Научная статья на тему 'THE ALGORITHM FOR CALCULATING THE FATIGUE RESISTANCE OF THE GONDOLA WAGON BODY'

THE ALGORITHM FOR CALCULATING THE FATIGUE RESISTANCE OF THE GONDOLA WAGON BODY Текст научной статьи по специальности «Строительство и архитектура»

CC BY
24
3
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
GONDOLA WAGON / FATIGUE / LOADING / DYNAMIC STRESS / CALCULATING

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Shaimardanova B. K., Subach R. V., Kishkunov A. D., Zhukenov T. K., Amanzholov R. K.

In this paper, the issue of performing strength calculations is considered, the object of the study are the bodies of freight railway gondola wagons.An algorithm has been developed for modeling the processes of interaction of gondola wagons to assess the fatigue strength of the structure under the action of longitudinal loading. Controlled operational tests based on constant monitoring of the use and change of the technical condition of gondola wagons; intermediate and annual full-scale survey with measurements of the values characterizing the condition of the basic units and parts of wagons; generalizations, working out the technical conclusion - allow us to solve the issues raised and, first of all, confirm the correctness of the numerical values of the inter-repair standards.The accumulated experience of examining the technical condition of freight gondolas during commission inspections and analyzing the data obtained made it possible to clarify and supplement the instructions for the operation and maintenance of gondolas. The solution of the problem is reduced to determining the calculated values of the stress amplitudes in each interval of the longitudinal forces. This is possible only as a result of solving the problem of dynamic calculation of the body of a freight railway gondola.The presented algorithms make it possible to calculate, and also to design the bodies of gondola wagons, to make changes to the instructions for the production and repair of freight wagons.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «THE ALGORITHM FOR CALCULATING THE FATIGUE RESISTANCE OF THE GONDOLA WAGON BODY»

SRSTI 73.29.41

https://doi.org/A0.48081/WZW4794

*B. K. Shaimardanova1, R. V. Subach2, A. D. Kishkunov3, T. K. Zhukenov4, R. K. Amanzholov5

1,2,3Higher College of Electronics and Communications, Pavlodar, Kazakhstan *e-mail: Shandakbaeva@bk.ru

THE ALGORITHM FOR CALCULATING THE FATIGUE RESISTANCE OF THE GONDOLA WAGON BODY

In this paper, the issue of performing strength calculations is considered, the object of the study are the bodies offreight railway gondola wagons.

An algorithm has been developed for modeling the processes of interaction of gondola wagons to assess the fatigue strength of the structure under the action of longitudinal loading. Controlled operational tests based on constant monitoring of the use and change of the technical condition of gondola wagons; intermediate and annual full-scale survey with measurements of the values characterizing the condition of the basic units and parts of wagons; generalizations, working out the technical conclusion - allow us to solve the issues raised and, first of all, confirm the correctness of the numerical values of the inter-repair standards.

The accumulated experience of examining the technical condition of freight gondolas during commission inspections and analyzing the data obtained made it possible to clarify and supplement the instructions for the operation and maintenance of gondolas. The solution of the problem is reduced to determining the calculated values of the stress amplitudes in each interval of the longitudinal forces. This is possible only as a result of solving the problem of dynamic calculation of the body of a freight railway gondola.

The presented algorithms make it possible to calculate, and also to design the bodies ofgondola wagons, to make changes to the instructions for the production and repair of freight wagons.

Keywords: gondola wagon, fatigue, loading, dynamic stress, calculating.

Introduction

Experience in the operation of rolling stock shows that a significant part of the details of wagons is damaged due to stresses that occur during dynamic loads. Therefore, there is a need to study the dynamic loading in the calculation of wagons.

Dynamic loading of wagons is understood in the broad sense of the word, i.e. in the sense of not only determining dynamic stresses, but also all other dynamic characteristics (amplitudes and frequencies of movements and accelerations). In many studies, it has been revealed that if the frequencies and amplitudes of dynamic movements are known, then it is easy to perform calculations to determine the dynamic stresses of parts and assemblies of wagons [1].

As a rule, the absolute majority of wagon designs are designed on the basis of static calculation, taking into account the maximum coefficient of dynamics. With this

approach, the vibration stresses arising in the structure, as well as the frequencies and forms of vibrations of the structural elements remain unexplored.

Analysis of the technical condition of freight wagons shows that the structure of the gondola car body works under conditions of prolonged and intense exposure to dynamic loads. The process of gradual accumulation of damage in the material of parts under the influence of variable stresses, leading to a change in the properties of the material, the formation, development of cracks and destruction of the part is called material fatigue.

Materials and methods

Fatigue refers to the property of a material to collapse after repeated exposure to alternating stresses. The ability of the material to withstand repeated exposure to alternating stresses without destruction is called endurance [2].

The norms for calculating wagons [3] recommend calculating fatigue resistance based on the margin coefficient. Figure 1 shows the algorithm for calculating the margin coefficient. This is a rather complicated procedure that can be conditionally divided into two independent calculations (according to the left and right branches of the algorithm).

Figure 1 - Procedure for calculating the fatigue margin coefficient

The left branch is the calculation of the endurance limit (by amplitude) the considered part with a symmetrical cycle and steady-state loading mode based on test No. Calculation on this branch does not depend on external influence. The calculated value of the endurance limit of the structure node is determined by the dependence of block 2, which is determined by:

- the average value of the endurance limit of the part (block 4);

- the quantile of the distribution corresponding to the one-sided probability (it is assumed that N is a random variable having a normal distribution law) (block 5);

- coefficient of variation of the endurance limit (block 6).

For the transverse beams of the gondola frame during automatic (semi-automatic) welding, we obtain:

- for intermediate beams oa N= 122.3 (117.9 ) MPa

- for box-section beams =107.37 (103.5 ) MPa.

Results and discussion

The right branch is a procedure for calculating the calculated magnitude of the amplitude of the dynamic voltage of a conditional symmetrical cycle, reduced to the base No, equivalent in damaging effect to the real mode of operational random stresses for the design life of the part.

For a discontinuous distribution function of voltage amplitudes, we have

K

p,

(1)

a

where m is the exponent in the equation of the fatigue curve in amplitudes;

Nc - the total number of cycles of dynamic stresses over the estimated service life;

N0 - the base number of cycles;

&aï voltage amplitude level;

Pi -the probability of occurrence of an amplitude with the level aax

In one year of operation, the gondola car receives about 25,000 longitudinal collisions with different intervals of forces [3].

The histogram (Figure 2) shows the interval of forces and the number of cycles of action of longitudinal forces in this interval. In this case, with a service life of 22 years, Nc = 550,000 = 0.55 x 106 cycles, and with a service life of 32 years Nc = 800,000 = 0.8* 106 cycles. For the base number of cycles for car bodies, it is recommended to take the value N = 107.

Figure 2 - Numerical indicators of the action of longitudinal forces on the wagon

Figure 3 shows the probability Pi of the occurrence of forces of this level in the form of a histogram.

0-0/ 0,4-0.8 0.8-U 1,2-1,6 1,6-2,0 2,0-2,4 2,^-2,8 2,6-3,2 3,2-3,6 3,6-4,0

Figure 3 - Probability of occurrence of forces of this level

The further solution of the problem is reduced to determining the calculated values of the stress amplitudes oa i in each interval of the action of longitudinal forces. This is possible only as a result of solving the problem of dynamic calculation of the car body. Dynamic transient analysis is used to obtain a system response to the impact of a time-varying forcing load. The right branch of the computational process is shown in Figure 4.

dynamic calculation of the body

Figure 5 - Algorithm for calculating the calculated magnitude of the dynamic voltage amplitude

Conclusions

A methodology has been developed for assessing the reliability of the gondola car body, experimental parts and assemblies for a small number of objects operated in a permanent experimental train.

The accumulated experience of examining the technical condition of gondola wagons during commission inspections and analyzing the data obtained made it possible to clarify and supplement the instructions for the operation of gondola wagons.

The presented algorithms make it possible to calculate and design the bodies of gondola wagons, make changes to the instructions for the production and repair of freight wagons.

Controlled operational tests based on constant monitoring of the use and change of the technical condition of gondola wagons; intermediate and annual full-scale survey with measurements of the values characterizing the condition of the basic units and parts of the wagons; generalizations, working out the technical conclusion - allow us to solve the issues raised and, first of all, confirm the correctness of the numerical values of the inter-repair standards.

REFERENCES

1 Битюцкий, А. А. Пути повышения эффективности грузовых вагонов, выпускаемых российскими вагоностроительными предприятиями // Тяжелое машиностроение. - 2008. - № 2. - С. 29-33.

2 ГОСТ 27.002-2015 Надежность в технике. Термины и определения. М. : Стандартинформ. - 2016. - 24 с.

3 Нормы для расчета и проектирования вагонов железных дорог колеи 1520 мм (несамоходных). - М. : ГОСНИИВ, 2016. - 319 с.

4 Лукин, В. В. Конструирование и расчет вагонов. - М. : МПС - 2000. - 731 с.

5 Котуранова, В. Н. Вагоны. Основы конструирования и экспертизы технических решений. - М. : Маршрут. - 2005. - 490 с.

6 Зарипов Р. Ю., Сулейменов А. Д., Каримова Ж. Р. Исследование надежд цельнометаллических полувагонов // Наука и техника Казахстана. - 2021. -№ 4. - С. 119-128

7 Trejo-Escandon, J. O. Leyva-Diaz, A. Sandoval-Pineda, J. M. Tamayo-Meza, P. A. Flores-Herrera, L. A. Static and Fatigue Analysis of the Front Draft Lugs of a Railroad Tank-Car Using FEM // International Journal of Engineering Trends and Technology (IJETT) - Volume 16. - 2014.

8 Bojovic, N. J. A general system theory approach to rail freight car fleet sizing // European Journal of Operational Research. - 2002. - № 1. - P. 136-172

9 Connolly, D. P. Assessment of railway vibrations using an efficient scoping model // Soil Dynamics and Earthquake Engineering. - 2014. - P. 37-47.

10 Zaripov, R. & Gavrilov, P. Research opportunities to improve technical and economic performance of freight wagon through the introduction of lightweight materials in their construction // Journal Procedia Engineering. - 2017. - Vol. 187. - P. 22-29.

11 Rizvi, D. R. Optimisation of Bogie Springs for Higher Axle Load Wagons / D. R. Rizvi, P. K. Bharti // Intern. J. of Engineering Research & Technology. - 2015.

- Vol. 4. - Iss. 05. - P. 56-60. doi: 10.17577/ijertv4is050162.

REFERENCES

1 Bitiiskii, A. A. Pyti povyshenia effektivnosti gryzovyh vagonov, vypyskaemyh rossiiskimi vagonostroitelnymi predpriatiami // [Ways to improve the efficiency of freight cars produced by Russian car-building enterprises] [Text] // Tájeloe mashinostroenie [Heavy engineering]. - 2008. - № 2. - P. 29-33.

2 GOST 27.002—2015 Nadejnos v tehnike. Terminy i opredelenia.[ Reliability in technology. Terms and definitions] [Text] // Moscow : Standartinform, 2016. - 24 p.

3 Normy dlá rascheta i proektirovania vagonov jeleznyh dorog MPS kolei 1520 mm (nesamohodnyh). [Norms of calculation and design of railcars of 1520 mm gauge (non-self-propelled)] [Text]. Moscow : GOSNIIV [Moscow: SRICB], - 2016. - 319 p.

4 Lykin, V. V. Konstryirovanie i raschet vagonov // [Construction and calculation of wagons] - Moscow : MPS [Moscow, MR RF]. - 2000. - 731 p.

5 Kotyranova, V. N. Vagony. Osnovy konstryirovania i ekspertizy tehnicheskih reshenii [Railway carriage. Fundamentals of design and expertise of technical solutions] [Text]. - Moscow : Marshryt [Moscow, Route], 2005. - 490 p.

6 Zaripov, R. Yu., Syleimenov, A. D., Karimova, J. R. Issledovanie nadejnosti selnometallicheskih polyvagonov [Events of the hope of all-metal half wagons] [Text] // Nauka i tekhnika Kazakhstana [Science and Technology of Kazakhstan]. - 2021. -№ 4. - P. 119-128.

7 Trejo-Escandon, J. O. Leyva-Diaz, A. Sandoval-Pineda, J. M. Tamayo-Meza, P. A. Flores-Herrera, L. A. Static and Fatigue Analysis of the Front Draft Lugs of a Railroad Tank-Car Using FEM // International Journal of Engineering Trends and Technology (IJETT). - Vol. 16. - 2014.

8 Bojovic, N. J. A general system theory approach to rail freight car fleet sizing // European Journal of Operational Research. - 2002. - № 1. - P. 136-172

9 Connolly, D. P. Assessment of railway vibrations using an efficient scoping model // Soil Dynamics and Earthquake Engineering. - 2014. - P. 37-47.

10 Zaripov, R. & Gavrilov, P. Research opportunities to improve technical and economic performance of freight wagon through the introduction of lightweight materials in their construction // Journal Procedia Engineering. - 2017. - Vol. 187. - P. 22-29.

11 Rizvi, D. R. Optimisation of Bogie Springs for Higher Axle Load Wagons / D. R. Rizvi, P. K. Bharti // Intern. J. of Engineering Research & Technology. - 2015.

- Vol. 4. - Iss. 05. - P. 56-60. - doi: 10.17577/ijertv4is050162.

Material received on 06.02.23.

*Б. К. Шаймарданова1, Р. В. Субач2, А. Д. Кишкунов3, Т. К. Жукенов4, Р. К. Аманжолов5

1,2,з,4,5Жорары электроника жэне коммуникация колледж^ Казахстан Республикасы, г. Павлодар Материал 06.02.23 баспага тYстi.

ЖАРТЫЛАЙ ВАГОН КОРПУСЫНЬЩ ШАРШАУ КЕДЕРГ1С1Н ЕСЕПТЕУ АЛГОРИТМ1

Бул жумыста бержтж есептеулерш жург1зу мэселеЫ царастырылады, зерттеу объекте жук темiржол жартылай вагондарыныц шанацтары болып табылады.

Бойлыц жуктеме кезшде цурылымныц шаршау бержтшн багалау ушт жартылай вагондардыц взара эрекеттесу процестерш модельдеу алгоритмi жасалды. Жартылай вагондардыц пайдаланылуы мен техникалыц жай — куштц взгеруш удайы бацылау негiзiнде бацылаудагы пайдалану сынацтары; вагондардыц базалыц тораптары мен бвлшектершщ жай-кушн сипаттайтын шамаларды влшей отырып, аралыц жэне жыл сайынгы заттай тексеру; техникалыц цорытындыны жалпылау, пысыцтау-цойылган мэселелерЫ шешуге жэне бiрiншi кезекте жвндеу аралыц нормативтердщ сандыц мэндертщ дурыстыгын растауга мумктдж беред1

Комиссиялыц тексерулер жэне алынган деректердi талдау кезтде жук жартылай вагондарыныц техникалыц жай-кушн тексерудщ жинацталган тэжiрибесi жартылай вагондарды пайдалану жэне оларга цызмет кврсету жвнiндегi нусцаулыцтарды нацтылауга жэне толыцтыруга мумкшдж бердi. Мэселет шешу бойлыц куштердщ эр эсер ету аралыгындагы кернеулер амплитудасыныц есептж мэндерт аныцтауга дейт азаяды. Бул жук темiржол жартылай вагоныныц корпусын динамикалыц есептеу мэселест шешу нэтижестде гана мумкт болады.

¥сынылган Алгоритмдер есептеуге, сондай-ац жартылай вагондардыц корпустарын жобалауга, жук вагондарын вндiру жэне жвндеу жвнiндегi нусцаулыцца взгерктер енгiзуге мумктдж беред1

Кiлттi свздер: жартылай вагон, шаршау, жуктеме, динамикалыц кернеу, есептеу.

*Б. К. Шаймарданова1, Р. В. Субач2, А. Д. Кишкунов3, Т. К. Жукенов4, Р. К. Аманжолов5

1,2'3А5Высший Колледж электроники и коммуникаций, Республика Казахстан, г. Павлодар Материал поступил в редакцию 06.02.23.

АЛГОРИТМ РАСЧЕТА СОПРОТИВЛЕНИЯ УСТАЛОСТИ КУЗОВА ПОЛУВАГОНА

В данной работе рассматривается вопрос выполнения прочностных расчетов, объектом исследования выступают кузова грузовых железнодорожных полувагонов.

Разработан алгоритм моделирования процессов взаимодействия полувагонов для оценки усталостной прочности конструкции при действии продольного нагружения. Подконтрольные эксплуатационные испытания на основе постоянного слежения за использованием и изменением технического состояния полувагонов; промежуточного и ежегодного натурного обследования с замерами величин, характеризующих состояние базовых узлов и деталей вагонов; обобщения, отработки технического заключения — позволяют решать поставленные вопросы и в первую очередь, подтвердить правильность численных значений межремонтных нормативов.

Накопленный опыт обследования технического состояния грузовых полувагонов при комиссионных осмотрах и анализа получаемых данных позволили уточнить и дополнить инструкции по эксплуатации и обслуживанию полувагонов. Решение задачи сводится к определению расчетных значений амплитуд напряжений в каждом интервале действия продольных сил. Это возможно только в результате решения задачи динамического расчета кузова грузового железнодорожного полувагона.

Представленные алгоритмы позволяют произвести расчет, а ткже конструирование кузовов полувагонов, вносить изменения в инструкции по производству и ремонту грузовых вагонов.

Ключевые слова: полувагон, усталость, нагруженность, динамическое напряжение, расчет.

i Надоели баннеры? Вы всегда можете отключить рекламу.