1978
Фундаментальные проблемы теоретической и прикладной механики Вестник Нижегородского университета им. Н.И. Лобачевского, 2011, № 4 (5), с. 1978-1980
УДК 532.546
ТЕРМОГИДРОДИНАМИКА БИНАРНОЙ СМЕСИ В ПОРИСТОЙ СРЕДЕ © 2011 г. А.А. Афанасьев
НИИ механики Московского госуниверситета им. М.В. Ломоносова
Поступила в редакцию 24.08.2011
Исследуются многофазные течения бинарных смесей в пористой среде с учетом описания реальных свойств смеси в широком диапазоне давления и температуры. Предложен новый подход для описания однофазных, двухфазных, а также трехфазных течений смеси, при до- и закритических термодинамических условиях. Гидродинамика процесса фильтрации существенно зависит от фазовой диаграммы смеси. Подробно исследована фазовая диаграмма смеси углекислый газ-вода. В рамках подхода рассмотрены задачи, описывающие природные течения в геотермальных системах, процессы подземного сжижения углекислого газа и ретроградные эффекты в течениях углеводородов.
Ключевые слова: пористая среда, фильтрация, термодинамика, фазовые переходы, многофазное течение.
Введение
Описание неизотермических фильтрационных течений с учетом корректного термодинамического описания свойств среды представляет собой сложную задачу. Для ее решения необходимо привлечение не только системы законов сохранения, отвечающей непосредственно за гидродинамическую составляющую процессов, но и сложных, нелинейных, явно не разрешимых термодинамических соотношений. Природа этих соотношений, в случае равновесных по отношению к внутренним процессам в среде течениях, связана с экстремальным свойством одной из термодинамических функций. Например, энтропия изолированной термодинамической системы в состоянии равновесия имеет максимум. Таким образом, система законов сохранения замыкается не конечными дифференциальными или интегральными соотношениями, а задачей условного экстремума для определения свойств среды. Решение подобной системы существенно усложняется по сравнению с классическими моделями механики сплошных сред [1]. В каждый момент времени необходимо решать множество задач условного экстремума, соответствующих различным координатам в пространстве, а затем их решения учесть в системе законов сохранения.
Актуальность термогидродинамических моделей течений жидкостей и газов, допускающих нелинейное поведение свойств среды с фазовыми переходами и критическими явлениями, обусловлена тем, что подобные течения реализуются в широком спектре как природных, так и техно-
генных процессов. Течения со сложными фазовыми переходами реализуются при добыче геотермальной энергии из нагретых до высоких температур недр Земли, при разработке газоконденсатных месторождений, при утилизации нагретых промышленных отходов (углекислого газа) в водоносных пластах.
Предложен новый подход для описания неизотермических течений бинарной смеси в пористой среде в широком диапазоне термобарических условий. Предполагается возможность перехода через критические параметры смеси, при которых ее свойства имеют математические особенности. Допускается реализация различных однофазных, двухфазных и трехфазных термодинамических равновесий смеси: равновесий типа жидкость—пар, жидкость—жидкость и жидкость— жидкость-пар [2].
Математическая модель
При решении задач фильтрации широко распространены уравнения состояния кубического типа, по которым свойства среды определяются по заданным давлению Р, температуре Ти составу смеси х [2]. В подобных переменных Р, Т, х уравнения фильтрации имеют математические особенности в окрестности критических параметров смеси. Также в переменных Р, Т, х нельзя определить трехфазные равновесия бинарной смеси. Предложен новый метод расчета свойств смеси в переменных Р, И, х [3]. Использование энтальпии И в качестве параметра, определяющего состояние смеси, позволяет исключить отмечен-
ные выше трудности, имеющиеся в переменных
P, T, x.
Процедура определения свойств разбита на два этапа. На первом этапе по кубическому уравнению состояния [2] в переменных P, И, x определяется термодинамический потенциал бинарной смеси G-энтропия:
a = a( P, И, x). (1)
Первый этап, на котором выполняются наиболее трудоемкие вычислительные процедуры, выполняется один раз, а его результат — потенциал (1) — впоследствии может многократно использоваться на втором этапе — расчете многофазных равновесий. Для определения термодинамических равновесий на втором этапе решается следующая задача условного экстремума:
Е^max, £ V =1
i=1
i=1
(2)
X И1¥1 = И 2 х1¥1 = х.
/=1 /=1
Здесь V — молярная доля фазы, индекс / = 1, 2, 3 соответствует параметрам фазы, а индекс , соответствует общим, просуммированным по фазам, параметрам. По постановке задачи (2) заданы Р, И, х( и термодинамический потенциал (1), неизвестны параметры фаз И,, х,, их молярные доли V.
И
Рис. 1
На рис. 1 приведена фазовая диаграмма смеси углекислый газ—вода, рассчитанная при помощи задачи (2) (V = 1п(Р/Ра1т)). Здесь ^1(^2) — критическая точка воды (углекислого газа). Внутри области б1б2б3^4^3 смесь находится в трехфазном состоянии жидкость—жидкость—пар, а внутри области, ограниченной зелеными линиями, — в двухфазном состоянии жидкость—жидкость или жидко сть—пар.
Течение различных смесей в пористой среде
Задача (2) использовалась для определения свойств среды в различных задачах гидродинамики. Рассмотрены течения в геотермальной системе Сатрі Б^геі (Италия). Эта система питается из недр Земли смесью воды и углекислого газа, находящейся в закритическом термодинамическом состоянии (рис. 2). Рассмотрены одномерные и трехмерные решения задачи. Впервые выявлен автоколебательный режим течения, позволяющий дать новую интерпретацию циклическому поведению системы на поверхности. Показано, что в трехмерном решении (см. рис. 2) переход через критическую температуру происходит не в изолированной точке, а на окружности с центром на оси симметрии задачи.
4Г Рис. 2
Рассмотрена задача о закачке углекислого газа в водоносный пласт. Показано, что возможны параметры закачки, при которых образуется зона трехфазного течения смеси углекислый газ-вода (область Q1Q2Q3R4R3) с фазой сжиженного углекислого газа. Существование такой зоны может способствовать более компактному и безопасному подземному хранению углекислого газа.
Показано, что в рамках предлагаемого подхода можно описать ретроградные эффекты в фильтрационных течениях углеводородов. Рассмотрена задача об отборе из недр Земли метан-про-пановой смеси и описан сайклинг-процесс, позволяющий извлечь газовый конденсат.
Работа выполнена при поддержке РФФИ (проект №09-01-92434-КЭ_а) и программ Президента РФ для поддержки молодых ученых и ведущих научных школ (МК-575.2010.1, НШ-4810.2010.1).
Список литературы
1. Бармин А. А., Цыпкин Г.Г. Математическая модель инжекции воды в геотермальный пласт, насыщенный паром // Изв. РАН. МЖГ 1996. №6. С. 92-98.
2. Брусиловский А.И. Фазовые превращения при
разработке месторождения нефти и газа. М.: Грааль, 2002. 575 с.
3. Афанасьев А. А. Математическая модель неизотермической многофазной фильтрации бинарной смеси // Изв. РАН. Механика жидкости и газа. 2011. №1. С. 90—100.
THERMOHYDRODYNAMICS OF A BINARY MIXTURE IN A POROUS MEDIA
A.A. Afanasyev
Multiphase flows of a binary mixture in a porous media subjected to wide-range variations of pressure and temperature are studied, describing real properties of the mixture. A new method is proposed for the simulation of single-phase, two-phase and three-phase flows of a mixture under sub- and supercritical thermodynamic conditions. The hydrodynamics of the filtration process greatly depends on the phase diagram of the mixture. A phase diagram of the water - carbon dioxide mixture is studied in detail. Flows accompanying natural processes in a geothermal reservoir, underground carbon dioxide liquefaction and retrograde condensation in the process of gas condensate formation are considered within in the framework of the proposed method.
Keywords: porous media, thermodynamics, phase transitions, multiphase flow