Научная статья на тему 'THE INFLUENCE OF BIO-ORGANIC GROWING TECHNOLOGY ON THE PRODUCTIVITY OF LEGUMINS'

THE INFLUENCE OF BIO-ORGANIC GROWING TECHNOLOGY ON THE PRODUCTIVITY OF LEGUMINS Текст научной статьи по специальности «Сельское хозяйство, лесное хозяйство, рыбное хозяйство»

CC BY
90
15
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
legumes / cultivation technology / cultivation zone / agroclimatic potential / climate change.

Аннотация научной статьи по сельскому хозяйству, лесному хозяйству, рыбному хозяйству, автор научной работы — Pantsyreva H., Mazur K.

The article provides information about the current state of grain production from legumes. Data on the dynamics of their sown areas and yield levels are summarized. Also scientifically substantiated results of the analysis of varietal resources and productivity of the studied phytocenoses according to their agroecological plasticity and grain productivity in the conditions of climate change in the zone of the right-bank Forest-steppe of Ukraine. The most promising varieties by maturity group, yield level are determined. Therefore, the most productive varieties were identified. Various technological aspects of cultivation have been studied in order to ensure the rational use of natural potential, which will further contribute to the expansion of sown areas of these plants. The relevance of the research is justified by the objectives of applied research on the ba-sis of research sites of Vinnytsia National Agrarian University ("Development of methods for improving the technology of growing legumes using biofertilizers, bacterial preparations, foliar fertilizers and physiological-ly active substances"). The introduction into production practice of highly productive varieties of legumes will reduce the deficit of vegetable protein, as well as improve the physico-chemical and phytosanitary conditions of the soil.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «THE INFLUENCE OF BIO-ORGANIC GROWING TECHNOLOGY ON THE PRODUCTIVITY OF LEGUMINS»

UDC 633.367.003.13:631.58

Pantsyreva H.,

Candidate of Agricultural Sciences, Associate Professor, Vinnytsia National Agrarian University. ORCID: https://orcid. org/0000-0002-0539-5211

Mazur K.

Candidate of Economics, Associate Professor, Vinnytsia National Agrarian University. DOI: 10.24412/2520-6990-2021-1299-24-30 THE INFLUENCE OF BIO-ORGANIC GROWING TECHNOLOGY ON THE PRODUCTIVITY OF

LEGUMINS

Abstract.

The article provides information about the current state of grain production from legumes. Data on the dynamics of their sown areas and yield levels are summarized. Also scientifically substantiated results of the analysis of varietal resources and productivity of the studied phytocenoses according to their agroecological plasticity and grain productivity in the conditions of climate change in the zone of the right-bank Forest-steppe of Ukraine. The most promising varieties by maturity group, yield level are determined. Therefore, the most productive varieties were identified. Various technological aspects of cultivation have been studied in order to ensure the rational use of natural potential, which will further contribute to the expansion of sown areas of these plants. The relevance of the research is justified by the objectives of applied research on the basis of research sites of Vinnytsia National Agrarian University ("Development of methods for improving the technology of growing legumes using bioferti-lizers, bacterial preparations, foliar fertilizers and physiologically active substances"). The introduction into production practice of highly productive varieties of legumes will reduce the deficit of vegetable protein, as well as improve the physico-chemical and phytosanitary conditions of the soil.

Keywords: legumes, cultivation technology, cultivation zone, agroclimatic potential, climate change.

Formulation of the problem.Strategically, Ukraine should take a course to reduce the export of raw materials and create conditions for the organization of in-depth processing, which will contribute to: meeting the needs of intensive animal husbandry with highprotein feed; creation of additional jobs; increase in tax revenues; ensuring food and environmental security of Ukraine. Intensification of fodder grain production should become one of the strategic directions of accelerated development of all agro-industrial production of Ukraine by 2030. For this purpose it is necessary to focus on creation of high-yielding varieties their cultivation, which will be based on the effective use of life factors (light, heat, moisture, nutrients), which will promote maximum synthesis of organic matter and protein. In addition, in the context of climate change, it will be necessary to form a common agricultural policy for the production of high-protein crops with the EU. This is an urgent and important task, the solution of which will be a significant contribution to solving the problem of vegetable protein, the formation of its own protein resources, increasing soil fertility and strengthening the economy of Ukraine. Therefore, the leading role in solving these issues is given to legumes.

Legumes occupy an exceptional place in the grain and fodder balance of agricultural formations of Ukraine. Their grain and green mass in terms of protein content exceeds cereals more than twice, in terms of amino acid composition their proteins are much better digested, give the cheapest protein, include in the biological cycle nitrogen air, which is not available for other crops.

Analysis of recent research and publications.

Scientific the basics of the development of legume production are revealed in the works of many domestic and foreign authors. O. Babych, V. Petrychenko, V. Kamin-sky, M. Bakhmat, V. Mazur, K Pantsyreva, O. Tkachuk, N. Telecalo devoted to the study of technological methods of growing legumes. Economists G. Kaletnyk, I. Goncharuk, K. Mazur, V. Andriychuk, I. Balanyuk, V. Blagodatny, O. Borodina, O. Garkusha, V. Geyts, G. Zhuikov, V. Zlenko, I. Irtyscheva, Y. Ker-nasyuk, and other scientists. They laid scientific advances on the theoretical, methodological, methodological and instrumental provisions of grain production.

Presenting main material. Field experiments were conducted during 2016-2018 on the basis of the Research Farm «Agronomiche» of Vinnytsia National Agrarian University in the village of Agronomichne of Vinnytsia district of Vinnytsia region. The territory of the right-bank Forest-Steppe of Ukraine, the place of research, is characterized by a favorable agro-climatic potential for growing most crops, including legumes. In particular, there are sufficient amounts of active air temperatures and rainfall per year and their distribution over the growing season. However, the real bioclimatic resources of the region are not enough to better realize the productivity potential of legumes. Therefore, there is a need to develop new and improve existing models of technologies for growing legumes. Clarification of these issues is relevant and requires detailed studies, especially on the development of zonal cultivation technologies, which take into account the specifics of soil and climatic potential of the growing region.

Results. The results of research indicate a significant impact of the studied technological methods of cultivation on the level of yield of legumes (Table 1).

Table 1

Grain yield of legumes depending on technological methods of cultivation, _t / ha (average for 2016-2018) _

№ Culture Variety Pre-sowing seed treatment Retardant concentration,0/« Yield, t / ha Increase from p.s.t., t / ha Increase from the concentration of the retardant, t / ha

1 Sowing peas Tsarevych without p.s.t. without treatment (C) 2,05 - -

0,5 2,14 - 0,1

Rhyzogumin 0,75 2,53 - 0,5

1 2,46 - 0,4

Prystan without p.s.t. without treatment 2,15 0,1 -

0,5 2,25 0,2 0,2

Rhyzogumin 0,75 2,65 0,6 0,5

1 2,54 0,5 0,4

2 White lupine Veresnevyi without p.s.t. without treatment (C) 2,74 - -

0,5 2,94 - 0,2

Rhyzogumin 0,75 3,33 - 0,6

1 3,07 - 0,3

Chabanskyi without p.s.t. without treatment 2,88 0,1 -

0,5 3,05 0,3 0,2

Rhyzogumin 0,75 3,44 0,7 0,6

1 3,22 0,5 0,4

3 Lupine narrow-leaved Olimp without p.s.t. without treatment (C) 2,04 - -

0,5 2,26 - 0,2

Rhyzogumin 0,75 2,57 - 0,5

1 2,48 - 0,4

Peremojets without p.s.t. without treatment 2,18 0,1 -

0,5 2,35 0,3 0,2

Rhyzogumin 0,75 2,60 0,6 0,5

1 2,52 0,5 0,4

4 Chickpeas Pegas without p.s.t. without treatment (C) 2,11 - -

0,5 2,45 - 0,3

Rhyzogumin 0,75 2,85 - 0,7

1 2,74 - 0,6

Skarb without p.s.t. without treatment 2,25 0,1 -

0,5 2,64 0,5 0,4

Rhyzogumin 0,75 3,08 0,9 0,8

1 2,9 0,8 0,7

5 Soybean Holubka without p.s.t. without treatment (C) 3,04 - -

0,5 3,23 - 0,2

Rhyzogumin 0,75 3,42 - 0,4

1 3,31 - 0,3

Azymut without p.s.t. without treatment 3,12 0,1 -

0,5 3,43 0,3 0,3

Rhyzogumin 0,75 3,66 0,5 0,5

1 3,55 0,4 0,4

Н1Р0,05 т/га (sowing peas): А-0,07; В-0,10; С-0,08; АВ-0,14; АС-0,12; ВС-0,17; АВС-0,24

2016 HIPqq5 t/Ьа: А-0,04; В-0,05; С-0,04; АВ-0,07; АС-0,06; ВС-0,08; АВС-0,12

2017 HIPq05 t/Ьа: А-0,05; В-0,06; С-0,06; АВ-0,04; АС-0,08; ВС-0,11; АВС-0,16

2018 Н1Роо5 t/Ьа: А-0,04; В-0,06; С-0,05; АВ-0,04; АС-0,07; ВС-0,10; АВС-0,14

Н1Ро,о5 т/га (white lupine): А-0,05; В-0,08; С-0,06; АВ-0,12; АС-0,10; ВС-0,15; АВС-0,04

2016 HIPqq5 t/Ьа: А-0,03; В-0,04; С-0,03; АВ-0,06; АС-0,05; ВС-0,07; АВС-0,10

2017 HIPqq5 t/Ьа: А-0,04; В-0,07; С-0,07; АВ-0,10; АС-0,07; ВС-0,12; АВС-0,15

2018 HIPqq5 t/Ьа: А-0,05; В-0,05; С-0,04; АВ-0,07; АС-0,06; ВС-0,11; АВС-0,13

Н1Ро,о5 т/га (lupine narrow-leaved): А-0,05; В-0,08; С-0,06; АВ-0,12; АС-0,10; ВС-0,14; АВС-0,09

2016 HIPqq5 t/Ьа: А-0,03; В-0,04; С-0,03; АВ-0,05; АС-0,04; ВС-0,08; АВС-0,10

2017 HIPqq5 t/Ьа: А-0,04; В-0,05; С-0,05; АВ-0,06; АС-0,06; ВС-0,09; АВС-0,12

2018 HIPqq5 t/Ьа: А-0,04; В-0,06; С-0,05; АВ-0,07; АС-0,07; ВС-0,08; АВС-0,13

Н1Ро,о5 т/га (chickpeas): А-0,04; В-0,07; С-0,08; АВ-0,06; АС-0,09; ВС-0,2 АВС-0,08

2016 HIPqq5 t/Ьа: А-0,05; В-0,04; С-0,03; АВ-0,05; АС-0,04; ВС-0,07; АВС-0,09

2017 HIPqq5 t/Ьа: А-0,06; В-0,05; С-0,05; АВ-0,06; АС-0,08; ВС-0,08; АВС-0,10

2018 HIPqq5 t/Ьа: А-0,07; В-0,04; С-0,02; АВ-0,08; АС-0,03; ВС-0,04; АВС-0,13.

Н1Роо5 т/га (soybean): А-0,02; В-0,03; С-0,03; АВ-0,02; АС-0,04; ВС-0,14; АВС-0,05

2016 HIPqq5 t/Ьа: А-0,02; В-0,03; С-0,03; АВ-0,02; АС-0,02; ВС-0,02; АВС-0,05

2017 HIPqq5 t/Ьа: А-0,02; В-0,01; С-0,02; АВ-0,03; АС-0,03; ВС-0,03; АВС-0,06

2018 HIPqq5 t/Ьа: А-0,03; В-0,02; С-0,03; АВ-0,03; АС-0,02; ВС-0,02; АВС-0,03

Field studies have established the maximum grain yield in legume varieties. Thus, in sowing peas the most productive variety was Prystan (2.6 t / ha), white lupine - Chabanskyi (3.4 t / ha), narrow-leaved lupine - Pere-mozhets (2.6 t / ha), chickpea - Skarb ( 3.0 t / ha) and in soybeans - Azimuth (2.6 t / ha). Therefore, the maximum yield increments were obtained by treating the

Table 2

Content and yield of crude grain protein of legumes depending on technological methods of cultivation, t /

seeds with the bacterial preparation Rhizohumin and spraying the crops with chlormequat chloride retardant in the budding phase.

As a result of the conducted researches it is established that with increase of grain productivity the yield of crude protein also increased (table 2).

№ Culture Variety Pre-sowing seed treatment Retardant concentration,0/« Crude protein,0/« Yield of crude protein, t / ha

1 Sowing peas Tsarevych without p.s.t. without treatment (C) 19,8 0,40

0,5 20,2 0,42

Rhyzogumin 0,75 21,3 0,53

1 20,7 0,49

Prystan without p.s.t. without treatment 21,0 0,44

0,5 21,5 0,47

Rhyzogumin 0,75 22,8 0,59

1 22,1 0,55

2 White lupine Veresnevyi without p.s.t. without treatment (C) 34,6 0,93

0,5 35,1 1,02

Rhyzogumin 0,75 36,3 1,20

1 35,8 1,07

Chabanskyi without p.s.t. without treatment 36,1 1,01

0,5 36,5 1,09

Rhyzogumin 0,75 38,2 1,30

1 37,2 1,19

3 Lupine narrow-leaved Olimp without p.s.t. without treatment (C) 30,7 0,61

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

0,5 31,1 0,68

Rhyzogumin 0,75 32,0 0,80

1 31,5 0,75

Peremojets without p.s.t. without treatment 31,7 0,67

0,5 32,3 0,74

Rhyzogumin 0,75 33,5 0,87

1 32,8 0,82

4 Chickpeas Pegas without p.s.t. without treatment (C) 24,8 0,52

0,5 25,2 0,60

Rhyzogumin 0,75 26,2 0,73

1 25,7 0,69

Skarb without p.s.t. without treatment 26,1 0,57

0,5 26,4 0,67

Rhyzogumin 0,75 27,5 0,82

1 27,0 0,78

5 Soybean Holubka without p.s.t. without treatment (C) 33,3 0,67

0,5 34,2 0,75

Rhyzogumin 0,75 36,2 0,87

1 35,4 0,81

Azymut without p.s.t. without treatment 34,2 0,72

0,5 35,6 0,85

Rhyzogumin 0,75 37,8 0,98

1 36,1 0,90

The maximum yields of crude protein per unit area were obtained by treating the seeds with the bacterial preparation Rhizohumin and spraying the crops with chlormequat chloride retardant in the budding phase. Due to the increase in yield, the highest yield of crude protein (0.93 - 1.19 t / ha) was in white lupine plants. Thus, in pea sowing the yield of crude protein was the

highest in the variety Prystan (0.59 t / ha), white lupine - Chabanskyi (1.19 t / ha), narrow-leaved lupine - Pere-mozhets (0.87 t / ha), chickpeas - Skarb (0.82 t / ha) and in soybeans - Azimuth (0.98 t / ha).

Conclusions. Our improved model of bioorganic varietal technology for growing legumes using the pro-

posed bioorganic and technological measures will increase the production of quality grain of the studied crops, increase the total harvest of crude protein and increase the level of biological nitrogen fixation in the Forest-Steppe Right Bank.

References

1. Albinus M. Effects of land use practices on livelihoods in the transboundary sub-catchments of the Lake Victoria Basin. African Journal of Environmental Science and Technology. Vol. 2. no. 10. 2008. pp. 309317.

2. Bakhmat OM Influence of agrotechnical measures on soybean productivity in the conditions of the western region of Ukraine. Feed and feed production: interdepartmental. topic. Science. zb. / [editor: V.F. Petrichenko (ed.) And others]. Vinnytsia: Marush-chak AI, 2010. Issue. 66. P. 103-108.

3. Bandura V., Mazur V., Yaroshenko L., Rubanenko O. Research on sunflower seeds drying process in a monolayer tray vibration dryer based on infrared radiation. INMATEN - Agricultural Engineering, vol. 57, №1, 2019. P. 233-242.

4. Begey S. V., Shuvar I. A. (2007). Ecological Agriculture: Textbook. Lviv: Novyi Svit-2000. 429 p.

5. Bransby D. I. Compatibility of switchgrass as an energy crop in farming systems of the southeastern USA. D. I. Bransby, R. Rodriguez-Kabana,

6. Bulgakov V., Adamchuk V., Kaletnik G., Arak M., Olt J. 2014. Mathematical model of vibration digging up of root crops from soil. Agronomy Research. № 12 (1). P. 41-58.

7. Bulgakov V., Kaletnik H., Goncharuk I., Ivanovs S., Usenko M. Results of experimental investigations of a flexible active harrow with loosening teeth. Agronomy Research. 2019. № 17(5). P. 18391845.

8. Chinchyk OS Influence of fertilizer on yield of legumes in the conditions of the Western Forest-Steppe. Feed and feed production: interdepartmental. topic. Science. zb. NAAS; [editor: V.F. Petrichenko (ed.) And others]. Vinnytsia, 2012. Vip. 72. pp. 64-67.

9. Cholovskyi Yu.M. (2010). Osoblyvosti vodospozhyvannia posivamy liupynu vuzkolystoho zalezhno vid zastosuvannia mineralnykh dobryv. Kormy i kormovyrobnytstvo - Forage and feed production. Vyp. 66. 146- 147.

10. Cultural Pasture: Patent No 40618 / V. L. Puyu, M. I. Bakhmat, S. A. Tsvigun; Podillya State Agrarian Engineering University, UA. Application dated 01.07.2008; published 27.04.2009. Industrial Property. Kyiv, 2009. Bulletin No 8.

11. Datta, A., Hossain, A., Roy, S. 2019. An Overview on Biofuels and Their Advantages and Disadvantages. Asian Journal of Chemistry, 31(8). 18511858. DOI: 10.14233/ajchem.2019.22098

12. Didur I., Bakhmat M., Chynchyk O., Pantsyreva H., Telekalo N., Tkachuk O. Substantiation of agroecological factors on soybean agrophytocenoses by analysis of variance of the Right-Bank ForestSteppe in Ukraine. 2020. Ukrainian Journal of Ecology. № 10(5). 54-61.

13. Didur I., Pantsyreva H., Telekalo N. Agroecological rationale of technological methods of growing legumes. The scientific heritage. 2020. 52. P. 3-14.

14. Didur I.M., Prokopchuk V.M., Pantsyreva

H.V. Investigation of biomorphological and decorative characteristics of ornamental species of the genus Lu-pinus L. Ukrainian Journal of Ecology. 2019. Vol. 9 (3). C. 287-290.

15. Dospekhov B.A. Metodyka polevoho opbita (s osnovamy statystycheskoi obrabotky rezultatov yssle-dovanyi). Yzd. 5-e dop. y pererab. M.: Ahropromyzdat, 1985. 351.

16. Egli D. B. Variation in leaf starch and sink limitations during seed filling in soybean. Crop Science. 1999. 39. P. 1361-1368.

17. Environmental Issues of Agriculture /

I. D. Prymak, Y. P. Manko, N. M. Ridey et al.; Ed. I. D. Primak. Kyiv: Center of Educational Literature, 2010. 456 p.

18. Honcharuk I., Kovalchuk S. Agricultural Production Greening Management in the Eastern Partner-shipcountries with the EU. Theoretical and practical aspects of the development of the European Research Area. Publishing House «Baltija Publishing», Riga, Latvia. 2020. P. 42-68

19. Honcharuk I.V., Branitsky Yu.Yu., Tomashuk I.V. The main aspects of effective formation and use of resource potential in agricultural enterprises (on the example of Vladovo-Lyulinetska DSS IBK and the Central Bank of NAAS of Ukraine). Economy. Finances. Management: current issues of science and practice. 2017. № 10 (26). Pp. 54-68

20. Kaletnik G.M., Zabolotnyi, G.M. Kozlovskyi S.V (2011), «Innovative models of strategic management economic potential within contemporary economic systems», Actual Problems of Economics, vol, 4(118), pp.11.

21. Kaletnik G. Honcharuk, I. 2013. Innovatsiine zabezpechennia rozvytku biopalyvnoi haluzi: svitovyi ta vitchyznianyi dosvid [Innovative support for the development of the biofuel industry: world and national experience]. In Biznes Inform [Business Inform], 2013, no. 9, pp. 155-160.

22. Kaletnik G., Honcharuk I., Okhota Yu. The Waste-Free Production Development for the Energy Autonomy Formation of Ukrainian Agricultural Enterprises. Journal of Environmental Management and Tourism, 2020, Volume XI, Summer, 3(43): 513-522. D0I:10.14505/jemt.v11.3(43).02

23. Kaletnik G., 2018. Production and use of biofuels: Second edition, supplemented: textbook. Vinnytsia: LLC «Nilan-Ltd», 336 p.

24. Kaletnik G., Honcharuk I., Yemchyk T., Okhota Yu. The World Experience in the Regulation of the Land Circulation. European Journal of Sustainable Development. 2020. № 9(2). P. 557-568

25. Kaletnik G. 2018. Diversification of production of biofuel - as the basis of maintenance of food, power, economic and environmental safety of Ukraine. [Diversification of production of biofuel - as the basis of maintenance of food, power, economic and environmental safety of Ukraine]. Visnyk ahrarnoi nauky -Bulletin of agrarian science, 11, 169-176. Retrieved

from http://agrovisnyk.com/pdf/en_2018_11_21. pdf [in English].

26. Kaletnik G.M., Yanovych V.P., Substantiation of operating and design parameters of a gyration mill for the production of highly active premixes, Vibrations in engineering and technology, 84 (2017), nr. 1, 15-21

27. Kaletnik, G., & Lutkovska, S. (2020). Innovative Environmental Strategy for Sustainable Development. European Journal of Sustainable Development, 9(2), 89. https://doi.org/10.14207/ejsd.2020.v9n2p89

28. Kaletnik, G., Shubravska, O., Ibatullin, M., Krysanov, D., Starychenko, Y., Tkachenko, K., Varchenko, O. (2019). Features of Food Security of the Country in Conditions of Economic Instability. Int. J. Manag. Bus. Res, 9 (4): 176-186.

29. Kantolic A. G. Development and seed number in indeterminate soybean as affected by timing and duration of exposure to long photoperiods after flovering. Annals of Botany. 99. 2007. P. 925-933.

30. Kolesnik, S. 2012. Bacterial fertilizer to optimize nitrogen and phosphorus nutrition soybeans, chickpeas, peas, lentils and commit. Feed and fodder. 73:145-151.

31. Kosse, V. Mathew, J. Design of hammer mills for optimum performance. Proceeding of the Institution of Mechanical Engineers. 2017. № 215. P. 87-94.

32. Kukharchuk V.V., Kazyv S.S., Bykovsky S.A., Discrete wavelet transformation in spectral analysis of vibration processes at hydropower units, Prze-glad Elektrotechniczny, 93 (2017), Nr 5, 65-68

33. Kupchuk I.M., Solona O.V., Derevenko I.A., Tverdokhlib I.V., Verification of the mathematical model of the energy consumption drive for vibrating disc crusher, Inmateh - Agricultural Engineering, 55 (2018), nr. 2, 111-118

34. Li J., Wang E., Chen W., Chen X. "Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biology & Biochemistry. Vol. 40. 2008. pp. 238- 246.

35. Ma Z. Impact of row spacing, nitrogen rate, and time on carbon partitioning of switchgrass Z. Ma, C. W. Wood, D. I. Bransby. Biomass Bioenergy, 2001. No. 20. P. 413-419. 16.

36. Malchevskaya, E., Mylenkaya, G. 1981. The comments and Animal Husbandry quality forage analysis. Minsk . Harvest, P. 143.

37. Mazur V., Didur I., Myalkovsky R., Pantsyreva H., Telekalo N., Tkach O. The productivity of intensive pea varieties depending on the seeds treatment and foliar fertilizing under conditions of right-bank forest-steppe Ukraine. 2020. Ukrainian Journal of Ecology. № 10(1). 101-105.

38. Mazur V.A., Didur I.M., Pantsyreva H.V., Telekalo N.V. Energy-economic efficiency of growth of grain-crop cultures in conditions of Right-Bank Forest-Steppe of Ukraine. Ukrainian Journal of Ecology. 2018. №8(4). 26-33.

39. Mazur V.A., Mazur K.V., Pantsyreva H.V. Influence of the technological aspects growing on quality composition of seed white lupine (Lupinus albus L.) in the Forest Steppe of Ukraine. Ukrainian Journal of

Ecology. 2019. Vol. 9. P. 50-55. https://www.ujecol-ogy.com/archive.html

40. Mazur V.A., Mazur K.V., Pantsyreva H.V., Alekseev O.O. Ecological and economic evaluation of varietal resources Lupinus albus L. in Ukraine Ukrainian Journal of Ecology. 2018. Volume 8.148-153.

41. Mazur V.A., Pantsyreva H.V., Mazur K.V., Didur I.M. 2019. Influence of the assimilation apparatus and productivity of white lupine plants. Agronomy Research 17(X), 206-209. URL: https://doi.org/10.15159/AR.19.024.

42. Mazur V.A., Pantsyreva H.V., Mazur K.V., Myalkovsky R.O., Alekseev O.O. Agroecological prospects of using corn hybrids for biogas production. Agronomy Research 18(1), 177-182, 2020.

43. Mazur, V. A., & Pantsyreva, H. V. (2017). Vplyv tekhnolohichnykh pryiomiv vyroshchuvannia na urozhainist i yakist zerna liupynu biloho v umovakh Pravoberezhnoho Lisostepu. Silske hospodarstvo i lisivnytstvo, 7, 27-36.

44. Mazur, V. A., Myalkovsky, R.O., Mazur, K. V., Pantsyreva, H. V., Alekseev, O.O. (2019). Influence of the Photosynthetic Productivity and Seed Productivity of White Lupine Plants. Ukrainian Journal of Ecology, 9(4), 665-670.

45. Mazur, V.A., Branitskyi, Y.Y., Pantsyreva, H.V.(2020). Bioenergy and economic efficiency technological methods growing of switchgrass. Ukrainian Journal of Ecology, 10(2), 8-15.

46. Mazur, V.A., Didur, I.M., Pantsyreva, H.V., & Telekalo, N.V. (2018). Energy-economic efficiency of grain-crop cultures in the conditions of the right-bank Forest-Steppe of Ukraine. Ukrainian J Ecol, 8(4), 2633.

47. Mazur, V.A., Mazur, K.V., Pantsyreva, H.V., Alekseev, O.O. (2018). Ecological and economic evaluation of varietal resources Lupinus albus L. in Ukraine. Ukrainian Journal of Ecology, 8(4), 148-153.

48. Melnychuk, T., Patyka, V. 2011. Microbial preparations bioorganic farming system. Collected articles "Third All-Ukrainian Congress of Ecologists with international participation." Vinnytsya. Tom.2: 423-426.

49. Metodologiya i praktyka vy'kory'stannya mikrobnyx preparativ u texnologiyax vy roshhu-vannya siFs'kogospodars'ky'x kuTtur [Methodology and practice of microbial drugs use in crop growing technologies] / V. V. Volkogon, A. S. Zaryshnyak, I. V. Grynyk ta in. (2011). Ky'yiv: Agrarna nauka, 153.

50. Mohamed Z., El-Sayed S., Radwan T., El-Wahab G. "Potency evaluation of Serratiamarcescens and Pseudomonas fluorescens as biocontrol agents for root-knot nematodes in Egypt". Journal of Applied Sciences Research. Vol.4. no. 1. 2009. pp. 93- 102.

51. Monarkh Veronika Valentynivna, Pantsyreva Hanna Vitaliivna. (2019). Stages of the Environmental Risk Assessment. Ukrainian Journal of Ecology, 9(4), 484-492. DOI: 10.15421/2019_779

52. Muir J. P. Biomass production of Alamo switchgrass in response to nitrogen, phosphorus, and row spacing. J. P. Muir, M. A. Sanderson, W. R. Oc-umpaugh at all. Agron J., 2001. No 93. P. 896-901.

53. Naum Raichesberg (2000). Adolphe Quetelet,

«coyyomum-jmtmal» #wm), 2©2h / agricultural sciences

29

His Life and Research Activities. Moscow: Elibron Classics, 2000. 98 p.

54. Osoro N., Kawaka F., Naluyange V. "Effects of water hyacinth (Eichhornia crassipes [mart.] solms) compost on growth and yield of common beans (Phaseolus vulgaris) in Lake Victoria Basin". European International Journal of Science and Technology. Vol. 3. no.7. 2014. pp. 173-186.

55. Ovcharuk V.I., Mulyarchuk O.I., Myalkovsky R.O., Bezvikonnyi P.V., Kravchenko V.S., Klymoych N.M. Parameters of beet plants. Bulletin of the Uman National University of Horticulture. 2019. № 1. P. 7075.

56. Palamarchuk V., Honcharuk I., Honcharuk T., Telekalo N. Effect of the elements of corn cultivation the technology on bioethanol production under conditions of the rightbank forest-steppe of Ukraine. Ukrainian Journal of Ecology. 2018. Vol. 8(3). P. 47-53.

57. Pantsyreva H.V. (2018). Research on varietal resources of herbaceous species of Paeonia L. in Ukraine. Scientific Bulletin of the NLTU of Ukraine, 28 (8), 74-78. https://doi.org/10.15421/40280815

58. Pantsyreva H.V., Myalkovsky R.O., Yasinetska I.A., Prokopchuk V.M. Productivity and economical appraisal of growing raspberry according to substrate for mulching under the conditions of po-dilia area in Ukraine. Ukrainian Journal of Ecology. 2020. Vol. 10(1). P. 210-214.

59. Pantsyreva, H. V., Mykoliuk, O. O., & Semchuk, V. V. (2019). Suchasnyi stan kolektsii pivonii na bazi botanichnoho sadu "Podillia" Vinnytskoho natsionalnoho ahrarnoho universytetu. Scientific Bulletin of UNFU, 29(8), 46-50. https://doi.org/10.36930/40290806

60. Pantsyreva, H.V. (2019). Morphological and ecological-biological evaluation of the decorative species of the genus Lupinus L.. Ukrainian Journal of Ecology, 9(3), 74-77.

61. Pantsyreva, H.V. Technological aspects of biogas production from organic raw materials. Bulletin of KhNTUSG them. P. Vasilenko. Kharkiv, 2019. P. 276290.

62. Pruvot E.B., Claeys-Kulik A.L., Estermann T. Designing strategies for efficient funding of universities in Europe. DEFINE Project Paper. Brussels: European University Association. 2015. P. 20-22.

63. Puyu V. L. (2014). Modern Design of Cultivated Pastures in the Western Forest Steppe. Seminar Program of Uman NUS "Varietal Technologies as a Factor in the Implementation of Agrocenoses Biopotentials in the Programming System of Field and Forage Crops Yield". Uman, 15-16 May 2014.

64. Puyu V. L., Bakhmat M. I., Rykhlivskyi I. P., Shcherbatiuk N. V. (2019). Optimization of Conveyor Production of Green Fodder. World Science. No 7 (47). Vol. 1. doi: 10.31435/rsglobal_ws/31072019/6587.

65. Rai R. K., Tripathi N., Gautam D., & Singh P. (2017). Exogenous application of ethrel and gibberellic acid stimulates physiological growth of late planted sugarcane with short growth period in subtropical India. Journal of Plant Growth Regulation, 36(2), 472486.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

66. Razanov S.F. Tkachuk O.P., Mazur V.A., Didur I.M. Effect of bean perennial plants growing on soil heavy metal concentrations. Ukrainian Journal of Ecology. 2018. 8(2). 294-300 doi: 10.15421/2018_341.

67. Rohach V.V., Rohach T.I., Kylivnyk A.M., Polyvanyi S.V., Bayurko N.V., Nikitchenko L.O., Tkachuk O.O, Shevchuk O.A., Hudzevych L.S., Levchuk N.V. The influence of synthetic growth promoters on morphophysiological characteristics and biological productivity of potato culture. Modern Phyto-morphology. 2020. 14. 111-114.

68. S. E. Sladden. Biomass Conf. of the Americas. Burlington, 1993. P.229-234.

69. Shatilov I. S., Chudnovskyi A. F. (1980). Ag-rophysical, Agrometeorological and Agrotehnical Crop Programming Fundamentals: ACS of TP Principles in Land Cultivation. Leningrad: Gidrometeoizdat, 1980. 320 p.

70. Solona O., Kupchuk I. Dynamic synchronization of vibration exciters of the three-mass vibration mill. Przeglad Elektrotechniczny, 2020, 96(3), 161165. DOI: 10.15199/48.2020.03.35

71. V.G. Kuryata, S.V. Polyvanyi,

0.A. Shevchuk, O. Tkachuk. 2019. Morphogenesis and the effectiveness of the production process of oil poppy under the complex action of retardant chlormequat chloride and growth stimulant trep-tolem. Ukrainian Journal of Ecology. 9 (1). 127-134.

72. Varchenko O., Krysanov D., Shubravska O., Khakhula L., Gavryk O., Byba V., Honcharuk I. Supply Chain Strategy in Modernization of State Support Instruments for Small Farms in Ukraine. International Journal of Supply Chain Management. 2020. Vol. 9. №

1. P. 536-543 https://ojs.excelingtech.co.uk/in-dex.php/IJSCM/article/view/4326

73. Vdovenko S.A., Prokopchuk V.M., Palamarchuk I.I., Pantsyreva H.V. (2018). Effectiveness of the application of soil milling in the growing of the squash (Cucurbita pepo var. giraumontia) in the right-benk forest stepp of Ukraine. Ukrainian Journal of Ecology, 8(4), 1-8.

74. Vdovenko, S.A., Pantsyreva, G.V., Palamarchuk, I.I., & Lytvyniuk, H.V. (2018). Symbiotic potential of snap beans (Phaseolus vulgaris L.) depending on biological products in agrocoenosis of the right-bank forest-steppe of Ukraine. Ukrainian J Ecol, 8(3), 270-274.

75. Vdovenko, S.A., Prokopchuk, V.M., Palamarchuk, I.I., & Pantsyreva, H.V. (2018). Effectiveness of the application of soil milling in the growing of the squash (Cucurbita pepo var. giraumontia) in the right-benk forest stepp of Ukraine. Ukrainian J Ecol, 8(4), 15.

76. Wolters D., Beste A. Biomasse - umweltfreundlicher Energieträger? Ökologie und Land-bau.116, 4, 2000. S. 12-14.

77. Yanovych, V., Honcharuk, T., Honcharuk, I. & Kovalova, K. (2018). Engineering management of vibrating machines for targeted mechanical activation of premix components. INMATEH - Agricultural Engineering, 54(1), 25-32.

78. Yhurber J.A. Inhibitory effect of gibberellins on nodulation in dwarf beans, Phaseolus vulgaris. Nature. 1958. Vol. 181. P. 1082-1083.

79. Yowling W.A., Buirchell B.J., Tarta M.E. Lupin. Lupinus L., Promoting the conservation and use of underutilized and neglected crops 23. Institute of Plant lyenetis and crop Plant Research, yatersleben. International Plant lyenetic Resources Institute. Rome, 1998. P. 112-114.

80. Zhao, H., Cao, H., Ming-Zhen, P., Sun, Y., & Liu, T. (2017). The role of plant growth regulators in a

plant aphid parasitoid tritrophic system. Journal of Plant Growth Regulation, 36(4), 868-876.

81. O.A. Shevchuk,.0. Tkachuk, V.G. Kuryata,O.O. Khodanitska, S.V. Polyvanyi. 2019. Features of leaf photosynthetic apparatus of sugar beet under retardants treatment. Ukrainian Journal of Ecology. 2019. 9 (1). P. 115-120.

82. O.O. Khodanitska, V. G. Kuryata, O.A. Shevchuk, O.O. Tkachuk, I.V. Poprotska. 2019. Effect of treptolem on morphogenesis and productivity of lin seed plants. Ukrainian Journal of Ecology. 9 (2). 9-126.

UDC: 636.087.7:636.59

Poberezhets J.N.,

Candidate of Agricultural sciences, Associate Professor

Lotka H.I.

Candidate of Agricultural sciences, Associate Professor Vinnytsia National Agrarian University 3, Soniachna str., Vinnytsia, 21008, Ukraine

DOI: 10.24412/2520-6990-2021-1299-30-34 PRODUCTIVITY OF LAYING HENS FED BY FEED ADDITIVES

Abstract.

The aim of the experiment was to research the effect of the enzyme additive AlfaGal on egg-laying ability and egg quality of laying hens. It was found that the average daily, absolute and relative gains increased by 9.9% (P<0.05), 10%, respectively, and 3.2% for poultry fed by the feed additive than control counterparts.

The AlfaGal enzyme additive application for laying hens feeding increases the gross collection of eggs by 6.2% (P<0.05) compared with control counterparts.

The enzyme additives application in the experimental poultry feeding reduces feed costs by 10 eggs by 5.5% compared to the control.

Using an enzyme additive for laying hens feeding increases the weight of the egg by 7.6% (P<0.05).

Egg white weight increases by 5.4% (P<0.05) in the second experimental group under the action of AlfaGal.

Keywords: laying hens, enzyme preparation, feed, eggs.

INTRODUCTION

Today, it is common practice to use enzymes to increase the nutritional value of the diet and the nutrient composition variability of such feed components as phytase, enzymes [4, 7, 10].

There are many manufacturers and suppliers of feed enzymes on the market today, so the feeding specialist has a huge range to choose from. However, there is a significant problem in finding effective drugs [1, 3, 6].

Enzymes have a different mechanism of action on the body of animals than hormones and biostimulants. They are not accumulated in the animal body and livestock products as a part of the final products. Animals and poultry produce their own enzymes in the digestive tract they are the hydrolysis of feed nutrients. Adult animals can digest up to 60-70% of feed nutrients, although the digestive glands produce sufficient amounts of pepsin, trypsin, amylase, lipase and other digestive enzymes. It is known that young animals are born with an underdeveloped digestive enzyme system [2, 12].

Poultry is one of the important and promising branches of animal husbandry, it has low labor and feed costs receiving a significant amount of valuable dietary foods for humans. Providing the population in food and

industry in raw materials can be achieved due to the proportional development of agricultural industries, including poultry.To increase the efficiency of feed use is one of the important tasks facing poultry farming [6, 11].

Therefore, the aim of the experiment was to research the effect of the AlfaGal enzyme additive on the laying ability and eggs quality of laying hens. Feed additive is aimed for use in feeding farm animals and poultry.

METHODS AND MATERIALS

The experiment was carried out using the method of analogue groups, it allows to determine the effect of the researched drug. Forming the groups, we took into account the live weight of animals, age, sex, breed, productivity, etc. [5].

The equalization period of the experiment lasted for 10 days, and the main period of the experiment lasted for 180 days. The poultry was kept in one tier group cages in compliance with zoohygienic requirements [5].

The control group consumed the basic diet (BD), i.e., complete feed. Experimental group was additionally fed by AlfaGal (0.1 kg per ton of feed).

i Надоели баннеры? Вы всегда можете отключить рекламу.