Научная статья на тему 'THE COMPATIBILITY OF DEFORMATION OF THE HOLLOW-CORE SLAB WITH BEAMS'

THE COMPATIBILITY OF DEFORMATION OF THE HOLLOW-CORE SLAB WITH BEAMS Текст научной статьи по специальности «Строительство и архитектура»

CC BY
87
24
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Magazine of Civil Engineering
Scopus
ВАК
RSCI
ESCI
Ключевые слова
BUILDING CONSTRUCTION / REINFORCED CONCRETE STRUCTURES / PRECAST-MONOLITHIC SLAB / BEAM / KEY JOINT / BEARING CAPACITY / STIFFNESS / CRACK RESISTANCE

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Koyankin A.A., Mitasov V.M., Deordiev S.V.

The features of deformation of the key joint of a hollow core slab with precast-monolithic (monolithic) beam of a frame constructive system, including the Saret series. Experimental studies have been performed and numerical research of the stress-strain state of the slab and beam precast monolithic frame joint are carried out. Based on the obtained data, a comparative analysis of the results of numerical studies with experimental research has been performed, which showed a satisfactory convergence of results. As a result of the conducted researches new data concerning design features of the joint of the hollow slab with the beam have been obtained. Conclusions are given about the bearing capacity, stiffness and crack resistance of the structural solution of the joint node. The “weak points” associated with the design and operation of the joint of the slab with the beam are indicated. Technical solutions have been proposed to address the identified shortcomings, such as installation of the upper reinforcement in the hollow plate in longitudinal and transverse directions or exclusion of the key rigid joint to improve the structural reliability of the building.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

СОВМЕСТНОСТЬ ДЕФОРМИРОВАНИЯ ПУСТОТНОЙ ПЛИТЫ С РИГЕЛЕМ

Рассмотрены особенности деформирования узлового шпоночного сопряжения пустотной плиты перекрытия со сборно-монолитным (монолитным) ригелем каркасной конструктивной системы, применяемой для возведения многих зданий, в том числе зданий серии Saret. Выполнены экспериментальные исследования, а также проведены численные исследования напряжённо-деформированного состояния узла сопряжения плиты и ригеля сборно-монолитного каркаса. На основании полученных данных выполнен сопоставительный анализ результатов численных исследований с экспериментальными данными, который показал удовлетворительную сходимость результатов. В результате проведённых исследований получены новые данные касающиеся конструктивных особенностей стыкового соединения пустотной плиты с ригелем. Даны заключения о несущей способности, жёсткости и трещиностойкости конструктивного решения узла сопряжения. Обозначены «слабые места» связанные с проектированием и эксплуатацией узлового соединения плиты с ригелем. Предложены технические решения по устранению выявленных недостатков, такие как установка в пустотной плите верхней арматуры в продольном и поперечном направлениях или исключение шпоночного жёсткого соединения, позволяющие повысить конструктивную надёжность здания.

Текст научной работы на тему «THE COMPATIBILITY OF DEFORMATION OF THE HOLLOW-CORE SLAB WITH BEAMS»

Magazine of Civil Engineering. 2019. 87(3). Pp. 93-102 Инженерно-строительный журнал. 2019. № 3(87). С. 93-102

Magazine of Civil Engineering

journal homepage: http://engstroy.spbstu.ru/

ISSN

2071-0305

DOI: 10.18720/MCE.87.8

The compatibility of deformation of the hollow-core slab with beams

A.A. Koyankin*a, V.M. Mitasovb, S.V. Deordiev3

a Siberian Federal University, Krasnoyarsk, Russia.

b Novosibirsk state University of architecture and construction, Novosibirsk-8, Russia * E-mail: [email protected]

Keywords: building construction, reinforced concrete structures, precast-monolithic slab, beam, key joint, bearing capacity, stiffness, crack resistance

Abstract. The features of deformation of the key joint of a hollow core slab with precast-monolithic (monolithic) beam of a frame constructive system, including the Saret series. Experimental studies have been performed and numerical research of the stress-strain state of the slab and beam precast monolithic frame joint are carried out. Based on the obtained data, a comparative analysis of the results of numerical studies with experimental research has been performed, which showed a satisfactory convergence of results. As a result of the conducted researches new data concerning design features of the joint of the hollow slab with the beam have been obtained. Conclusions are given about the bearing capacity, stiffness and crack resistance of the structural solution of the joint node. The "weak points" associated with the design and operation of the joint of the slab with the beam are indicated. Technical solutions have been proposed to address the identified shortcomings, such as installation of the upper reinforcement in the hollow plate in longitudinal and transverse directions or exclusion of the key rigid joint to improve the structural reliability of the building.

Precast-monolithic housing is widely used in modern world construction. The technology of precast-monolithic house-building has become the main one with most of the major developers, which confirms the ease of its application for the erection of buildings of various functional purposes operated in difficult climatic conditions [6, 7, 9, 15]. For example, quite popular became the versions of the floor disk with hollow plates, interfaced with precast-monolithic or monolithic beams, as well as the execution of the floor disk with the use of a prefabricated formwork plate and subsequent pouring with monolithic concrete [1, 3, 6, 7, 10, 15]. At the same time, if the floor disk panels, as a rule, are performed without prestressing, the beams are often prestressed. In addition, a variant of the overlap device with hollow blocks of lightweight concrete is known [2], stacked on precast concrete beams with subsequent filling with monolithic concrete.

Significant development of precast-monolithic reinforced concrete has lead to the necessity of research of peculiarities of stress-strain state of precast-monolithic structures. In this regard, researchers worldwide are actively pursuing those and other studies, allowing to assess both the specifics of individual design solutions and components, and systems in general, by the frames constructed in precast-monolithic design. In particular, the results of experimental studies of precast-monolithic slabs on bearing capacity, crack resistance and deformability are presented in [3, 13].

Full-scale tests of a fragment of a composite monolithic frame of the system with flat floors showed the reliability of the proposed system [4]. In the dissertation work [16], the issues of joint deformation of flat plates and hidden beams in prefabricated monolithic cages, which are quite common in the world construction practice, were studied. Partially ribbed precast monolithic overlap with cellular concrete blocks is presented in [19], where, in addition to the description of the design solution, analytical and numerical comparative calculations were performed that showed greater accuracy of the results when performing calculations in a software package based on the finite element method. However, the studies were performed in the linear formulation of the problem, which alienates their accuracy from the actual construction with the physical nonlinearity inherent in reinforced concrete. The author of [21] conducted studies of the fire resistance of prefabricated monolithic structures. Issues of joint deformation under various types of force effects were

Koyankin, A.A., Mitasov, V.M., Deordiev, S.V. The compatibility of deformation of the hollow-core slab with beams.

Magazine of Civil Engineering. 2019. 87(3). Pp. 93-102. DOI: 10.18720/MCE.87.8

Коянкин А.А., Митасов В.М., Деордиев С.В. Совместность деформирования пустотной плиты с ригелем //

Инженерно-строительный журнал. 2019. № 3(87). С. 93-102. DOI: 10.18720/MCE.87.8

1. Introduction

(°0

This open access article is licensed under CC BY 4.0 (https://creativecommons.org/licenses/bY/4.0/)

considered in [29, 32]. The issues of the stability of flat plates in the stage of progressive destruction were considered in [30], and the features of the deformation of the nodal joint of the overlap with the column at different frequencies of repetitive load were studied in [31]. In [22], numerical and experimental studies of beam bending elements with external sheet reinforcement were carried out.

The authors of this article in [33] numerically considered the distinctive features of the stressstrain state of a precast-monolithic flat frame, taking into account the phased installation, and in [1, 24] the authors of this article carried out experimental studies, that allowed to determine a sufficiently high stiffness of the nodal junction of the hollow plate and the beam, as well as the precast-monolithic beam with the column, while identifying certain design disadvantages.

In addition to experimental and numerical studies scholars offer various calculation methods of precast-monolithic structures both with the use of automated software, and performing «manual» calculations. The authors of [5, 8, 26] proposed an algorithm for performing the calculation of prefabricated monolithic structures in software packages based on the finite element method. In [5] the method of calculation of precast-monolithic beams with a keyless contact and load transfer to the precast part is given to take into account the influence of dowel effect of transverse reinforcement on the stress-strain state of the contact between the concrete and the design in general. At the same time, focusing on reducing the stiffness of the node junctions of the hollow plate with a composite monolithic beam by the time the connection carrying capacity is exhausted, the following variants of design schemes [7, 26] are proposed: with rigid joint of the plate with the beam - when calculating the 2nd group of limit states, and with a hinged joint - when calculating the 1st group. The author of publication [12] has proposed a method for calculation of normal cracks formation in precast-monolithic reinforced concrete bendable elements on the basis of the deformation model, where the criterion for the formation of cracks is the achievement of stretched zone of ultimate concrete tensile strength by the fiber. In addition, the set of performed calculations identified the necessity to consider positive effect of thrust strength on bearing capacity of disk panels.

In this case, the calculation of the carrying capacity of a normal section "by hand" is proposed to be performed either using the above section parameters (State Standard "Concrete and reinforced concrete structures") or through fiber deformations of the fibers. The questions of the equations and calculation methods taking into account the nonlinear creep of three-layer plates and shallow shells are considered in [20].

Apart from that, engineers and scientists actively offer new constructive systems or suggestions for improvement of existing systems. For example, a technical solution of overlapping with the use of hollow slabs based on prefabricated monolithic or monolithic beams through keyway interfacing [11, 14] has become quite popular. In addition, solutions are proposed using prestressed reinforcement mounted directly on the construction site [25, 28]. Along with the design solutions, various aspects of the technology of precast-monolithic construction are considered [10], including the features of construction at negative temperatures [18].

As for the topic and motivation for these studies, a number of previously performed experimental and numerical contributions [1, 24] on the study of the features of deformation of individual nodular joints of precast-monolithic elements, has allowed to reveal a rather unpleasant fact - the formation of cracks in the place of the key interface of the hollow-core slab and precast-monolithic or monolithic beam with subsequent destruction of the hollow plate. In particular, the cracks were fixed in the upper non-reinforced zone of the slab both in its longitudinal direction at the transverse bending from the deformation of the beam [24] and in the transverse direction due to the longitudinal bending of the slab and sufficient rigidity of the key joint for the appearance of the bending moment in it. Along with this, a number of techniques [6] for the calculation of precast-monolithic overlap in software systems is suggested based on the finite element method, where the simulation of this coupling is performed by a hinge, which, of course, will not allow to take into account the occurrence of significant tensile stresses on the surface of the slab in reality.

It is the above mentioned results of experimental studies and observations that prompted the authors of this article to perform additional numerical studies prestressed - deformed state (the subject of research) of the key joint with of the hollow plate with precast monolithic beam (object of research), followed by their comparison with the previously obtained experimental data. The aim of performed numerical research was a detailed study features of joint deformation of the hollow slab and the beam at the key joint in the precast-monolithic frame.

On the basis of these and other related studies of different authors one can state the fact that the prefabricated monolithic frame is a quite reliable construction system, providing the requirements of existing building codes. Of course, some studies, particularly aimed at studying the local aspects, such as junctions of structural elements, identify some shortcomings present in various structural systems.

It is the above mentioned results of experimental studies and observations that have prompted the authors of this paper to perform additional numerical studies of the stress-strain state (the subject of the study) of the key joint of the hollow plate with the precast-monolithic beam (the object of study), with their subsequent comparison with the previously obtained experimental data. The aim of numerical studies was a more detailed research of the features of the joint deformation of the hollow plate and the beam at the key joint in the precast-monolithic frame. To achieve this goal, the following tasks were defined: assessment of the stress-strain state of the joint of

the hollow slab with the beam in terms of bearing capacity and deformability, as well as verification of the results of experimental studies. In this case, the object of research is the key joint of the hollow slab with precast-monolithic or monolithic beam, and the subject of research is its stress-strain state.

Experimental studies were carried out at the laboratory of testing building structures of Siberian Federal University [1]. In addition to "The Lira" software numerical studies of the stress-strain state of the slab - beam joint were carried out and comparison of the results with experimental data was performed.

2. Methods

Experimental study was carried out on three full-scale models of the joint of the hollow-core slab with the beam (in the laboratory of building construction tests based on Siberian Federal University of Krasnoyarsk). This type of the joint is quite common in the practice of building construction of precast-monolithic reinforced concrete [6, 7, 10]. Samples were divided into two types depending on the type of the beam. In particular, samples of type 1 (T-1 and T-2) included (Figure 1, a):

- fragments of the hollow-core slab with 1200*220(h) mm cross section and a length of 700 mm, reinforced by prestressed 7012K1500 ropes and interfaced with a monolithic part of the beam through the device in the cavities of the slab, simultaneously with a monolithic part of the beam of concrete 1010A400 reinforced dowels, having a variable length of 200...300 mm;

- precast-monolithic beams, including the precast part of 400*200(h) mm cross-section with a length of 1.200 mm, and a stacked on top monolithic part of 140*220(h) mm section performed simultaneously with the dowels in the hollow-core slabs.

Type 2 (T-3) sample was performed similarly to the samples T-1 and T-2, but with the difference that monolithic 140*220(h) mm cross-section beams, 1.200 mm long were used, performed simultaneously with the dowels in hollow slabs (Figure 1,b).

The load on the prototypes was applied top-down on the edges of the consoles with two jacks (Figure 1, c, d).

In conducting numeric research with «Lira» software, based on the method of finite elements, for the simulation of materials operation, physically nonlinear three-dimensional (concrete) and rod (reinforcement) elements were used. The nonlinearity of the work of materials was considered by two - and three-line diagrams of deformation inherent in [State Standard "Concrete and reinforced concrete structures"]. Loading was performed by step load with the step size of 4 kN. Similarly, experimentally calculation of the two type's calculation of the two types of numerical models of key joint of a hollow - core slab with a precast-monolithic beam (model B-1) and monolithic beam (model B-2) was performed. All models had real scale size, as in previously conducted experiments, at the same time, the P-1 numerical model is structurally consistent with the T-1 and T-2 experimental models, and P-2 is similar to T-3.

For the convenience of modeling the holes of hollow core slabs were converted from round to square, based on the equivalence of flexural rigidity.

Figure 1. Model of a key joint of the hollow-core slab: a - with precast-monolithic beam; b - with monolithic beam; c - experimental unit scheme; d - experimental unit photo.

3. Results and Discussion

An important factor which has been determined during experimental studies is that in the real joint of the hollow - core slab with precast-monolithic or monolithic beam, arranged through reinforced concrete dowels, there arises a bending moment, which, in the case of improper design of the hollow core slab, leads to its destruction. This fact must be taken into account in the design of reinforced concrete structures. For example, at present, the joint of the slab with the beam is looked at as a hinged one [7], but, as studies have shown, it should be considered as rigid. The same ability of the key joint of the slab with the beam to perceive the bending moment is recorded in the numerical studies as well.

During all the experiments, the formation of cracks on the upper stretched surface of the hollow-core slab was recorded in the place where the monolithic dowel ends. It is at the moment of formation of this crack that the load-bearing capacity of the tested sample was exhausted (load 20...24 kN), which is due to the absence of any reinforcement of the upper zone of the slab. It should be mentioned that the destructive load of all experimental samples is approximately in the same range, namely, the models T-1 and T-3 collapsed at a load of 20 kN, and the model T-2 - at 24 kN. Any other cracks in the test plates were not recorded, except for the minor seam opening in the joint of precast and monolithic concrete occurring at the penultimate stage loading with loads of 12 to 16 kN. The picture of cracking is presented in Figure 2.

a b

Figure 2. Scheme of crack formation in experimental models.

Numerical studies have fully confirmed the results obtained in experimental studies, namely, there is the same picture of structural failure, the formation of a critical crack is also recorded, leading to the rapid subsequent destruction in the hollow slab in the zone of the end of the concrete dowel, i.e., in the place where there is no reinforcement of the upper stretched part. Moreover, such a picture of destruction is observed both in the key joint with a precast monolithic beam (model B-1) and in the joint with a monolithic beam (B-2), which indicates the dependence of the form of destruction of the junction not so much on the type of the beam, but on the length of the dowel and the fact of its reinforcement (Figure 3). The breaking load was 20 kN in both models, which coincides well with the experimental values.

Thus, results of numeric and experimental studies have allowed to draw the conclusion that the junction have been confirmed that the junction of the hollow-core slab with precast-monolithic or monolithic beam, arranged through reinforced concrete dowels, has sufficient rigidity for the occurrence in it of the bending moment. This, in turn, leads to the need of its positioning as hard in the calculation of building structures.

The lack of top reinforcement in hollow-core slabs leads to the fact that the key joint of the hollow slab with the beam being hard, becomes a weak point in the whole structure of the overlap because of the inability of perception of the reference time at the end of monolithic reinforced monolithic dowels.

Thus, the need to implement certain constructive solutions to address this shortcoming is quite obvious. Such measures might possibly include: the device of the corresponding reinforcement of the upper zone of the hollow floor slab, or the refusal to use the reinforced dowel, making the junction of the slab and the beam rigid enough, that is, the implementation of the junction hinged.

The deflections, which were obtained in experimental studies of samples T-1 and T-2, had approximately the same uniform increase with load increasing (Figure 4). At the same time, it is quite expected that the deflections of the slab based on the precast-monolithic beam turned out to be significantly lower than the deflections of the slab joined with the monolithic beam.

lJ2eHK>3 1.03eK>03 13.2 -13 2 1 i'V'OOî -2.095+003 -3.145+003 ^.lSs+003 -323e+003

5

plate

monolithic concrete

beam_

precast concrete

rigid connection

-SJ7e+003

Stresses in concrete, MPa

r 1 m m \ \

■ ■ m

monolithic concrete

plate

i.itv'Vi:.

I

rigid connection

b

Figure 3. Stress-strain state of the butt joint (MPa): a - model B-1; b - model - B-2.

0.0 4.1 S.l 12.2 16.3 20.4

Figure 4. Deflection graphs of experimental models.

The deflections obtained during the numerical research, have turned out to be smaller than previous experimental values; the discrepancy did not exceed 30 %. In particular, with the load of 12 kN the maximum value of the experimental deflection in the joints with precast-monolithic beam amounted to 9.3 mm, while in numerical calculations this value was 12.6 mm.

Numerical and experimental studies have made it possible to clearly and unambiguously note the fact that any destruction of the concrete dowel does not occur. In particular, there is no cut and destruction of the concrete body. In experimental studies no information on deformations and stresses in the concrete dowels was obtained, however, the nature of structural collapse and its subsequent inspection show the integrity of the concrete. Stress values in concrete dowels obtained in numerical studies did not exceed 4 MPa for compression and 0.5 MPa for tension, which confirms the results of the experimental data.

Data from strain gauges, which were obtained in experimental studies have shown that the yield strength in the dowels reinforcement did not exceed 30 MPa, indicating a significant reserve of reinforcement bars safety.

a

The stresses in the dowel reinforcement in numerical models, as well as in experimental models, have small values (less than 20 MPa), and absolutely cannot be the cause of the exhaustion of the bearing capacity of key joint of the hollow-core slab with the beam because of reaching the reinforcement yield strength.

Similarly to reinforcement, in compressed concrete on the lower surface of the slab, exhaustion of carrying capacity was not recorded both in experimental and numerical studies. In particular, during the experiment this conclusion was made on the basis of the fact that the relative deformations on the compressed (lower) surface of the hollow slab barely reached the value of 0.0003, while their limit values are 0.002.

In particular, during the experiment this conclusion was made on the basis that the limiting relative concrete compression deformations had not been reached. In addition, the data of strain gauges indicate that in the area of the dowels, directly in the place of the joint of the slab with the beam, deformation of the tensile concrete is also less than the ultimate limits of 0.00015 (the maximum value of deformation of concrete stretched in the experiment amounted to about 0.0006) up to the point of structural failure. All the obtained results were confirmed by visual inspection, in which there were no areas of destruction (fragmentation of concrete, cracks and other signs) in the above designated areas.

Thus, there is a significant margin of safety (at least 10x) of the dowel junction on the perception of bending moment in place of the direct dowel device that actually is not used.

In further numeric research compressive stresses of the concrete slab and the beam do not reach the limit values and do not exceed 9 MPa, while the tensile stress in the beam and in the hollow slab at the place of monolithic dowel arrangement also did not exceed the limit tensile stress, which proves the integrity of the structure in these points.

In addition, it should be pointed out that the studies of the joint of the slab key joint with the beam "in its pure form", i.e. when only the junction of the slab with the beam is considered, rather than the construction of the overlap as a whole, were not found. However, the authors of this article have previously conducted studies of a similar overlap disk and its fragments [1, 24], which did not fix the formation of any cracks in the end of the dowel, but this was due not to the reliability of the nodal coupling, but to a significant (much higher than the normative) reserve of the bearing capacity of the entire overlap disk and carrying out tests not before the destruction (which is quite justified), but only to control values of the load.

In addition, earlier studies [1, 24] of the core coupling of the beam with the column revealed another constructive "trouble", which is carried by the key joint, namely, the joint deformation of the hollow slab with the precast monolithic beam during its bending (in the reference zone) leads to the appearance of tensile stresses on the upper surface of the slab in the transverse (non-working) direction. Given the absence of horizontal reinforcement in the upper area of the slab in the longitudinal and transverse directions, the hollow-core slab forms normal cracks in the direction parallel to the voids. And this fact also requires the adoption of constructive measures to avoid the formation of cracks in the hollow slab in the transverse direction, for example, by introducing appropriate reinforcement in the hollow slab or excluding rigid joint work of the hollow slab and the beam.

4. Conclusions

Experimental and numerical study of the butt joint of the hollow-core slab with the beam has allowed to draw the following conclusions:

1. butt joint of the hollow- core slab with precast-monolithic and monolithic beam performed through the device of the monolithic dowel is not hinged and has sufficient rigidity for the perception of bending moment, which allowed the experimental model to take the load up to 24 kN during the experiment;

2. "a weak point" of the butt joint is the lack of top reinforcement in hollow-core overlap slabs, leading to brittle fracture of concrete of upper stretched zone of the slab at the end of monolithic reinforced dowels. The discrepancy between the numerical and experimental data for the bearing capacity was not more than 20 %;

3. to avoid the formation of cracks in the hollow slab and the subsequent structure destruction process might be possible, either by the introduction of the reinforcement (top longitudinal reinforcement) of the hollow-core slab, or by eliminating the hard joint work of the hollow plate and the beam (except the key joint);

4. the bearing capacity of the zone of the dowel location has a high bearing capacity both in the perception of the bending moment and in the perception of the transverse force (especially given the rather frequent location of the dowels). At the time of failure of the samples in the elements, determining the bearing capacity of the key joint (compressed concrete and key stretched reinforcement) voltage has not reached 10 % of the limit value;

5. features of deformation of the hollow-core slab with key joint connection in the holding area of the beam require horizontal reinforcement in the slab in the transverse direction.

6. abovementioned constructive decisions can increase significantly the bearing capacity of joint connection towards the perception of the bending moment. However, further investigations (experimental and numerical) focused on detailed study of bearing capacity of key joint for shear are required;

7. according to the analysis of previously performed works, the thrust strengths has a positive effect on strain-stress state of disk panel (increasing the strength of bearing capacity). However, this fact requires additional investigations, primarily, experimental, that will allow to consider thrust strength in calculations definitively.

References

1. Koyankin, A.A., Mitasov, V.M. Eksperimentalnyye issledovaniya uzlov sopryazheniya pustotnoy plity so sborno-monolitnym i monolitnym rigelem [Experimental research of the joins of a hollow slab with precast-cast-in-place and monolithic girder]. Vestnik MGSU. 2015. No. 10. Pp. 32-39. (rus)

2. Vatin, N.I., Velichkin, V.Z., Kozinetc, G.L., Korsun, V.I., Rybakov, V.A., Zhuvak, O.V. Precast-monolithic reinforced concrete beam-slabs technology with claydit blocks. Construction of Unique Buildings and Structures. 2018. 70(7). Pp. 43-59. (rus)

3. Smolyago, G.A., Kryuchkov, A.A., Dronova, A.V., Drokin, S.V. Rezultaty eksperimentalnykh issledovaniy nesushchey sposobnosti, treshchinostoykosti i deformativnosti sborno-monolitnykh i monolitnykh perekrytiy [Results of the experimental studies of bearing capacity, crack resistance and deformability of the precast-monolithic and monolithic overlaps]. Izvestiya Yugo-zapadnogo gosudarstvennogo universiteta. 2011. No. 5-2 (38). Pp. 105-109. (rus)

4. Karyakin, A.A., Sonin, S.A., Popp, P.V., Aliluyev, M.V. Ispytaniya naturnogo fragmenta sborno-monolitnogo karkasa sistemy «aRkOS» s ploskimi perekrytiyami [Test of the full-scale fragment of composite structure of the ARCOS system with flat-slab decks]. Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya «Stroitelstvo i arkhitektura». 2009. No. 9. Pp. 16-20. (rus)

5. Sonin, S.A. Uchet nagelnogo effekta poperechnoy armatury v sborno-monolitnykh balkakh s besshponochnym kontaktom [Consideration of binders dowel effect in composite beams with a keyless contact]. Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Stroitelstvo i arkhitektura. 2013. No. 1. Pp. 17-21. (rus)

6. Afanasyev, A.A. Tekhnologii vozvedeniya sborno-monolitnykh karkasnykh zdaniy pri otritsatelnykh temperaturakh [Technology of erection of precast frame buildings at negative temperatures]. Vestnik MGSU. 2012. No. 4. Pp. 175-180. (rus)

7. Selyayev, V.P., Tsyganov, V.V., Utkin, I.Yu. Kombinirovannyye sborno-monolitnyye perekrytiya na osnove predvaritelno napryazhennykh zhelezobetonnykh balok bezopalubochnogo formovaniya [Combined prefabricated monolithic slabs on the basis of non-formwork prestressed reinforced concrete beams]. Regionalnaya arkhitektura i stroitelstvo. 2012. No. 3. Pp. 5-11. (rus)

8. Sursanov, D.N., Sazonova, S.A., Ponomarev, A.B. Analiz rezultatov naturnykh ispytaniy shponochnogo soyedineniya na srez [Analysis of concrete dowel full-scale shearing tests]. Vestnik PNIPU. Stroitelstvo i arkhitektura. 2015. No. 2. Pp. 7-23. [rus]

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

9. Opbul, E.K. Perspektivnyye konstruktivnyye resheniya sborno-monolitnogo perekrytiya iz fibrozhelezobetona [Perspective structural solutions in fiber-reinforced concrete cast-in-place and precast floors]. Vestnik grazhdanskikh inzhenerov. 2014. No. 5(46). Pp. 33-38. (rus)

10. Koyankin, A., Mitasov, V. Assessment of structural reliability of precast concrete buildings. MATEC Web of Conferences. IV International Young Researchers Conference «Youth, Science, Solutions: Ideas and Prospects» (YSSIP-2017). 2018. Vol. 143.

11. Varlamov, A.A., Pivovarov, V.S., Pivovarova, O.V. Variant shponochnogo styka sborno-monolitnogo perekrytiya [Variant of keyed joint of precast-monolithic slab]. Arkhitektura. Stroitelstvo. Obrazovaniye. 2014. No. 1. Pp. 249-255. (rus)

12. Smolyago Ye.G. Raschet po obrazovaniyu normalnykh treshchin v sborno-monolitnykh zhelezobetonnykh predvaritelno napryazhennykh izgibayemykh elementakh [Calculation cracked formation in the composite prestressed reinforced concrete bending elements]. Stroitelstvo i rekonstruktsiya. 2010. No. 2(28). Pp. 39-45. (rus)

13. Varlamov, A.A., Nikitina, O.V. Analiz eksperimentalnykh dannykh issledovaniya raboty sborno-monolitnogo perekrytiya s novym variantom shponochnogo styka [Analysis of experimental research data of precast slabs operation with a new variant of splined joint]. Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Stroitelstvo i arkhitektura. 2015. No. 3. Pp. 20-25. (rus)

14. Koyankin, A.A., Mitasov, V.M. Karkas sborno-monolitnogo zdaniya i osobennosti yego raboty na raznykh zhiznennykh tsiklakh [Cast-in-place building frame and its features at separate life cycles]. Vestnik MGSU. 2015. No. 9. Pp. 28-35. (rus)

15. Taran, V.V., Takhtay, D.A., Nedorezov, A.V. Osobennosti konstruktivnykh resheniy vozvedeniya mnogoetazhnykh zdaniy po sisteme «ARKOS» [Peculiarities of design solutions for construction of multistory buildings according to the "ARCOS"]. Vestnik Donbasskoy natsionalnoy akademii stroitelstva i arkhitektury. 2009. No. 6. Pp. 89-92. (rus)

16. Nikonorov, R.M. Sovmestnaya soprotivlyayemost, deformativnost zhelezobetonnykh elementov perekrytiya sborno-monolitnykh karkasov s ploskimi plitami i skrytymi rigelyami [Joint resistance, deformability of reinforced concrete elements of overlaps of precast monolithic frames with flat slabs and concealed beams]: Cand. Diss. Moskva, 2008. 219 p. (rus)

17. Shmelev, G.D., Fomenko, N.A., Gavrilova, V.N. Sravnitelnyy analiz sovremennykh sistem vozvedeniya zdaniy grazhdanskogo naznacheniya [Analysis of the efficiency of management of multi-quarter houses by the example]. Zhilishchnoye khozyaystvo i kommunalnaya infrastruktura. 2018. No. 3(6). Pp. 9-19. (rus)

18. Afanas'ev, A.A. Tekhnologii vozvedeniya sborno-monolitnykh karkasnykh zdaniy pri otritsatelnykh temperaturakh [Technology of erection of precast frame buildings at negative temperatures]. Vestnik MGSU. 2012. No. 4. Pp. 175-180. (rus)

19. Parashchenko, N.A., Gorshkov, A.S., Vatin, N.I. Chastichno-rebristyye sborno-monolitnyye perekrytiya s yacheistobetonnymi blokami [Partially rib precast and cast-in-situ floors with cellular-concrete blocks]. Magazine of Civil Engineering. 2011. 24(6). Pp. 50-55. (rus) DOI: 10.5862/MCE.24.7

20. Chepurnenko, A.S. Stress-strain state of three-layered shallow shells under conditions of nonlinear creep. Magazine of Civil Engineering. 2017. 76(8). Pp. 156-168. doi: 10.18720/MCE.76.14

21. Nedviga, E., Beresneva, N., Gravit, M., Blagodatskaya, A. Fire Resistance of Prefabricated Monolithic Reinforced Concrete Slabs of «Marko» Technology. Advances in Intelligent Systems and Computing. 2018. 692. Pp. 739-749.

22. Medvedev, V.N., Semeniuk, S.D. Durability and deformability of braced bending elements with external sheet reinforcement. Magazine of Civil Engineering. 2016. 63(3). 2016. Pp. 3-15. DOI: 10.5862/MCE.63.1

23. Koyankin, A.A., Mitasov, V.M. Eksperimentalnyye issledovaniya raboty stykovogo soyedineniya rigelya s kolonnoy v sborno-monolitnom perekrytii [Experimental study of the operation of the bolt joint of a bearerwith a column in precast-monolithic ceiling]. Vestnik MGSU. 2015. No. 5. Pp. 27-35. (rus)

24. Teplova, Zh.S., Vinogradova, N.A. Sborno-monolitnyye perekrytiya sistemy «MARKO»[Combined and monolithic overlappings of "MARKO" system]. Stroitelstvo unikalnykh zdaniy i sooruzheniy. 2015. No. 8. Pp. 48-59. (rus)

25. Abramyan, S.G., Gnatyuk, D.V. Sbornyye i sborno-monolitnyye karkasnyye sistemy vysotnykh zdaniy s ploskimi plitami perekrytiya [Precast and cast-in-situ frame systems of high-rise buildings with flat slabs]. [Online]. System requirements: AdobeAcrobatReader. URL: http://naukovedenie.ru/PDF/83TVN117.pdf (date of application: 06.04.2017). (rus)

26. Koval, P.M., Fal, A.Ye., Marchuk, S.M. Osobennosti proyektirovaniya sborno-monolitnykh proletnykh stroyeniy mostov [Features of designing precast-monolithic bridge spans]. Visnik Dnipropetrovskogo natsionalnogo universitetu zaliznichnogo transportu im. Akademika V. Lazaryana. 2010. No. 33. Pp. 127-130. (ua)

27. Garrido, M. et al. Creep behaviour of sandwich panels with rigid polyurethane foam core and glass-fibre reinforced polymer faces: Experimental tests and analytical modeling. Journal of Composite Materials. 2014. Vol. 48. No. 18. Pp. 2237-2249.

28. Breccolotti, M., Gentile, S., Tommasini, M., Materazzi, A.L., Bonfigli, M.F., Pasqualini, B., Colone, V., Gianesini, M. Beam-column joints in continuous RC frames: Comparison between cast-in-situ and precast solutions. Engineering Structures. 2016. No. 127. Pp. 129-144.

29. Olmati, P., Sagaseta, J., Cormie, D., Jones, AEK. Simplified reliability analysis of punching in reinforced concrete flat slabbuildings under accidental actions. Engineering Structures. 2017. No. 130. Pp. 83-98.

30. Qian, K., Li, B. Resilience of Flat Slab Structures in Different Phases of Progressive Collapse. ACI Structural Journal. 2016. No. 113. Pp. 537-548.

31. Drakatos, I.S., Muttoni, A., Beyer, K. Internal slab-column connections under monotonic and cyclic imposed rotations. Engineering Structures. 2016. No. 123. Pp. 501-516.

32. Micallef, K., Sagaseta, J., Fernandez Ruiz, M., Muttoni, A, Assessing Punching Shear Failure in Reinforced Concrete Flat Slabs Subjected to Localized Impact Loading. International Journal of Impact Engineering. 2014. No. 71. Pp. 17-33.

33. Koyankin, A.A., Mitasov, V.M. Stress-strain state of precast and cast-in place building. Magazine of Civil Engineering. 2017. No. 6(74). Pp. 175-184. doi: 10.18720/MCE.74.14

Contacts:

Alexander Koyankin, +73912934711; [email protected] Valery Mitasov, +79139122364; [email protected] Sergey Deordiev, +73912062692; [email protected]

© Koyankin, A.A., Mitasov, V.M., Deordiev, S.V., 2019

Инженерно-строительный журнал ISSN

r 7 2071-0305

сайт журнала: http://engstroy.spbstu.ru/

DOI: 10.18720/MCE.87.8

Совместность деформирования пустотной плиты с ригелем

A.A. Коянкин*а, В.М. Митасовь, C.B. Деордиева

Сибирский федеральный университет, г. Красноярск, Россия

Новосибирский государственный архитекутрно-строительный университет, г. Новосибирск-д, Россия

* E-mail: [email protected]

Ключевые слова: строительные конструкции, железобетонные конструкции, сборно-монолитное перекрытие, ригель, шпоночное соединение, несущая способность, жёсткость, трещиностойкость

Аннотация. Рассмотрены особенности деформирования узлового шпоночного сопряжения пустотной плиты перекрытия со сборно-монолитным (монолитным) ригелем каркасной конструктивной системы, применяемой для возведения многих зданий, в том числе зданий серии Saret. Выполнены экспериментальные исследования, а также проведены численные исследования напряжённо-деформированного состояния узла сопряжения плиты и ригеля сборно-монолитного каркаса. На основании полученных данных выполнен сопоставительный анализ результатов численных исследований с экспериментальными данными, который показал удовлетворительную сходимость результатов. В результате проведённых исследований получены новые данные касающиеся конструктивных особенностей стыкового соединения пустотной плиты с ригелем. Даны заключения о несущей способности, жёсткости и трещиностойкости конструктивного решения узла сопряжения. Обозначены «слабые места» связанные с проектированием и эксплуатацией узлового соединения плиты с ригелем. Предложены технические решения по устранению выявленных недостатков, такие как установка в пустотной плите верхней арматуры в продольном и поперечном направлениях или исключение шпоночного жёсткого соединения, позволяющие повысить конструктивную надёжность здания.

Литература

1. Коянкин А.А., Митасов В.М. Экспериментальные исследования узлов сопряжения пустотной плиты со сборно-монолитным и монолитным ригелем // Вестник МГСУ. 2015. № 10. С. 32-39.

2. Ватин Н.И., Величкин В.З., Козинец Г.Л., Корсун В.И., Рыбаков В.А., Жувак О.В. Технология сборно-монолитных балочных железобетонных перекрытий с керамзитобетонными блоками // Строительство уникальных зданий и сооружений. 2018. № 7 (70). С. 43-59

3. Смоляго Г.А., Крючков А.А., Дронова А.В., Дрокин С.В. Результаты экспериментальных исследований несущей способности, трещиностойкости и деформативности сборно-монолитных и монолитных перекрытий // Известия Юго-западного государственного университета. 2011. № 5-2 (38). С. 105-109.

4. Карякин А.А., Сонин С.А., Попп П.В., Алилуев М.В. Испытания натурного фрагмента сборно-монолитного каркаса системы «АРКОС» с плоскими перекрытиями // Вестник Южно-Уральского государственного университета. Серия «Строительство и архитектура». 2009. № 9. С. 16-20.

5. Сонин С.А. Учёт нагельного эффекта поперечной арматуры в сборно-монолитных балках с бесшпоночным контактом // Вестник Южно-Уральского государственного университета. Серия: Строительство и архитектура. 2013. № 1. С. 17-21.

6. Афанасьев А.А. Технологии возведения сборно-монолитных каркасных зданий при отрицательных температурах // Вестник МГСУ. 2012. № 4. С. 175-180.

7. Селяев В.П., Цыганов В.В., Уткин И.Ю. Комбинированные сборно-монолитные перекрытия на основе предварительно напряжённых железобетонных балок безопалубочного формования // Региональная архитектура и строительство. 2012. № 3. С. 5-11.

8. Сурсанов Д.Н., Сазонова С.А., Пономарёв А.Б. Анализ результатов натурных испытаний шпоночного соединения на срез // Вестник ПНИПУ. Строительство и архитектура. 2015. № 2. С. 7-23.

9. Опбул Э.К. Перспективные конструктивные решения сборно-монолитного перекрытия из фиброжелезобетона // Вестник гражданских инженеров. 2014. № 5(46). С. 33-38.

10. Koyankin A., Mitasov V. Assessment of structural reliability of precast concrete buildings. MATEC Web of Conferences. IV International Young Researchers Conference «Youth, Science, Solutions: Ideas and Prospects» (YSSIP-2017). 2018. Vol. 143,

11. Варламов А.А., Пивоваров В.С., Пивоварова О.В. Вариант шпоночного стыка сборно-монолитного перекрытия // Архитектура. Строительство. Образование. 2014. № 1. С. 249-255.

12. Смоляго Е.Г. Расчёт по образованию нормальных трещин в сборно-монолитных железобетонных предварительно напряжённых изгибаемых элементах // Строительство и реконструкция. 2010. № 2(28). С. 39-45.

13. Варламов А.А., Никитина О.В. Анализ экспериментальных данных исследования работы сборно-монолитного перекрытия с новым вариантом шпоночного стыка // Вестник Южно-Уральского государственного университета. Серия: Строительство и архитектура. 2015. № 3. С. 20-25.

14. Коянкин А.А., Митасов В.М. Каркас сборно-монолитного здания и особенности его работы на разных жизненных циклах // Вестник МГСУ. 2015. № 9. С. 28-35.

15. Таран В.В., Тахтай Д.А., Недорезов А.В. Особенности конструктивных решений возведения многоэтажных зданий по системе «АРКОС» // Вестник Донбасской национальной академии строительства и архитектуры. 2009. № 6. С. 89-92.

16. Никоноров Р.М. Совместная сопротивляемость, деформативность железобетонных элементов перекрытия сборно-монолитных каркасов с плоскими плитами и скрытыми ригелями: дис. ... канд. техн. наук. М., 2008. 219 с.

17. Шмелёв Г.Д., Фоменко Н.А., Гаврилова В.Н. Сравнительный анализ современных систем возведения зданий гражданского назначения // Жилищное хозяйство и коммунальная инфраструктура. 2018. № 3(6). С. 9-19.

18. Афанасьев А.А. Технологии возведения сборно-монолитных каркасных зданий при отрицательных температурах // Вестник МГСУ. 2012. № 4. С. 175-180.

19. Паращенко Н.А., Горшков А.С., Ватин Н.И. Частично-ребристые сборно-монолитные перекрытия с ячеистобетонными блоками // Инженерно-строительный журнал. 2011. № 6. С. 50-55. DOI: 10.5862/MCE.24.7

20. Чепурненко А.С. Расчет трехслойных пологих оболочек с учетом нелинейной ползучести // Инженерно-строительный журнал. 2017. № 8(76). С. 156-168. doi: 10.18720/MCE.76.14

21. Nedviga, E., Beresneva, N., Gravit, M., Blagodatskaya, A. Fire Resistance of Prefabricated Monolithic Reinforced Concrete Slabs of «Marko» Technology. Advances in Intelligent Systems and Computing. 2018. 692. Pp. 739-749.

22. Медведев В.Н., Семенюк С.Д. Прочность и деформативность балочных изгибаемых элементов с внешним листовым армированием // Инженерно-строительный журнал. 2016. № 3(63). С. 3-15. DOI: 10.5862/MCE.63.1

23. Коянкин А.А., Митасов В.М. Экспериментальные исследования работы стыкового соединения ригеля с колонной в сборно-монолитном перекрытии // Вестник МГСУ. 2015. № 5. С. 27-35.

24. Теплова Ж.С., Виноградова Н.А. Сборно-монолитные перекрытия системы «МАРКО» // Строительство уникальных зданий и сооружений. 2015. № 8. С. 48-59.

25. Абрамян С.Г., Гнатюк Д.В. Сборные и сборно-монолитные каркасные системы высотных зданий с плоскими плитами перекрытия [Электронный ресурс]. Систем. требования: AdobeAcrobatReader. URL: http://naukovedenie.ru/PDF/83TVN117.pdf (дата обращения: 06.04.2017).

26. Коваль П.М., Фаль А.Е., Марчук С.М. Особенности проектирования сборно-монолитных пролётных строений мостов // Вюник Днтропетровського нацюнального уыверситету залiзничного транспорту iм. Академка В. Лазаряна. 2010. № 33. С. 127-130.

27. Garrido M. et al. Creep behaviour of sandwich panels with rigid polyurethane foam core and glass-fibre reinforced polymer faces: Experimental tests and analytical modeling // Journal of Composite Materials. 2014. Vol. 48. No. 18. Pp. 2237-2249.

28. Breccolotti M., Gentile S., Tommasini M., Materazzi A.L., Bonfigli M.F., Pasqualini B., Colone V., Gianesini M. Beam-column joints in continuous RC frames: Comparison between cast-in-situ and precast solutions // Engineering Structures. 2016. No. 127. Pp. 129144.

29. Olmati P., Sagaseta J., Cormie D., Jones AEK. Simplified reliability analysis of punching in reinforced concrete flat slabbuildings under accidental actions // Engineering Structures. 2017. No. 130. Pp. 83-98.

30. Qian K., Li B. Resilience of Flat Slab Structures in Different Phases of Progressive Collapse // ACI Structural Journal. 2016. No. 113. Pp. 537-548.

31. Drakatos I.S., Muttoni A., Beyer K. Internal slab-column connections under monotonic and cyclic imposed rotations // Engineering Structures. 2016. No. 123. Pp. 501-516.

32. Micallef K., Sagaseta J., Fernandez Ruiz M., Muttoni A, Assessing Punching Shear Failure in Reinforced Concrete Flat Slabs Subjected to Localized Impact Loading // International Journal of Impact Engineering. 2014. No. 71. Pp. 17-33.

33. Коянкин А.А., Митасов В.М. Напряжённо-деформированное состояние сборно-монолитного здания // Инженерно-строительный журнал. 2017. № 6(74). С. 175-184. doi: 10.18720/MCE.74.14

Контактные данные:

Александр Александрович Коянкин, +73912934711; эл. почта: [email protected] Валерий Михайлович Митасов, +79139122364; эл. почта: [email protected] Сергей Владимирович Деордиев, +73912062692; эл. почта: [email protected]

© Коянкин А.А., Митасов В.М., Деордиев С.В., 2019

i Надоели баннеры? Вы всегда можете отключить рекламу.