate (mexidol) and its combinations with antibiotics on the development of cultures of standard strains of E. coli ATCC 25922 and S. aureus ATCC 25923 by standard methods of serial broth dilutions and disco-diffusion. It is shown that the drug has an inhibitory effect on these strains of staphylococcus and Escherichia coli which indicates that it has antimicrobial properties and broad spectrum with a minimal inhibitory concentration of 1250 pg/ml. It is also capable of enhancing microorganisms' susceptibility to antibiotics of different mechanisms of action, namely E. coli ATCC 25922 - to ceftazidime and doxacycline, S. aureus ATCC 25923 - to ceftazidime, vancomycin, fusidine, norfloxacin. This gives reason to believe that methylethylpyridinol succinate is expediently used as an adjuvant of antimicrobial therapy. Obviously, the potentiation of antibiotics effect along with the antioxidant, antitoxic and anti-inflammatory action of the drug on the patient's body will help to increase the effectiveness of therapy for purulent-infectious diseases.

Key words: methylethylpyridinol succinate, mexidol, antimicrobial action, reference strains of microorganisms.

Рецензент Дев'ятюна Т.О.

DOI 10.26724 / 2079-8334-2018-2-64-126-131 UDC 616.716.1:616.315.1: 616.216-002-074/.078

THE STUDY OF HISTOTOPOGRAPHY OF GLYCOCONJUGATES IN THE PERSPECTIVE OF THE DEVELOPMENT OF LOCAL THERAPY OF STOMATOLOGICAL MAXILLARY

SINUSITIS

E-mail: [email protected]

Lectin can act as address agents, or vectors. The distribution of carbohydrate residues with high concentration in the regions of the mucous membrane of the maxillary sinus of 129 (100.0 %) patients, which were distributed according to etio-pathogenetic groups of stomatogenic maxillary sinusitis. The study showed that the saturation of N-acetylneuraminic acid dominates only in the basal cells of the Schneider membrane in the case of an odontogenic maxillary sinusitis. Sialyl(a2-6) galactose had high expression with traumatic form of iatrogenic maxillary sinusitis towards the other carbohydrate determinants, P-D-galactose was only in ciliary cells of patients with medical form of iatrogenic sinusitis. Most often, in Schneiderian membrane structures, L-fucose, and a-D-monozy had high expression of observed in all forms of dental maxillary sinusitis.

Keywords: lectinhistochemistry of the Schneiderian membrane, iatrogenic maxillary sinusitis, labeled medicines.

To date, the maxillary sinusitis remains one of the most common diseases. From 5 to 15 % of the adult population in the world suffers from various forms of sinusitis [4; 5]. The share of the maxillary sinusitis in the total number of inflammatory diseases of the paranasal sinuses is 56.0 - 73.0 %, and among the purulent

© S. D. Varzhapetyan, A.G. Gulyuk, 2018

126

- inflammatory processes of the maxillofacial region - up to 21.3 % [7]. According to various epidemiological studies, the incidence of maxillary sinusitis increases annually by 1,5 - 2,0 %. Over the past 10 years, the incidence has increased 3 times [10]. One of the tasks on the way to solving this problem is to develop methods of local therapy that help restore the drainage function of the ciliated epithelium, because the pathogenesis of all the maxillary sinusitis is the violation of the mucociliary system. Clinical recovery and prevention of relapses of the maxillary sinusitis largely depends on the completeness of the sanitation of the paranasal sinuses of adequately conducted therapy. At the same time, usually only a small amount of resorptive drugs reaches the therapeutic target [9]. The selectivity of the action of the drug can be enhanced by the use of targeted agents in the delivery systems, molecules that are able to bind to specific determinants on the cell surface. Lectins - can act as address agents, or vectors. The medicament can be coupled to the vector covalently to form a conjugate, or non-covalently, to form a strong complex. The binding of the targeted molecule to a specific receptor on the cell surface induces a receptor-mediated endocytosis process that provides the accumulation of the affected cells with a drug whose molecular target is inside the cell [11]. Data on the histotopography of glucoproteins with a high expression value for various forms of stomatogenic sinusitis can also be used in the future to develop methods for individual therapy of the Schneider membrane based on the cellular recognition system.

The purpose of the study was to identify the carbohydrate residues of glucoproteins with a high expression index in the structures of the Schneider membrane with various forms of stomatogenic maxillary sinusitis.

Material and methods. Sampling of biomaterial, a portion of the mucous membrane of the maxillary sinus was performed by in 129 (100.0 %) patients, which were distributed according to etio-pathogenetic groups of stomatological maxillary sinusitis [3]. Into the group of odontogenic form of stomatogenic maxillary sinusitis (OFMS) there were 14 (10.9 %) patients who had in which inflammation in the sinus developed from previously untreated teeth. Into the group of infectious-allergic form of iatrogenic maxillary sinusitis (IAFIMS) there were 22 (19.1 %) patients who had established a periapical infection of previously treated teeth in the sinus in the etiology of the disease; The group of the mixed form of iatrogenic maxillary sinusitis (MixFINS) included 24 (20.9 %) patients with a filling material or a fragment of the tooth root in the lumen of the sinus. 12 (10.4 %) patients (who iatrogenic maxillary sinusitis of stomatologic origin which of chronic used medication hormones, antibiotics, drugs) were included in the medical form (MFIMS) group. In the group of traumatic form of iatrogenic maxillary sinusitis (TFIMS) - 57 (49.6 %) patients with sinusitis which developed against surgical manipulations in the area of the alveolar process or the body of the upper jaw. The biopsies were fixed in a 10% neutral formalin solution for 48 hours. Dehydration was carried out in an ascending battery of alcohols, starting with 50.0 % ethyl alcohol, as an intermediate medium, a solution of chloroform was used. Then poured a mixture of paraffin: wax: rubber at a rate of 20: 1: 1. From paraffin blocks on a rotary microtome, 100-150 serial histological sections with a thickness of 5 ^m were made. For observational microscopy, histological sections were stained with hematoxylin and eosin. The preparations were processed using the standard sets of "Lectinotest", Lviv in the dilution of lectin 1:50 according to the recommended procedure. Visualization of binding places of lectin was carried out in the system of diaminobenzidine - hydrogen peroxide. Control of the specificity of the reaction was carried out by eliminating diaminobenzidine from the treatment regimen. Specificity of lectins to terminal non-reducing monosaccharide residues of glycoconjugates is given according to literature data: lectin of "golden rain" shrub (LABA), specific for aL-fucose (aL-Fuc); lectin of soybean (SBA), specific for N-acetyl-D-galactosamine (a-NAcDGal);lectin of wheat germ (WGA), specific for N-acetylneuraminic acid (NAcDGlc — NAcNeu); lectin of pea (PSA) - to aD-glucose and aD-mannose (C6H12O6); lectin of peanut (PNA) specific for pD-galactose (PDGal —>R); lectin of black elderberry (SNA) — to sialyl(a2-6) galactose; lectin of Concavalin A (Con A) - to a-mannose - R. The abbreviated name of lectins is given in accordance with the international nomenclature of lectins [1]. The intensity of staining of sections with lectins was evaluated by a semi-quantitative method: "+++" - intensive reaction (brown color); "++" - moderate reaction (golden brown color); "+" - weak reaction (golden yellow color); 0 - no reaction.

The photodocumentation was carried out using a computerized analysis system consisting of an Axiolab binocular microscope, an Axiocam digital video camera with an 8 megapixel matrix, a video adapter connected to a microscope, a personal computer equipped with a video capture card connected to a digital camera via an interface and a video cable and the software "AxioVision 4.8" , allowing you to view the image of the histological preparation on the screen in real time, select the necessary area for the photographs to obtain a digital image of the histological preparation, to save it on the hard disk of the personal computer.

Results of the study and their discussion. The concentration of L-fucose (Fuca1-2Galp-3GalNAc) was expressed in ciliated cells and in the basal membrane of the mucous membrane of the

maxillary sinuses of patients with odontogenic sinusitis (+++). N-acetylneuraminic acid (Neu5Ac) in basal cells (++). The presence of carbohydrate residues in goblet cells was the same (+).

Table 1

Carbohydrate residues in the mucous membrane of the maxillary sinuses in the odontogenic type _of stomatogenic maxillary sinusitis_

№. Mucosal structures Compounds with a marked difference in the intensity of staining

1. Ciliary cells aL-fucose (Fuca1-2Galß-3GalNAc) (+++) t

2. Basal cells N-acetylneuraminic acid (Neu5Ac) (++)

3. Goblet cells *

4. Basal membrane aL-fucose (Fuca1-2Galß-3GalNAc) (+++) t

5. Fibers of own plate in the focus of fibrosis aL-fucose (Fuca1-2Galß-3GalNAc) (+++)

Note.* - uniform distribution of carbohydrate residues; T carbohydrate residues with the highest saturation of benzidine dye.

In the normal fibers of the intrinsic plate of the Schneider membrane, the concentration of a-mannose-R (++) was expressed. As can be seen from the table 1, the composition of carbohydrate residues changed in the focus of fibrosis of the lamina itself - L-fucose (Fuca1-2Gaip-3GalNAc) (+++) and N-acetylneuraminic acid (NAcDGlc ^ NAc Neu) (++) dominated.

In the ciliary and basal cells of the Schneider membrane in the traumatic form of iatrogenic sinusitis, the intensity of saturation with the benzidine dye of L-fucose (Fuca1-2Galp-3GalNAc), was noted high (+++), and medium (++) degree, respectively (tab. 2).

From the table it follows that in the goblet cells the concentration of cialyl (a2-6) galactose (+++), in the basal membrane - L-fucose (+++) was above the rest. In the unaltered fibers of the intrinsic plate of the sinus mucous membrane of patients with traumatic form of iatrogenic sinusitis, only the expression of a-D-monosaccharide (a-D-Man), L-fucose (Fuca1-2Galp-3GalNAc) and a-mannose-R (+ ). In the focus of fibrosis of the progenitor plate, the distribution of glycoproteins was even (++), except p-D-galactose (+): as seen in the table, the expression of the latter was poorly expressed.

Table 2

Carbohydrate residues in the mucous membrane of the maxillary sinuses in the traumatic form of iatrogenic _maxillary sinusitis of stomatogenic genesis_

№ Mucosal structures Compounds with a marked difference in the intensity of staining

1. Ciliary cells aL-fucose (Fuca1-2Galß-3GalNAc) (+++) i i

2. Basal cells aL-fucose (Fuca1-2Galß-3GalNAc) (++)

3. Goblet cells sialyl(a2-6) galactose (Neu5Ac(2^6)Gal) (+++)

4. Basal membrane aL-fucose (Fuca1-2Galß-3GalNAc) (+++)

5. Fibers of own plate in the focus of fibrosis ß-D-galactose (ß-D-Gal-R) (+) 1 r

Note. | - carbohydrate residues with the highest saturation of benzidine dye; I - carbohydrate residues with the lowest saturation of the benzidine dye. v

In the infectious-allergic form of iatrogenic maxillary sinusitis, the saturation of the ciliated cells with the studied carbohydrate determinants of glucoconjugates, except a-D-monosome (a-D-Man) and N-acetylneuraminic acid (Neu5Ac) (+), was average (++) (tab. 3).

Table 3

Carbohydrate residues in the mucous membrane of the maxillary sinuses in the infectious-allergic form _of iatrogenic maxillary sinusitis_

№ Mucosal structures Compounds with a marked difference in the intensity of staining

1. Ciliary cells a-D-mannose (a-D-Man) (+) N-acetylneuraminic acid (Neu5Ac) (+) t

2. Basal cells sialyl(a2-6) galactose (Neu5Ac(2^6)Gal) (0)

3. Goblet cells sialyl(a2-6) galactose (Neu5Ac(2^6)Gal) (0)

4. Basal membrane aL-fucose (Fuca1 Fuca1-2Galß-3GalNAc) (++)

5. Fibers of own plate in the focus of fibrosis ß a-D-mannose (a-D-Man) N-acetylneuraminic acid (Neu5Ac) (++) aL-fucose (Fuca1-2Galß-3GalNAc) \

Note. A - carbohydrate residues with the highest saturation of benzidine dye; I - carbohydrate residues with the lowest saturation of the benzidine dye. Y

As can be seen from the table, uniform expression of carbohydrate compounds was noted not only in ciliated cells (++), but in goblet cells and basal cells (+). In the latter two types of cells, sialyl (a2-6) galactose (Neu5Ac (2^6) Gal) (0) was not detected. By expression of the concentration in basal cells, L-fucose (Fucal-2Galp-3GalNAc) (++) was isolated. In the fibro-modified fibers of the proprietary plate, L-fucose (Fucal-2Galp-3GalNAc), a-D mononase (a-D-Man) and N-acetylneuraminic acid (Neu5Ac) (++). The study of glycoproteins in the mucosa of the affected sinuses of patients with a medical (drugs) form of iatrogenic

maxillary sinusitis showed that in the ciliated cells the N-acetyl-D-galactosamine (D-GalNAc) and P-D-galactose (P-D-Gal-R) receptors for soy lectin (SBA) and peanut (PNA) had highest concentration (++) (tab. 4).

Table 4

Carbohydrate residues in the mucous membrane of the maxillary sinuses in medical (drugs) form _of iatrogenic maxillary sinusitis_

№ Mucosal structures Compounds with a marked difference in the intensity of staining

1. Ciliary cells N-acetyl-D-galactosamin(D-GalNAc) (++); ß-D-galactose (ß-D-Gal-R) (++) ▲

2. Basal cells aL-fucose (Fuca1-2Galß-3GalNAc) (++)

3. Goblet cells aL-fucose (Fuca1-2Galß-3GalNAc) (++)

4. Basal membrane a-D-mannose (a-D-Man) (+); a-mannose-R (+)

5. Fibers of own plate in the focus of fibrosis sialyl(a2-6) galactose (Neu5Ac(2^6)Gal) (0); aL-fucose (Fuca1-2Galß-3GalNAc) (0/+) 1

of the benzidine dye.

Note. A- carbohydrate residues with the highest saturation of benzidine dye;

e|

- carbohydrate residues with the lowest saturation

In basal and goblet cells - L-fucose (Fuca1-2Galp-3GalNAc) the receptor for the lectin of the "Golden Rain" shrub (LABA) had hig concentration (++); in the basal membrane and unchanged (normal) fibers of the native plate - a-D-monoza (a-D-Man) and a-mannose-R - receptors for pea lectins (PSA) and concavalin A (ConA) were minimal (+). In the fibro-modified fibers of the native plate, there was a relatively uniform expression of all carbohydrate determinants (++) except sialyl (a2-6) galactose (Neu5Ac (2 ^ 6) Gal) (0) and L-fucose (Fuca1-2Galp-3GalNAc) ( 0 / +) - receptors to lectins SNA and LABA, respectively. In the mixed form of iatrogenic maxillary sinusitis, saturation of ciliated cells with L-fucose (Fuca1-2Galp-3GalNAc) (+++) was noted high. In basal cells all the carbohydrate residues studied are found in equal concentration (+). In goblet cells their content increased (++) except for sialyl (a2-6) galactose (Neu5Ac (2 ^ 6) Gal) (+) and N-acetylneuraminic acid (Neu5Ac) (+ / 0), and in the basal membrane was only residues of L-fucose and aD-mannose (+). The mucous membrane covering the respiratory system is a biochemically complex medium rich in glycoproteins, antimicrobial peptides, immunoglobulins and many other proteins, lipids and electrolytes. It is divided into an outer loose layer of proteolytic cleaved mucins, in which the bacteria mainly settle, and an inner layer that is firmly attached to the epithelium, since it is formed by transmembrane glycoproteins [13].

Bas.M. fibros. O.P.

I

■ OMi

■ TFIIV

■ lAFir

■ MFir

■ Mix F

Figure 1. Structures of the Schneiderian membrane in the study groups dominated by of L-fucose expression. Note. C.C. - ciliary cells; Bas.C. - basal cells; Gob.C. - goblet cells; Bas.M. - basal membrane; fibros. O.P. - fibers of own plate; OMS - odontogtnic maxillary sinusitis; TFIMS - traumatic form of iatrogenic maxillary sinusitis; IAFIMS -infectious-allergic form of iatrogenic maxillary sinusitis; MFIMS - medical (drugs) form of iatrogenic maxillary sinusitis; MixFIMS - mixed form of iatrogenic maxillary sinusitis.

Figure 2. Structures of the Schneiderian membrane in the study groups dominated by the expression of a-D monoz Note. C.C. - ciliary cells; Bas.C. - basal cells; Gob.C. - goblet cells; Bas.M. - basal membrane; fibros. O.P. - fibers of own plate; OMS - odontogtnic maxillary sinusitis; TFIMS - traumatic form of iatrogenic maxillary sinusitis; IAFIMS -infectious-allergic form of iatrogenic maxillary sinusitis; MFIMS - medical (drugs) form of iatrogenic maxillary sinusitis; MixFIMS - mixed form of iatrogenic maxillary sinusitis.

An important role in protecting mucous membranes is played by enzymes, lecidins, defensins, histstines and lectins. According to the literature data, five residues of monosaccharides are detected in mucus mucus: fucose, galactose, N-acetylglucosamine, N-acetylgalactosamine and sialic acid [14]. In intact newborn animals, the secret of goblet cells contains a significant amount of P-D-galactose residues, N-acetylgalactosamine, sialic acids, little aD-mannose and that of D-glucose; and the residues of L-fucose are practically not detected [8]. L-fucose and aD-mannose which possesses high cytoprotective and immunomelling properties were high expression in the structures of the Schneider membrane in separate forms of stomatogenic maxillary sinusitis (fig. 1, 2), of indicative of increased activity of these sites [12]. The study showed that the saturation of N-acetylneuraminic acid dominates only in the basal cells of the Schneider membrane in the case of an odontogenic maxillary sinusitis. This can be caused both by a high degree of contamination by the microbes of this layer (the peptidoglycan layer of the bacterial cell wall consists of alternating N-acetylglucosamine residues GlcNAc and N-acetimuramyl MurNAc acid [6], and indicate the active penetration into the wall blood vessels of bacteria and fungi [2].

Sialyl(a2-6) galactose had high expression with traumatic form of iatrogenic maxillary sinusitis of in relation to other carbohydrate determinants , P-D-galactose was only in ciliary cells of patients with medical form of iatrogenic sinusitis. There are data about sialyl (a2-6) galactose has a strong forces in the formation of an immune response. Thus, for example, it is shown that the presence of terminal sialic acid in the oligosaccharide part of immunoglobulin G (IgG) is necessary for its normal functioning.

1. Preparations labeled with wheat lectin (WGA) can be used to accumulate drug compounds in the basal cells of the maxillary sinus in odontogenic maxillary sinusitis.

2. Preparations labeled with lectin SNA can be used to effect the accumulation of drug compounds in the goblet cells of the maxillary sinus in the traumatic form of iatrogenic maxillary sinusitis.

3. Preparations labeled with peanut lectin (PNA) can be used to accumulate drug compounds in the ciliated cells of the maxillary sinus in the medical (drugs) form of iatrogenic sinusitis.

4. Preparations labeled with lectin concavalin A (Con A) can be used to accumulate drug compounds in the basal membrane of the maxillary sinus in medical (drugs) form and mixed form of iatrogenic sinusitis, in fibrofinally altered fibers of the self-lamina in infection-allergic and mixed forms of iatrogenic maxillary sinusitis.

5. Given the frequency of dominance of L-fucose expression in the structures of the mucous membrane of the maxillary sinus in various forms of the stomatogenous maxillary sinusitis, the lectin of the "Golden rain" shrub (LABA) is the most universal guide for drugs in various forms of stomatogenous maxillary sinusitis.

1. Antonyuk VO Lektyny ta yikh syrovynni dzherela. L'viv: Kvart; 2005. 554 s. [in Ukrainian]

2. Blunt JW, Copp BR, Keyzers RA, et al. Marine natural products. Nat Prod Rep. 2015;32(2): 119-211.

3. Gulyuk AG, Varzhapetyan SD. Obosnovanie klassifikatsii yatrogennyikh verhnechelyustnyikh sinusitov stomatogennovo proishozhdeniya. Innovatsiyi v stomatologiyi [Internet]. 2015 May; 2: 27-38. Available from: http: // www. innovacii.od.ua/volume-2-2015/27.pdf [in Russian]

4. Ismagilov ShM, Muhamadiev RA, Ivanov AV. Kliniko-mikrobiologicheskaya kharakteristika bolnikh khronicheskimi rinosinusitami pri razlichnoy antropotekhnogennoy nagruzke. Rossiyskaya otorinolaringologiya. 2010; 2: 305-7. (in Russian)

5. Karimov ZhZ. Sovremennyie metody diagnostiki ostryikh vospalitelnyikh zabolevaniy verhnechelyustnoy pazukhi. Rossiyskaya otorinolaringologiya. 2012; 5(60): 67. [in Russian]

6. Lyalikov SA, Tihon NM. Klinicheskaya immunologiya i allergologiya. Minsk: Vyisheyshaya shkola; 2015. 366 s. [in Russian]

7. Matsumoto Y, Ikeda T, Yokoi H, Kohno N. Association between odontogenic infections and unilateral sinus opacification. Auris Nasus Larynx 2015;42(4): 288-293.

8. Matveyshina TM, Voloshin MA. Lektinimunogistokhimichna kharakteristika sekretu kelikhopodIbnikh klitin ta slizu nosovoy chastini glotki schuriv yak imunobiologichnovo baryeru. Aktualni pitannya medichnoyi nauki ta praktikiro 2016; 83: 12-19. [in Ukrainian]

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

10. Nesterova KI Bespunktsionnoe lechenie gnoynyikh rinosinusitov s ispolzovaniem nizkochastotnoy ultrazvukovoy tekhnologii. Sovremennyie problemy nauki i obrazovaniya [Internet]. 2016; 6: 22-25. Access mode: https://www.science-education.ru/ru/article/view?id=25827. [in Russian]

11. Paulo Nunes Drumond et al., Int Arch Otorhinolaryngol. 2017 Apr; 21(2): 126-133.

12. Posyipanova GA Ispolzovanie belkovykh i peptidnykh vektorov dlya izbiratelnoy dostavki protivoopukholevikh preparatov i terapevticheskikh oligonukleotidov v opukholevyie kletki [dysertatsiia]. Moskow: National. Issledovat. Inst-t; 2013. 256 s. [in Russian]

13. Shen Q, Tuohy KM, Gibson GR, Ward RE. In vitro measurement of the impact of human milk oligosaccharides on the faecal microbiota of weaned formula-fed infants compared to a mixture of prebiotic fructooligosaccharides and galactooligosaccharides. The Authors Letters in Applied Microbiology. 2011; 52: 337-343.

14. Tailford LE, Crost EH, Kavanaugh D, Juge N. Mucin glycan foraging in the human gut microbiome. Front Genet [Internet]. 2015; 6: 81. Available from: http://www.ncbi. nlm.nih.gov/pmc/articles/PMC4365749

15. Zelenov PV. Sekretornyiy immunoglobulin A, kak faktor mestnoy zaschity slizistoy dyikhatelnyikh putey i prichiny yego snizheniya [Internet].- Access mode: http://aspirans.com/sekretornyi-immunoglobulin-kakfaktor-mestnoi-zashchity-slizistoi-dykhatelnykh-putei-i-prichiny-yego_[in Russian]

ВИВЧЕННЯ РОЗПОД1ЛУ ГЛЮКОКОНЬЮГАТ1В В ПЕРСПЕКТИВ1 РОЗРОБОК М1СЦЕВО1 ТЕРАПП СТОМАТОГЕННИХ ВЕРХНЬОЩЕЛЕПНИХ СИНУСИТ1В Варжапетян С. Д., Гулюк А.Г. Даш що до пстотопографи глюкопротешов (глюкоконьюгаив) при рiзних формах стоматогенного верхньощелепного синуситу можуть бути використаш для розробок методiв локально! терапи вражених структур мембрани Шнайдера. У 126 пащенив з рiзними формами стоматогенного верхньощелепного синуситу методом лектшпстоими виявили вуглеводш залишки з вираженою концентращею в рiзних структурах мембрани Шнайдера, що може бути використано в майбутньому для акумуляцп лкарських препарата. Дослщження показало, що насичення №ацетиленурамшово! кислоти домшуе лише в

ИЗУЧЕНИЕ РАСПРЕДЕЛЕНИЯ ЛЕКТИНОВ ГЛЮКО-КОНЬЮГАТОВ В ПЕРСПЕКТИВЕ РАЗРАБОТОК МЕСТНОЙ ТЕРАПИИ СТОМАТОГЕННЫХ ВЕРХНЕЧЕЛЮСТНЫХ СИНУСИТОВ Варжапетян С. Д., Гулюк А.Г.

Данные о гистотопографии глюкопротеинов (глюкоконьюгатов) при различных формах стоматогенного верхньощелепного синусита могут быть использованы для разработок методов локальной терапии пораженных участков мембраны Шнайдера. У 126 пациентов с различными формами стоматогенного верхнечелюстного синусита методом лектингистохимии выявили углеводные остатки с выраженной концентрацией в различных структурах мембраны Шнайдера, что может быть использовано в будущем в качестве мишеней для кумуляции лекарственных препаратов. Исследование показало, что насыщение №ацетилнейраминовой кислоты

базальних ттинах мембрани Шнайдера у випадку одонтогенного верхньощелепного синуситу. Сиалш (а2-6) галактоза, по вщношенню до iнших детермшант вуглеводiв, мала високу експресiю у пащен™ з травматичною формою ятрогенного верхньощелепного синуситу, Р-Б-галактоза була тшьки в цилiарних клiтинах хворих з медичною формою ятрогенного синуситу. Ь-фукоза та а-Б-монози нaйчaстiше були високо виражеш у мембранних структурах Шнайдера в уах формах стоматогенного верхньощелепного синуситу.

Ключовi слова: лектинiстохiмiя мембрани Шнайдера, ятрогенний верхньощелепний синусит, мaрковaнi лга.

Стаття нaдiйшлa 19.02.18 р.

доминирует только в базальных клетках мембраны Шнайдера в случае одонтогенного верхнечелюстного синусита. Сиалил (а2-6) галактоза имел высокую экспрессию при травматической форме ятрогенного верхнечелюстного синусита по отношению к другим детерминантам углеводов; Р-Б-галактоза была только в цилиарных клетках пациентов с медицинской формой ятрогенного синусита. Ь-фукоза и а-Б-моноз имели высокую экспрессию в структурах мембранны Шнайдера при всех этио-патогенетических формах стоматогенного верхнечелюстного синусита.

Ключевые слова: лектингистохимия мембраны Шнайдера, ятрогенный верхнечелюстной синусит, меченые лекарства.

Рецензент Срошенко Г. А.

DOI 10.26724 / 2079-8334-2018-2-64-131-134 УДК 611.612-018.1:615.212.7]"7"

МОРФОЛОГ1ЧН1 ЗМ1НИ КАНАЛЬЩВ НЕФРОНА НА П1ЗН1Х ТЕРМ1НАХ ХРОН1ЧНОГО ОПЮ1ДНОГО ВПЛИВУ

e-mail: [email protected]

Метою дослщження е вивчення змш проксимальних звивистих канальцiв, петт нефрона, дистальних звивистих канальцiв при тривалому використанш налбуфiну на тзшх тeрмiнах в eкспeримeнтi. У результат проведеного дослiджeння встановлено низку патолопчних змiн канальцiв нефрона. При тривалому введенш опю'дов на пiзнiх термшах спостeрiгаються змiни усiх частин канальщв нефрона. Найбiльш виражeнi змiни виявлено у проксимальних звивистих канальцях. Протягом експерименту у частини проксимальних звивистих канальщв на тзшх термшах ото'щного впливу виявлено ознаки зернисто! та палшово-крапельно! дистрофи, виражеш некротичн змши. Вказанi змiни прогресують впродовж експерименту. Еттелюцити петель нефрона наприкiнцi восьмого тижня експерименту зазнають деструктивних змш, яю вже не спостeрiгаються через десять тижшв експерименту i до його завершення. Наприкiнцi восьмого тижня експерименту i до його завершення виявлено нeкротичнi змiни eпiтeлiоцитiв окремих дистальних звивистих канальщв.

IGii040Bi слова: нирка, канальщ нефрона, налбуфш.

Робота е фрагментом НДР «Структурна оргашзащя, ангюархтектотка та антропометричт особливостi оргашв у внутршньо та позаутробному перюдах розвитку, за умов екзо - та ендопатогенних факторiв» (номер держреестраци 0115U000041).

Дослщження структур компонент нефрона при тривалому використанш наркотичних анальгетиюв на р1зних термшах е актуальним напрямком морфолопчних дослщжень [1,2]. Це обумовлено актуальшстю проблем наркомани як у сощальному, так i у медичному аспектах [12]. Проте, залишаеться низка невиршених питань щодо морфо-функцюнальних змш життевоважливих оргашв та систем, спричинених хрошчною д1ею наркотиюв. У сучаснш л1тератур1 зустр1чаються роботи, яю присвячеш вивченню змш морфологи оргашв та систем при експериментальному моделюванш опшно! наркозалежность Зокрема, дослщжеш змши мшроструктур язика, судин шдшлунково! залози та с1тювки при експериментальному введенш налбуф1ну [7,10,13]. Морфолопчш змши ряду оргашв р1зних груп наркомашв вивчеш низкою дослщниюв також на ауто- та бюпсшному матер1ал1 [4,6,9]. Зокрема, таю дослщження стосувались i морфо-функцюнальних змш нирок [3,11].

Метою дослщження е вивчення змш проксимальних звивистих канальщв, петт нефрона, дистальних звивистих канальщв при тривалому використанш налбуф1ну на шзшх термшах в експерименп.

Матерiал i методи дослiдження. Матер1ал дослщження: 32 статево зрших щур1в-самщв лши "Вютар" з початковою масою 160-170 г, вшом 4,5-5,5 мюящв. Тваринам проводили ш'екцп налбуф1ну впродовж 98 д1б. Наркотичний анальгетик вводили експериментальним тваринам у зростаючих дозах [8]. Заб1р матер1алу дослщжень проводили через в1с1м, десять, дванадцять та чотирнадцять тижшв експерименту. Контрольна група тварин впродовж чотирнадцяти тижшв отримувала ш'екцп ф1зюлопчного розчину дом'язово. Перед проведенням забору матер1алу тварин присипляли введенням тюпенталу (з розрахунку 25 мг/кг). Пстолопчш препарати готували за загальноприйнятою методикою [5].

© I. В. Вшьхова, 2018

i Надоели баннеры? Вы всегда можете отключить рекламу.