Научная статья на тему 'Tertiary wastewater treatment in the bioractor with Lemna minor and immobilized microorganisms'

Tertiary wastewater treatment in the bioractor with Lemna minor and immobilized microorganisms Текст научной статьи по специальности «Промышленные биотехнологии»

CC BY
82
6
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
СТіЧНі ВОДИ / ДООЧИЩЕННЯ / БіОРЕАКТОР / ВОЛОКНИСТИЙ НОСіЙ / НіТРАТИ / іОНИ ФЕРУМУ / РЯСКА / WASTEWATER / TERTIARY TREATMENT / BIOREACTOR / FIBROUS MEDIA / NITRATES / IRON IONS / DUCKWEED

Аннотация научной статьи по промышленным биотехнологиям, автор научной работы — Sablii L., Korenchuk M.

The aim of paper is to investigate the process of a malt plant wastewater treatment in an experimental bioreactor with L. minor duckweed and microorganisms on fibrous media bed with different duration of the purification process and the biomass of duckweed for effective purification of wastewater from nitrates and ferric ions. The studies were carried out on existing wastewater treatment plants. Bioreactor was installed after the secondary sedimentation tanks. The use in the duckweed bioreactor allowed to achieve the treatment effect from iron ions up to 40%, from nitrate ions up to 60%. As a result rational parameters of tertiary wastewater in bioreactor were obtained the duration of the purification process is 8 h and the amount of biomass is 12 g/dm3. The decrease in nitrate concentration related to the process of denitrification in the fibrous carrier with treatment effect up to 60%. Iron ions treatment related to phytoextraction with Lemna minor duckweed with an treatment effect up to 40%.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Tertiary wastewater treatment in the bioractor with Lemna minor and immobilized microorganisms»

на врожайнють та, у шнцевому Bapiarni, на при-бутки феpмеpiв. Ця задача, виpiшуeться у шших роботах [7, 8]. Слад зазначити, що для цього пропо-нуеться використання iнтелектуaльних систем контролю (1СК) на основi нечетко! логiки [9]. 1х використання представляеться особливо ефектив-ним в силу ввдносно! простоти i великих можливо-стей оперування неповною i нечеткою шфор-мaцiею. Нечiткa логiкa дае можливють досить просто закласти в 1СК вологостi aпpiоpну шформацш про умови контролю у виглядi нечiтких лшгвютич-них правил. Назваш правила за формою близьк1 до природно! мови, що дозволяе ефективно викори-стовувати необхiднi знання, отримаш вiд експеpтiв.

Список лiтератури

1. Бадалян А.Х. «Цифрова система автоматичного регулювання в теплицi з прогнозуванням змiни сонячно! paдiaцi! i температури»: Автореф. дис. канд. техн. наук. - £реван: Среванський полетехшчний iнститут, 2009. — 22 с.

2. Срков А.А. «Система управлшня мiкpоклiмaтом в вiддiленнях блокових теплиць та парнишв»: Автореф. дис. канд. техн. наук. — М.: ВИЭСХ, 2005. - 20 с.

3. Срмаков С.1. i iн. «Досввд програмування вpожaйностi тепличних культур» // Картопля та овоч^ 2003. - №12. - С 19-21.

4. Войнова Н.Ф. «Методи i системи адаптивного управлшня температурним режимом теплиць: Автореф. дис. канд. техн. наук. - М . РГАЗУ, 2007. - 22 с.

5. Кирилин Н.И., Шаронова Т.В. «Оп-тимiзацiя алгоритму взаемопов'язаного регулювання температури i вологосп в технолопчних умо-вах» // Мехашзащя i електрифiкацiя сiльського гос-подарства. - 2006. - №2. - с. 22-32.

6. Гирченко М.Т. «Регулювання температури поветря з корекщею по вологосп» // Механiзацiя i електрифiкацiя сiльського господарства. - 2009. -№1 - с.20-30.

7. Барбар Ю.А. «Вимiрювальний комплекс контролю параметрiв мiкроклiмату»: Автореф. дис. канд. техн. наук. - С.П.Б. Санкт- Петербурзький Державний Техно лопчний Ушверситет, 2004. - 22 с.

8. Вощинин А.П., Сотиров Г.Р. Оптимiзацiя в умовах невизначеносп. -М.: МЕП, НРБ: Вид-во "Техшка", 2010. — 82 с.

9. Використання методiв нечетко! лопки для мiкроконтролерного iнтелектуального управл1ння мшьпарниками. Науково-практична конференцiя студентiв i асшранпв "Теоретичн та прикладнi ас-пекти розробки комп'ютерних систем 4 кветня 2019 року, НУЫП Укра!ни, Ки!в. - С. 48. Режим доступу: https://drive.google.eom/iile/d/1LpXNkLrGwbnS6_ji ThMv0Ptag 1 TvCOps/view

ДООЧИЩЕННЯ СТ1ЧНИХ ВОД СОЛОДОВОГО ЗАВОДУ У Б1ОРЕАКТОР1 З LEMNA MINOR ТА 1ММОБ1Л1ЗОВАНИМИ НА НОС1ЯХ М1КРООРГАН1ЗМАМИ

Саблш Л.А.

доктор технгчних наук, професор кафедри екобютехнологИ та бгоенергетики Нацюнального технгчного унгверситету Украши «Кшвський полтехтчний тститут 1мет 1горя Сжорського»

Коренчук М. С.

аспгрант кафедри екобготехнологИ та бюенергетики Нацюнального технгчного унгверситету Украти «Кшвський полтехтчний тститут 1мет 1горя Сжорського»

TERTIARY WASTEWATER TREATMENT IN THE BIORACTOR WITH LEMNA MINOR AND

IMMOBILIZED MICROORGANISMS

Sablii L.

Doctor of technical sciences, professor Department of ecobiotechnology and bioenergy of National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute "

Korenchuk M.

PhD student, Department of ecobiotechnology and bioenergy of National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Аннотащя

Метою роботи e дослвдження процесу доочищення спчних вод солодового заводу в експерименталь-ному бiореакторi з рясковими та мжрооргашзмами, iммобiлiзованими на волокнистих ноаях типу В1Я за рiзноi тривалосл процесу очищення та бюмаси ряски для досягнення високого ступеня очищення ввд нiтратiв та юшв феруму.

Дослвдження проводили на дшчих очисних спорудах бюлопчного очищення спчних вод солодового заводу. Застосовували нашввиробничу установку, встановлену тсля вторинних вщстшнишв. Викори-стання в б1ореактор1 ряскових дозволило досягнути ефекту очищення вщ 1он1взал1за до 40%, концентрацп нпралв - до 60%.

В результат! проведения дослвджень доочищення спчних вод солодового заводу в1д юшв феруму та нпралв в експериментальному бюреактор1 одержано рацюнальш параметри - тривалость процесу очищення 8 год та шльшсть бюмаси - 12 г/дм3. Видалення нирапв вщбуваеться за рахунок перебпу процесу дештрифшацп у волокнистому завантаженш, а видалення юшв зал1за - за рахунок фггоекстракци ряскою Lemna minor.

Abstract

The aim of paper is to investigate the process of a malt plant wastewater treatment in an experimental biore-actor with L. minor duckweed and microorganisms on fibrous media bed with different duration of the purification process and the biomass of duckweed for effective purification of wastewater from nitrates and ferric ions.

The studies were carried out on existing wastewater treatment plants. Bioreactor was installed after the secondary sedimentation tanks. The use in the duckweed bioreactor allowed to achieve the treatment effect from iron ions up to 40%, from nitrate ions - up to 60%.

As a result rational parameters of tertiary wastewater in bioreactor were obtained - the duration of the purification process is 8 h and the amount of biomass is 12 g/dm3. The decrease in nitrate concentration related to the process of denitrification in the fibrous carrier with treatment effect up to 60%. Iron ions treatment related to phytoextraction with Lemna minor duckweed with an treatment effect up to 40%.

Ключовi слова: спчт води, доочищення, бюреактор, волокнистий носш, нпрати, юни феруму, ряска.

Keywords: wastewater, tertiary treatment, bioreactor, fibrous media, nitrates, iron ions, duckweed.

The industrial wastewater from plan processing facilities contains high concentrations of organic compounds, nitrogen and phosphorus. Spent aqueous solutions after production processes, equipment washing, cause high concentrations of specific contaminants in the formed wastewater, in particular heavy metal ions. The wastewater treatment plants are designed to take into account the indicators of the physico-chemical composition of industrial wastewater and their costs. Over time, the enterprise changes the technology, production volumes and chemical materials used. All this leads to disruption of the wastewater treatment process, and, as a consequence, the discharge of insufficiently treated wastewater into natural reservoirs.

In order to avoid environmental risks, existing wastewater treatment plants need to be improved. One of these is the use of tertiary wastewater treatment. Additional technological process increases operating costs. Tertiary wastewater treatment with minimal use of energy and consumables will reduce operating costs. Therefore, it may be advisable to use biological treatment with higher aquatic plants, in particular, duckweed. Lemna is considered to be a promising biological agent for the treatment of wastewater from a wide range of pollutants, such as compounds of phosphorus, nitrogen, fluorine, copper, manganese, arsenic, cadmium, chromium, nickel, iron, etc. [2-3, 9, 12]. To date, the effect of varying amounts of duckweed biomass on the degree of extraction of ferric ions from water has not been well studied. It is known that L. minor grows well, is stable in an environment with organic pollution and doubles its mass in 5-6 days [15]. The iron in wastewater may be in the form of Fe (II), Fe (III) ions and organic ferric ions [14]. Fe (II) accumulates in the form of an oxidized Fe (III) in a film at the roots of plants by releasing oxygen [9]. The mechanism of Fe entry (III) into the cell of the plant is due to the preliminary restoration of iron (II) by the chelate reductase at the surface of the cell membrane and the subsequent

transfer of Fe (II) into the cell by transporter protein [5]. Partial sorption of ferric ions (III) by the cell wall is possible, but the iron is subsequently transported to the plant by the above mechanism [7]. Further, iron (II) accumulates in leaf mesophyll cells, performs catalytic functions in the synthesis of chlorophyll at the stage of aminolevulinic acid formation and protoporphyrin synthesis. Iron is required in the synthesis of cytochromes [10].

To reduce nitrate concentrations in wastewater, the process of denitrification is widely used in biological wastewater systems. [8,11,15]. Denitrification occurs by of bacteria-denitrifiers (genera Pseudomonas, Achromobacter, Bacillus, Micrococcus), which under anaerobic conditions reduce the nitrate to molecular nitrogen due to the energy obtained from the oxidation of organic compounds [13]. To improve the efficiency of the process, it is advisable to use immobilization of microorganisms on fibrous media bed [1]. Immobilized biofilm has greater resistance to fluctuations in the physico-chemical parameters of wastewater and promotes the growth of microorganisms adapted to the conditions of the biological treatment plant [12].

The aim of paper is to investigate the process of a malt plant wastewater treatment in an experimental bi-oreactor with L. minor duckweed and microorganisms on fibrous media bed with different duration of the purification process and the biomass of duckweed for effective purification of wastewater from nitrates and ferric ions.

Methods and materials. Determination of nitrate concentration in wastewater samples was performed by the standard colorimetric method with salicylic acid [16], Iron determination was performed by the colori-metric method with ammonium rhodanide [17].

Lemna minor, grown under non-sterile conditions, was selected from a cultivator with the following conditions of aqueous media: pH - 7.0; dissolved oxygen concentration - 3.4 mg/dm3; ions of: NH4+ - 1.8

mg/dm3; N02" - 0.7 mg/dm3; NO3- - 28.7 mg/dm3; PO43-- 3.8 mg/dm3.

The studies were performed on existing sewage treatment plants. The wastewater at the outlet of the treatment plants has high rates of COD, concentrations of nitrates, phosphates and iron ions and therefore need

further purification. The wastewater is subjected to mechanical treatment on sieves, averaging, anaerobic-aerobic biological purification in anaerobic reactor, aeration tanks, secondary sedimentation tanks and subsequent disinfection with a solution of sodium hypochlorite, and then diverted to the river.

The average indicators of the malt plant wastewater composition during the period of research

Indicator At the inlet to the treatment plant At the outlet of the treatment plants

pH 6.8 7.0

COD, mg/dm3 2850 115

Suspended solids, mg/dm3 290 24

NH4+ mg/dm3 32.0 1.5

NO2", mg/dm3 0.08 0.02

NO3", mg/dm3 - 30

P2O53-, mg/dm3 61 10

SO4- mg/dm3 121 34

Fe, 2.2 0.9

mg/dm3

Notes: COD - chemical oxygen demand; - - not determined

Semi-production unit, was uded to carry out the research, which was installed at the outlet of the secondary sedimentation tanks. It's scheme is shown at Fig. 1. The system consisting of the following elements was used: the existing tray 1 for wastewater disposal after the secondary settling tanks; centrifugal pump 2; waste water tank 3; overflow tube 4; 5. The flow rate was established and regulated by a faucet 6. The biore-actor 7 with a volume of 225 dm3 was divided into 4 sections with measuring 1410x250x250 mm and a water level h = 160 mm each. A layer of duckweed was placed on the water surface. Sections were connected in series by tubes 8. Cartridges with fibrous carrier 9 in the amount of 12 pcs. with a size of 160x160 mm were installed in 1 section. The natural light was used for duckweed.

The installation worked as follows. The waste water from the tray 1 was pumped by the pump 2 into the tank 3. The excess water was returned to the tray 1

through the overflow tube 4, thus ensuring a stable water level in the tank 3. From the tank, water was fed through the tube 5 with a ball valve 6 into the bioreactor

7 at a fixed rate. In the bioreactor 7, the wastewater passes through sequentially connected tanks, contacts the carrier 9 with the immobilized microorganisms, and duckweed growing in the surface layer. Water is withdrawn by pipeline 10 into tray 1 for further disinfection.

To investigate the effect of the wastewater treatment process parameters on the reduction of the concentration of ferric and nitrate compounds in the bioreactor, wastewater sampling was performed from tank 3; at the outlet of the bioreactor 7 with fibrous media. Also, samples were taken at the outlet of the pipeline 10. During the studies, the wastewater flow rates were varied from 19 to 75 dm3/h, which affected the duration of the treatment process - 3-12 hours. Also, the amount of duckweed biomass in the reactor was changed from

8 to 25 g/dm3.

Fig 1. Scheme of semi-production experimental installation: 1 - waste water tray after secondary settling tanks; 2 - centrifugal pump; 3 - a water tank; 4 - overflow tube; 5 - connecting tube; 6 - dispenser; 7 - bioreactor; 8 - connection tubes; 9 -fibrous media; 10 - Pipeline drainage pipeline for disinfection

Results and Discussion. According to the results obtained in production studies, nitrate concentrations were observed before installation (Fig. 2) at levels of 45-53 mg/dm3. This is due to the irregularity in the flow

3% mg/dm3

rate and concentration of nitrates in the untreated wastewater. According to the nitrate concentrations at the entrance to the installation, the treatment effect has reached 60%.

30

20

10

* mle t - ■a - 0 utlet

/ L

/ \ i

\l \ -4 i j X. A Y

N / J p— s V

✓ S • If V \ • *

\ * * — / ✓ ✓

lO w ji v/, o,

o o o o o o

[J U IJ t-J tJ tJ

o o o o o o

10 <0 <0

IO IO IO to to to IO to to to to tO tO tO tO IO IO

ooooooooooooooooo

"s£> 10 "0 "0 "0 v0 "0 \0 10 >0 10 10 10 10 10 10

to to to to to

Duration of bioreactor operation, days Fig. 2. Dynamics of nitrate concentration at the inlet and outlet of the installation

The duration of the purification process and the concentration of nitrates at the inlet of the bioreactor significantly affect the depth of their removal from wastewater. With the increase of nitrate concentrations from 9.6 to 56 mg/dm3, the effect of their treatment in wastewater is reduced from 89% to 59% over the duration of the purification process of 12 hours. At nitrate concentrations of 13-45 mg/dm3 and the duration of the purification process - 8 hours, the purification effect decreases from 58% to 32%.

The removal of nitrates is due to the process of de-nitrification in the fiber media bed and in the layer of activated sludge 1 cm thick, which was formed at the bottom of the structure due to its inflow together with clarified water from the secondary sediment tank. The low concentrations of dissolved oxygen in the fibrous carrier with microorganisms and in the activated sludge - 0.3-0.4 mg/dm3 indicate the anaerobic denitrification process. Also the presence of denitrification is confirmed by a blank experiment without fibrous media and in the absence of a layer of activated sludge in the bioreactor, in which the reduction of nitrate concentration in the wastewater did not exceed 5%. Instead, in the control experiments, a decrease in the concentration of nitrates from 35-36 to 14-15 mg/dm3 was observed. Thus, duckweed has not impacted removal of nitrate ions from wastewater.

The concentration of iron in the bioreactor has decreased from 1.3-0.6 to 0.7-0.5 mg/dm3. Iron concentrations below 1.0 mg/dm3 were achieved at the amount of duckweed biomass of 12 g/dm3 and the purification process duration of 8 hours. In experiments without duckweed, iron concentrations at the outlet of the installation increased by 0.1-0.2 mg/dm3. Thus, the removal of ferric ions is related to the presence of duckweed in the bioreactor.

Therefore, as a result of the studies, it was found that the decrease in the concentration of ferric ions and nitrates in the wastewater at the outlet of the bioreactor was effective for the duration of the purification process 8 h and the amount of biomass 12 g/dm3. The decrease in nitrate concentration related to the process of denitrification in the fibrous carrier with treatment effect up to 60%. Iron ions treatment related to phytoex-traction with Lemna minor duckweed with an treatment effect up to 40%.

References

1. Chen K.C., Lee S.C., Chin S.C., Houng J.Y. Simultaneous carbon-nitrogen removal in wastewater using phosphorylated PVA-immobilized microorganisms. Enzyme and Microbial Technology. 1998. Bun. 23, № 5. C. 311-320.

2. Hou W., Chen X., Song G., Wang Q., Chi Chang C. Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiology and Biochemistry. 2007. Bun. 45, № 1. C. 62-69.

3. Hozhina E., Khramov A., Gerasimov P., Kumarkov A. Uptake of heavy metals, arsenic, and antimony by aquatic plants in the vicinity of ore mining and processing industries. Journal of Geochemical Exploration. 2001. Bun. 74, № 1. C. 153-162.

4. Isaacs S.H., Henze M. Controlled carbon source addition to an alternating nitrification-denitrification wastewater treatment process including biological P removal. Water Research. 1995. Bun. 29, № 1. C. 77-89.

5. Marschner H., Romheld V. Strategies of plants for acquisition of iron. Plant and Soil. 1994. № 165. C. 261-274.

6. Miretzky P., Saralegui A., Cirelli A.F. Aquatic macrophytes potential for the simultaneous removal of

heavy metals. Chemosphere. 2004. Bun. 57, № 8. C. 997-1005.

7. Olsen R.A., Miller R.O. Absorption of ferric iron by plants. Journal of Plant Nutrition. 1986. Bun. 9, № 3. C. 751-757.

8. Obaja D., Macé S., Costa J., Sans C., Mata-Alvarez J. Nitrification, denitrification and biological phosphorus removal in piggery wastewater using a sequencing batch reactor. Bioresource Technology. 2003. Bun. 87, № 1. C. 103-111.

9. Teixeira S., Vieira M.N., Marques J.E., Pereira R. Bioremediation of an Iron-Rich Mine Effluent by Lemna minor. International Journal of Phytoremediation. 2014. Bun. 16, № 12. C. 12281240.

10. Weiss S. Mechanism and regulation of reduction based iron uptake in plants. New phtyologist. 2002. Bun. 141. C. 1-26.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

11. Wunderlin P., Mohn J., Joss A., Emmenegger L., Siegrist H. Mechanisms of N 2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Research. 2012. Bun. 46, № 4. C. 1027-1037.

12. Zayed G., Winter J. Removal of organic pollutants and of nitrate from wastewater from the dairy

industry by denitrification. Applied Microbiology and Biotechnology. 1998. Вип. 49, № 4. С. 469-474.

13. Zhukova V., Sabliy L., Lagod G. Biotechnology of the food industry wastewater treatment from nitrogen compounds. 2011. 133-138 с.

14. Квартенко О. Шляхи штенсифшацп методiв очищения багатокомпонентних тдземних вод. Техтчт науки та технологи. 2017. Вип. 8, № 2. С. 206-209.

15. Кононцев С.В., Гроховська Ю.Р., Саблш Л.А., Коренчук М.С. Адаптащя ряскових (Lemnoideae) до умов оргашчного забруднення води. Вюник Хмельницького нацюнального ушверситету. 2018. Вип. 259, № 2. С. 141-145.

16. КНД 211.1.4.027-95. Методика фотометричного визначення нгграпв з салщиловою кислотою в поверхневих i бюлопчно очищених водах.-5. .

17. МВВ № 081/12-0175-05 Поверхнев^ тдземт та зворотнi води. Методика виконання вимiрювань масово! концентрацii залiза загального фотоколориметричним методом з родатдом. Укра!нський науково-дослiдний iнститут екологiчних проблем (УкрНД1ЕП).

РАЗРАБОТКА ТЕХНОЛОГИИ ПОЛУЧЕНИЯ ФУНКЦИОНАЛЬНОГО ИЗДЕЛИЯ КРЕНДЕЛЬ

С КОРИЦЕЙ

Семенова А.В.

студент магистратуры Феоктистова Е.А. студент магистратуры Николаева Н.В. доцент, кандидат технических наук Лебедева Н.Н. доцент, кандидат технических наук СлавянскийА.А.

Научный руководитель, профессор, доктор технических наук ФГБОУ ВО «Московский государственный университет технологий и управления

имени К.Г. Разумовского (ПКУ)»

DEVELOPMENT OF TECHNOLOGY FOR THE PRODUCTION OF FUNCTIONAL PRODUCTS

PRETZEL WITH CINNAMON

Semeonova A.

Graduate student Feoktistova E. Graduate student Nikolaeva N.

Associate professor, candidate of technical sciences

Lebedeva N.

Associate professor, candidate of technical sciences

Slavijanskij A.

Scientific adviser, professor, doctor of technical sciences «Moscow State University of technology and management named K.G. Razumovsky (PKU) »

Аннотация

Данная статья посвящена знакомству с выполняющейся работой по разработке технологии получения печенья крендель с корицей функционального назначения. В статье приводятся обзор основных тенденций рынка мучных кондитерских изделий, из которых вытекает актуальность данной работы. Основной целью данной работы является разработка технологии получения мучного кондитерского изделия крендель с корицей с повышенной пищевой ценностью и функциональностью, что подразумевает не только высокие

i Надоели баннеры? Вы всегда можете отключить рекламу.