Краткие сообщения Brief reports
Brief report
DOI: 10.14529/food240211
THE POTENTIAL USE OF ZINC OXIDE AS AN ANTI-MYCOTOXIN
ELEMENT IN ANIMAL FEED: A SHORT REVIEW
M. Chemek1, [email protected]
V.V. Potoroko2, [email protected]
1 South Ural State University, Chelyabinsk, Russia
2 LLC "Center for Expertise, Certification and Testing", Chelyabinsk, Russia
Abstract. Providing the populace with high-quality animal products is one of the primary goals of contemporary agricultural science and practice. Mycotoxins impact animal health, performance, and product quality and safety through invasion of animal feed materials. Finding effective techniques to reduce mycotoxin in feedstuffs is therefore crucial. The use of generally recognized as safe (GRAS) elements such as zinc has drawn increased attention and seem to be one of the promising safe alternatives instead of synthetic fungicides. In the present short review, the occurrence of mycotoxins in animal feed, the potential use of zinc oxide (ZnO) particles as a feed supplement for farm animals, as well as its anti-fungal properties, were highlighted with the ultimate goal of elucidating the hypothesis of the potential use of ZnO as a mycotoxin-detoxifying element in animal feed.
Keywords: mycotoxins, animal feed, Zinc oxide
For citation: Chemek M., Potoroko V.V. The potential use of zinc oxide as an anti-mycotoxin element in animal feed: a short review. Bulletin of the South Ural State University. Ser. Food and Biotechnology, 2024, vol. 12, no. 2, pp. 96-101. DOI: 10.14529/food240211
Краткое сообщение
УДК 636.085.55
DOI: 10.14529/food240211
ПОТЕНЦИАЛЬНОЕ ПРИМЕНЕНИЕ ОКСИДА ЦИНКА В КАЧЕСТВЕ АНТИМИКОТОКСИНОВОГО ЭЛЕМЕНТА В КОРМАХ ДЛЯ ЖИВОТНЫХ: КРАТКИЙ ОБЗОР
М. Шемек1, [email protected] В.В. Потороко2, [email protected]
1 Южно-Уральский государственный университет, Челябинск, Россия
2 Центр экспертизы, сертификации и испытаний, Челябинск, Россия
Аннотация. Обеспечение населения высококачественными продуктами животноводства является одной из основных задач современной сельскохозяйственной науки и практики. Микотоксины влияют на здоровье животных, продуктивность, качество и безопасность продукции, проникая в корма для животных. Поэтому поиск эффективных методов снижения содержания микотоксинов в кормах имеет решающее значение. Использование общепризнанных безопасных элементов (GRAS), таких как цинк, привлекло повышенное внимание и, по-видимому, является одной из многообещающих безопасных альтернатив синтетическим фунгицидам. В настоящем кратком обзоре были освещены присутствие
© Шемек М., Потороко В.В., 2024
микотоксинов в кормах для животных, потенциальное использование частиц оксида цинка (ZnO) в качестве кормовой добавки для сельскохозяйственных животных, а также его противогрибковые свойства с конечной целью прояснения гипотезы о потенциальном использовании ZnO в качестве микотоксина - детоксицирующий элемент в кормах для животных.
Ключевые слова: микотоксины, корма для животных, оксид цинка
Для цитирования. Chemek M., Potoroko V.V. The potential use of zinc oxide as an anti-mycotoxin element in animal feed. a short review // Вестник ЮУрГУ. Серия «Пищевые и биотехнологии». 2024. Т. 12, № 2. С. 96-101. DOI. 10.14529/food240211
Mycotoxins in Animal Feed: a threat for animal and human health
Livestock diets generally consist of a blend of feeds that are intended to satisfy the nutritional requirements of animals while keeping prices down, as well as to supply all the essentials for their well-being, productivity, and health [1]. The grain form of cereals, which make up a large portion of animal diets, is frequently supplied to feed mills. Various fungal species infest cereals at or after harvest, and it is sometimes impossible to prevent this invasion and the consequent synthesis of mycotoxin because of environmental predisposing factors such high humidity, severe rain during harvest, and unsuitable storage conditions [2, 3]. Grain degradation, both in raw and processed forms, is caused by fungi when they are subjected to ideal environmental factors such high humidity and warm. Additionally, fungi have the ability to create mycotoxins, particularly Fusarium sp. in field crops and Aspergillus and Penicillium sp. during storage [4]. According to the Food and Agriculture Organisation (FAO), mycotoxins infect over 25 % of global crops each year, resulting in losses of feed and food equivalent to approximately 1 billion tonnes annually [4]. Due to the transfer of some mycotoxins from the forages to specific food commodities, feed-stuffs infected by mycotoxins contribute to the mycotoxin contamination of particular food items from animal origin, such as milk, dairy products, meat, or eggs [5]. This circumstance might potentially exacerbate the rise in mycotoxin exposure among humans. The chemical and thermal stability of mycotoxin and its little loss during industrial processing or heat treatments is another factor that contributes to human exposure to these substances [4, 5]. Thus, mycotoxin contamination of animal feeds is a serious concern for the livestock industry and poses a health risk to both animals and humans [3, 6, 7]. Because preventing
mycotoxin production is difficult to achieve in order to minimise contamination, mitigating methods are required. As described in Figure 1, diverse techniques including biology, chemistry, and physics have been employed to avert my-cotoxin invasion or eradicate harmful effects [8]. Farm animals' diets can be supplemented with natural zeolite to help the feed absorb polar my-cotoxins and reduce toxicity. A common technique for lowering mycotoxins in food and feed processing is gamma-irradiation, nevertheless its efficacy is up for discussion. Sodium carbonate supplementation aids also in the elimination of mycotoxins contaminated with feed [5, 8].
Zinc Oxide as an Anti-Mycotoxin element
In order to prevent mycotoxin contamination, a number of organic synthetic fungicides are used in the commercial preservation of cereal crops, which are the main source of nutrition for farm animals. However, it seems that these synthesised preservatives are harmful to both human and animal health and the environment. The use of generally recognised as safe (GRAS) substances in place of synthetic fungicides has gained more attention recently. Zinc (Zn) is a trace element currently recognized as generally recognized as safe (GRAS) element. In addition, Zn is a crucial element for plants and is recommended to be used as a crop fertiliser. In agriculture, Zn compounds are mainly used as fungicides [9]. Also, the low concentrations of Zn compounds can have a high antimicrobial activity [10].
Due to its adaptable and potential uses in agricultural sciences (antibacterial and antifungal), as well as the fact that their action does not need photoactivation, ZnO nanoparticles (ZnO NPs) have drawn a lot of interest [11]. Numerous applications for plant protection use ZnO NPs, which are thought to be nontoxic, biosafe, and biocompatible. Many in vitro studies have examined the effectiveness of Zn NPs in combating
Fig. 1. Mycotoxin contamination of animal feed, their consequence for human/animal health
and decontamination strategies [5]
various crop-contaminating fungi [12, 13]. However, in planta or in vivo study are lacking. Furthermore, there is little to no information on how different ZnO-NP concentrations interact with environmental factors to inhibit the development of fungi and the buildup of mycotoxin.
Zinc oxide as a supplement in animal feed
Zn plays a crucial role in animal growth and development, as it is essential for various physiological processes, including protein synthesis, immune function, and DNA synthesis. Figure 2 illustrates the role of zinc in poultry and livestock. ZnO, zinc sulphate (ZnSO4), and zinc chloride (ZnCl2) are examples of feed-grade inorganic salts that are traditionally added to the diets of livestock animals [14]. However, because Zn from inorganic sources has a limited bioavail-ability, an excessive and unabsorbed amount of Zn discharged in faeces may provide problems for the environment. Aside from that, the animal's body's capacity to maintain vitamins and other minerals may be impacted by the high Zn dietary supplement [15]. Zn is more bioavailable in its organic form - such as Zn propionate, Zn methionine, and Zn acetate - than in its inorganic form. However, because organic Zn is more expensive than inorganic Zn, its use in animal diets is restricted [16]. Numerous methods have been explored to increase Zn bioavailability and decrease cost since nanotechnology first appeared [17]. The effects of ZnO NPs on animal production and their possible use as a dietary supplement in place of traditional Zn have been extensively researched [18, 19].
ZnO NPs have been added to animal feed because of their tiny size with high surface area and high chemical stability, which has improved the rate of Zn absorption in the gastrointestinal system [18]. This has increased the amount of Zn ingested by the animal and its bioavailability. By using ZnO NPs, feeding efficiency was improved, and the amount of Zn excreted into the environment was reduced. Interestingly, several data have indicated that Zn NPs could be used at lower concentration rather than the one used for inorganic Zn form to achieve the same health target beneficial [15, 20, 21].
Conclusion and Future Directions
The agricultural sector is very concerned about mycotoxin contamination in animal feeds, which is considered potentially hazardous for both animal and human health. Thanks to their small size, large surface area, and strong chemical stability, supplementing animal diets with ZnO at nanoscale (ZnO NPs) has improved Zn bioavailability, therefore ameliorating the physiological function of the animals. Parallelly, the anti-fungal and anti-bacterial properties of ZnO NPs are well documented; however, in planta or in vivo studies are lacking. Consequently, these findings support the theory that adding ZnO NPs to animal feed might be a safe and effective way to produce high-quality animal products and shield human health from the risk assessment issued by mycotoxins exposure.
Wound healing
Hormones production
4 /
\ / \ / \ /
Growth performances
Antioxidant
Immune system
Cofactor for enzymatic process
Bone formation
Reproduction system
Egg quality
Fig. 2. The function of zinc supplementation in cattle and poultry. Zinc is a crucial trace element for the body's biochemical and physiological processes [15]
References
1. Wanapat M., Cherdthong A., Phesatcha K., and Kang S. Dietary sources and their effects on animal production and environmental sustainability. Anim. Nutr. (Zhongguo xu mu shou yi xue hui), Sep. 2015, vol. 1, no. 3, pp. 96-103. DOI: 10.1016/j.aninu.2015.07.004.
2. Sarmast E., Fallah A.A., Jafari T., and Mousavi Khaneghah A. Occurrence and fate of mycotoxins in cereals and cereal-based products: a narrative review of systematic reviews and meta-analyses studies. Curr. Opin. FoodSci., 2021, vol. 39, pp. 68-75. DOI: 10.1016/j.cofs.2020.12.013.
3. Naumenko N.V., Botvinnikova V.V. Studying the Risks of Grain Contamination with Mycotoxins of Toxigenic Molds. Bulletin of the South Ural State University. Ser. Food and Biotechnology, 2020, vol. 8, no. 2, pp. 74-81. (in Russ.) DOI: 10.14529/food200209.
4. El-Sayed R.A., Jebur A.B., Kang W., and El-Demerdash F.M. An overview on the major mycotoxins in food products: characteristics, toxicity, and analysis. J. Futur. Foods, 2022, vol. 2, no. 2, pp. 91-102. DOI: 10.1016/j.jfutfo.2022.03.002.
5. Yang C., Song G., and Lim W. Effects of mycotoxin-contaminated feed on farm animals. J. Hazard. Mater, 2020, vol. 389, p. 122087. DOI: 10.1016/j.jhazmat.2020.122087.
6. Naumenko N.V., Botvinnikova V.V., Sottnikova V., Hrivna L., Beloglazova N.V. Mycotoxins and Security of Food Products: Obvious and Hidden Threats. Bulletin of the South Ural State University. Ser. Food and Biotechnology, 2020, vol. 8, no. 1, pp. 105-111. (in Russ.) DOI: 10.14529/food200112.
7. Potoroko I.Yu., Naumenko N.V., Botvinnikova V.V. Quality and safety of food products: risks of contamination of food raw materials with mycotoxins. Innovatsionnye tekhnologii v pishchevoy promyshlennosti i obshchestvennom pitanii [Innovative technologies in the food industry and public catering: materials of the VII International Scientific and Practical Conference]. Ekaterinburg, 2020, pp. 118122. (In Russ.)
8. Kabak B., Dobson A.D.W., and Var I. Strategies to prevent mycotoxin contamination of food and animal feed: a review. Crit. Rev. Food Sci. Nutr., 2006, vol. 46, no. 8, pp. 593-619. DOI: 10.1080/10408390500436185.
9. Daniel A.I., Keyster M., and Klein A. Biogenic zinc oxide nanoparticles: A viable agricultural tool to control plant pathogenic fungi and its potential effects on soil and plants. Sci. Total Environ., 2023, vol. 897, p. 165483. DOI: 10.1016/j.scitotenv.2023.165483.
10. Savi G., Bortoluzzi A., and Scussel V. Antifungal properties of Zinc-compounds against toxigenic fungi and mycotoxin. Int. J. Food Sci. Technol, Sep. 2013, vol. 48. DOI: 10.1111/ijfs.12158.
11. Zhou X.-Q. et al. Zinc Oxide Nanoparticles: Synthesis, Characterization, Modification, and Applications in Food and Agriculture. Processes, Apr. 2023, vol. 11, p. 1193. DOI: 10.3390/pr11041193.
12. Yehia R. and Fekry O. In vitro study of the antifungal efficacy of zinc oxide nanoparticles against Fusarium oxysporum and Penicilium expansum. African J. Microbiol. Res., May 2013,vol. 7, pp. 19171923. DOI: 10.5897/AJMR2013.5668.
13. Alhazmi N.M. and Sharaf E.M. Fungicidal Activity of Zinc Oxide Nanoparticles against Azole-Resistant Aspergillus flavus Isolated from Yellow and White Maize. Molecules, Jan. 2023, vol. 28, no. 2. DOI: 10.3390/molecules28020711.
14. Chang M.N. et al. Effects of different types of zinc supplement on the growth, incidence of diarrhea, immune function, and rectal microbiota of newborn dairy calves. J. Dairy Sci, Jul. 2020, vol. 103, no. 7, pp. 6100-6113. DOI: 10.3168/JDS.2019-17610.
15. Mohd Yusof H., Rahman N. Abdul, Mohamad R., Zaidan U.H., and A.A. Samsudin. Influence of Dietary Biosynthesized Zinc Oxide Nanoparticles on Broiler Zinc Uptake, Bone Quality, and Antioxidative Status. Anim. an open access J. from MDPI, Dec. 2022, vol. 13, no. 1, p. 115. DOI: 10.3390/ani13010115.
16. Cao J. et al. Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants. J. Anim. Sci., Aug. 2000, vol. 78, no. 8, pp. 2039-2054. DOI: 10.2527/2000.7882039x.
17. Chemek M., Kadi A., Merenkova S., Potoroko I., and Messaoudi I. Improving Dietary Zinc Bioavailability Using New Food Fortification Approaches: A Promising Tool to Boost Immunity in the Light of COVID-19. Biology, 2023, vol. 12, no. 4. DOI: 10.3390/biology12040514.
18. Swain P.S., Rao S.B.N., Rajendran D., Dominic G., and Selvaraju S. Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Anim. Nutr. (Zhongguo xu mu shou yi xue hui), Sep. 2016, vol. 2, no. 3, pp. 134-141. DOI: 10.1016/j.aninu.2016.06.003.
19. Mohd Yusof H., Mohamad R., Zaidan U.H., and Abdul Rahman N.A. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J. Anim. Sci. Biotechnol., 2019, vol. 10, no. 1, p. 57. DOI: 10.1186/s40104-019-0368-z.
20. Mohammadi V., Ghazanfari S., Mohammadi-Sangcheshmeh A., and Nazaran M.H. Comparative effects of zinc-nano complexes, zinc-sulphate and zinc-methionine on performance in broiler chickens. Br. Poult. Sci, Jul. 2015, vol. 56, no. 4, pp. 486-493. DOI: 10.1080/00071668.2015.1064093.
21. Hafez A., Nassef E., Fahmy M., Elsabagh M., Bakr A., and Hegazi E. Impact of dietary nano-zinc oxide on immune response and antioxidant defense of broiler chickens. Environ. Sci. Pollut. Res., 2020, vol. 27, no. 16, pp. 19108-19114. DOI: 10.1007/s11356-019-04344-6.
Список литературы
1. Dietary sources and their effects on animal production and environmental sustainability / M. Wanapat, A. Cherdthong, K. Phesatcha, and S. Kang // Anim. Nutr. (Zhongguo xu mu shou yi xue hui). 2015. Vol. 1, no. 3. P. 96-103. DOI: 10.1016/j.aninu.2015.07.004.
2. Occurrence and fate of mycotoxins in cereals and cereal-based products: a narrative review of systematic reviews and meta-analyses studies / E. Sarmast, A. A. Fallah, T. Jafari, and A. Mousavi Khaneghah // Curr. Opin. Food Sci. 2021. Vol. 39. P. 68-75. DOI: 10.1016/j.cofs.2020.12.013.
3. Науменко Н.В., Ботвинникова В.В. Исследование рисков контаминации зерновых культур микотоксинами токсигенных плесеней // Вестник ЮУрГУ. Серия «Пищевые и биотехнологии». 2020. Т. 8, № 2. С. 74-81. DOI: 10.14529/food200209
4. An overview on the major mycotoxins in food products: characteristics, toxicity, and analysis / R.A. El-Sayed, A.B. Jebur, W. Kang, and F.M. El-Demerdash // J. Futur. Foods. 2022. Vol. 2, no. 2. P. 91-102. DOI: 10.1016/j.jfutfo.2022.03.002.
5. Effects of mycotoxin-contaminated feed on farm animals / C. Yang, G. Song, and W. Lim // J. Hazard. Mater. 2020. Vol. 389. P. 122087. DOI: 10.1016/j.jhazmat.2020.122087.
6. Микотоксины и безопасность продуктов питания: явные и скрытые угрозы / Н.В. Науменко, В.В. Ботвинникова, В. Соттникова и др. // Вестник ЮУрГУ. Серия «Пищевые и биотехнологии». 2020. Т. 8, № 1. С. 105-111. DOI: 10.14529/food200112
7. Потороко И.Ю., Науменко Н.В., Ботвинникова В.В. Качество и безопасность пищевых продуктов: риски контаминации микотоксинами пищевого сырья // Инновационные технологии в пищевой промышленности и общественном питании: материалы VII Международной научно-практической конференции. Екатеринбург: Изд-во УрГЭУ, 2020. P. 118-122.
8. Strategies to prevent mycotoxin contamination of food and animal feed: a review / B. Kabak, A.D.W. Dobson, and I. Var // Crit. Rev. Food Sci. Nutr. 2006. Vol. 46, no. 8. P. 593-619. DOI: 10.1080/10408390500436185.
9. Biogenic zinc oxide nanoparticles: A viable agricultural tool to control plant pathogenic fungi and its potential effects on soil and plants / A.I. Daniel, M. Keyster, and A. Klein // Sci. Total Environ. 2023. Vol. 897, p. 165483. DOI: 10.1016/j.scitotenv.2023.165483.
10. Antifungal properties of Zinc-compounds against toxigenic fungi and mycotoxin / G. Savi, A. Bortoluzzi, and V. Scussel // Int. J. Food Sci. Technol. 2013. Vol. 48. DOI: 10.1111/ijfs.12158.
11. Zinc Oxide Nanoparticles: Synthesis, Characterization, Modification, and Applications in Food and Agriculture / X.-Q. Zhou et al. // Processes. 2023. Vol. 11. P. 1193. DOI: 10.3390/ pr11041193.
12. Yehia R. and Fekry O. In vitro study of the antifungal efficacy of zinc oxide nanoparticles against Fusarium oxysporum and Penicilium expansum // African J. Microbiol. Res. 2013. Vol. 7. P. 1917-1923. DOI: 10.5897/AJMR2013.5668.
13. Alhazmi N.M. and Sharaf E.M. Fungicidal Activity of Zinc Oxide Nanoparticles against Az-ole-Resistant Aspergillus flavus Isolated from Yellow and White Maize // Molecules. 2023. Vol. 28, no. 2. DOI: 10.3390/molecules28020711.
14. Effects of different types of zinc supplement on the growth, incidence of diarrhea, immune function, and rectal microbiota of newborn dairy calves / M.N. Chang et al. // J. Dairy Sci. 2020. Vol. 103, no. 7. P. 6100-6113. DOI: 10.3168/JDS.2019-17610.
15. Influence of Dietary Biosynthesized Zinc Oxide Nanoparticles on Broiler Zinc Uptake, Bone Quality, and Antioxidative Status / H. Mohd Yusof, N. Abdul Rahman, R. Mohamad et al. // Anim. an open access J. from MDPI. 2022. Vol. 13, no. 1. P. 115. DOI: 10.3390/ani13010115.
16. Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants / J. Cao et al. // J. Anim. Sci. 2000. Vol. 78, no. 8. P. 2039-2054. DOI: 10.2527/2000.7882039x.
17. Improving Dietary Zinc Bioavailability Using New Food Fortification Approaches: A Promising Tool to Boost Immunity in the Light of COVID-19 / M. Chemek, A. Kadi, S. Merenkova et al. // Biology. 2023. Vol. 12, no. 4. DOI: 10.3390/biology12040514.
18. Nano zinc, an alternative to conventional zinc as animal feed supplement: A review / P.S. Swain, S.B.N. Rao, D. Rajendran et al. // Anim. Nutr. (Zhongguo xu mu shou yi xue hui). 2016. Vol. 2, no. 3. P. 134-141. DOI: 10.1016/j.aninu.2016.06.003.
19. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review / H. Mohd Yusof, R. Mohamad, U.H. Zaidan, and N.A. Abdul Rahman // J. Anim. Sci. Biotechnol. 2019. Vol. 10, no. 1. P. 57. DOI: 10.1186/s40104-019-0368-z.
20. Comparative effects of zinc-nano complexes, zinc-sulphate and zinc-methionine on performance in broiler chickens / V. Mohammadi, S. Ghazanfari, A. Mohammadi-Sangcheshmeh, and M.H. Nazaran // Br. Poult. Sci. 2015. Vol. 56, no. 4. P. 486-493. DOI: 10.1080/00071668.2015.1064093.
21. Impact of dietary nano-zinc oxide on immune response and antioxidant defense of broiler chickens / A. Hafez, E. Nassef, M. Fahmy et al. // Environ. Sci. Pollut. Res. 2020. Vol. 27, no. 16. P. 19108-19114. DOI: 10.1007/s11356-019-04344-6.
Information about the authors
Marouane Chemek, Doctor of Philosophy, South Ural State University, Chelyabinsk, Russia, [email protected]
Valentina V. Potoroko, LLC "Center for Expertise, Certification and Testing", Chelyabinsk, Russia, [email protected]
Информация об авторах
Шемек Маруан, Ph.D, Южно-Уральский государственный университет, Челябинск, Россия, [email protected]
Потороко Валентина Викторовна, менеджер по качеству, Центр экспертизы, сертификации и испытаний, Челябинск, Россия, [email protected]
The article was submitted 01.03.2024
Статья поступила в редакцию 01.03.2024