2. Помогайло А.Д. Гибридные полимер-неорганические нанокомпозиты. - Успехи химии (РАН), 2000, т. 69, №1, с. 60-89.
3. Романовский Б.В. Наносистемы в молекулярных ситах. Труды VII сессии. Проблемы и достижения физико-химической и инженерной науки в области наноматериалов. Т. 2. - М.: НИФХИ, 2002, с. 59-77.
4. Минаков В.Т., Солнцев С.С. Керамоматричные композиты - материалы XXI века. Авиационные материалы. Избранные труды 1932-2002. Юбилейный научнотехнический сборник. - М.: МИСИС, ВИАМ, 2002, с. 122-131.
5. Раков Э.Г. Методы получения углеродных нанотрубок. Успехи химии (РАН), 2000, Т. 69, №1, с. 41-59.
УДК 678.026
С. С. Солнцев, В.А. Розененкова, Н.А. Миронова,
С.В. Гаврилов, Н.И. Швец, Г.А. Ямщикова
ТЕРМОАРМИРУЮЩИЕ ПОКРЫТИЯ ДЛЯ ТЕПЛОЗВУКОПОГЛОЩАЮЩИХ МАТЕРИАЛОВ
В настоящее время стоит задача перехода на новую систему шумоглушения двигателя при рабочих температурах 500-1000°С.
Наиболее эффективным средством снижения шума в двигательных установках являются многослойные композитные звукопоглощающие конструкции с неметаллическими сотовыми микропористыми заполнителями, которые имеют повышенные акустические свойства и эксплуатационную надежность, сохраняющиеся в течение длительного времени. В качестве звукопоглощающих слоев исследуются комбинированные, неорганические микропористые продуваемые материалы. Преимуществом микропористых материалов является однородность их акустических свойств по всей поверхности и малая масса материала [1-3].
Для обеспечения стабильной микропористой структуры теплозвукопоглощающих материалов (ТЗПМ), повышения температуроустойчивости и термопрочностных характеристик материала целесообразно применение тонких подвижных герметизирующих слоев термоармирующих покрытий [4-6].
Термоармирующее покрытие (ТАП) представляет собой защитный керамический слой из керамообразующих полимеров, образующийся в результате перехода «органики в неорганику» элементоорганического полимера на поверхности стекловолокна по всему объему мата.
Синтез термоармирующих покрытий проводился на основе кремнийорганических композиций, модифицированных мелкодисперсными порошками SiO2, SiQ Si3N4. ТАП получали в результате процесса пиролитического разложения элементоорганических полимеров типа полисилазанов, поликарбосиланов (ПКС) и полиборэтоксисилок-санов (ПБЭС) с добавками термодинамически устойчивых тугоплавких кислородных и бескислородных соединений сложного состава.
С целью выбора рецептур керамообразующих полимеров, обеспечивающих работоспособность ТЗПМ с ТАП в интервале температур 750-1500°С, проведены исследования свойств связующего двух типов: на основе ПКС с повышенным содержанием силазановой части, и на основе элементосилоксанов (ПБЭС). По данным термограви-
метрического анализа (ДТГА) и экстракции, увеличение содержания в связующем по-лисилазана приводит к повышению выхода сшитого полимера.
Химический анализ поликарбосилановых связующих, проведенный методом импульсного нагрева до 2000°С в инертном газе с последующим хроматографическим анализом образующихся продуктов, показывает, что состав продукта пиролиза соответствует следующему соотношению: 2SiC-0,2SiO2-0,2Si3N4.
На основе синтезированного олигомера было получено связующие ПБЭС. Это связующее имеет следующие физико-химические характеристики:
Массовая доля нелетучих веществ, %......55-60
Вязкость по ВЗ-246 (сопло 02 мм), с.....40-60
Содержание, %,
Si............................18,5-20
B.............................1,1-1,15
OH-групп......................1,5-1,6.
Выход нерастворимого полимера при 200°С составил более 80%. Термоокислительная деструкция полимера ПБЭС была исследована при двух режимах: динамическом - до 1000°С (рис. 1) и статическом - при 750°С.
При этом потери массы при динамическом режиме не превышают 10%, в то время как в изотермических условиях потери достигают 20%, причем основные потери приходятся на первые 5 ч нагрева.
В работе определены следующие характеристики: качество исходных материалов, методы их подготовки, технологические параметры приготовления, нанесения и формирования ТАП, температуроустойчивость ТЗПМ с ТАП, фазовая стабильность, механические свойства СККМ (стеклокерамические композиционные материалы) с ТАП, коэффициент звукопоглощения а.
В качестве исходных компонентов исследовались коллоидный раствор SiO2 (тетраэтоксисилан ТЭОС) и элементоорганические полимеры типа ПКС, ПБЭС, которые образуют при пиролитическом разложении как на воздухе, так и в инертной среде термодинамически устойчивые тугоплавкие соединения SiO2, SiC, Si3N4. Данные компоненты способны образовывать тонкие, защитные стеклокерамические слои на поверхности стекловолокон. В качестве стекловолокнистых субстратов исследовались материалы типа АТМ (кремнеземные, кварцевые, каолиновые стекловолокна). Данные волокна обладают температуроустойчивостью, инертностью, экологической безопасностью и находят применение для теплозвукопоглощающих материалов типа ТЗМК.
Для получения теплозвукопоглощающего материала использовались супертонкие волокна SiO2 в виде тканей и формованного мата. Образцы обладали малой плотно-
Рис. 1. Данные гравиметрического анализа ПБЭС: 1 - термогравиметрический (ТГА); 2 - дифференциальный ТГА (ДТГА); 3 - дифференциальный термический (ДТА)
стью (0,12-0,8 г/см ), низкой теплопроводностью (0,06 и 0,25 Вт/(мК) при 20 и 1200°С соответственно), экологической безопасностью, стойкостью к химическому и биологическому воздействию, что весьма важно для авиакосмической техники.
В работе проведено исследование технологических параметров нанесения ТАП на стекловолокнистые субстраты (типа АТМ) с различной плотностью и строением.
С учетом того что низкая плотность материала является одним из факторов, определяющих его звукопоглощение, в работе исследовались рабочие растворы ТАП с низкими вязкостью и концентрацией твердой фазы SiO2 и SiC. Были рассмотрены следующие варианты нанесения ТАП: свободная и вакуумная пропитка (продолжительность пропитки от 2 до 8 ч). Критерием оценки качества нанесения покрытия являлась плотность полученных образцов. Для получения минимальной плотности образцов - до 160 кг/м3 - продолжительность свободной пропитки составляла 3-5 ч, при вакуумной пропитке время нанесения покрытия уменьшилось на 30-50% и составило 1-3 ч. Получена минимальная плотность образцов с ТАП 140-160 кг/м3 при однократной пропитке рабочими растворами ТАП с концентрацией до 5% (по массе), независимо от метода нанесения покрытия.
Проведено исследование температурно-временных режимов формирования ТАП. Для предотвращения кристаллизации и снижения линейной усадки стекловолокнистых субстратов в процессе формирования покрытий, были исследованы два температурно-временных режима формирования ТАП: для ТАП-16 - при температуре 20-300°С, 5 ч, вакуум, и при 20-700°С, 8 ч, вакуум; для ТАП-11- при 20°С, 24 ч, воздух, и при 200°С, 5 ч, воздух; для ТАП-8 - при 20°С, 36 ч, воздух, и при 80°С, 5 ч, воздух.
Оптимальными температурно-временными режимами формирования ТАП являются: для ТАП-16 - при 20-700°С, 8 ч, вакуум; для ТАП-11- при 300°С, 5 ч, воздух; для ТАП-8 - при 80°С, 5 ч, воздух. При формировании ТАП по данным режимам усадка образцов стекловолокнистых субстратов составила менее 0,1%. Разработанные термоармирующие покрытия ТАП-16 (на основе ПКСЗ-21) и ТАП-11 (на основе ПБЭС) могут быть использованы для изделий авиакосмической техники в зависимости от конкретных условий их эксплуатации.
Были проведены рентгеноструктурные исследования образцов ТАП с добавками модификаторов и без них. Съемка дифрактограмм проводилась на дифрактометре Б/МАХ-2500 японской фирмы «Rigaku», рабочий режим 40 кВ и 300 мА, диапазон сканирования 29=5-90 град. Результаты рентгенофазового анализа покрытий свидетельствуют о наличии аморфных фаз SiO2, SiC, Si3N4, SiOB и отсутствии кристобалита*. Полученные данные показывают, что в процессе формирования покрытия отсутствуют фазовые превращения, приводящие к разупрочнению покрытия и СККМ. Методом сканирующей электронной микроскопии проведены исследования микроструктуры образцов СККМ с ТАП (на сканирующем электронном микроскопе JSM-840 в режиме вторичных электронов при увеличении от *200 до х5000). По результатам электронномикроскопического анализа установлено, что слой керамики и стеклокерамики представляет собой наноструктурированные градиентные покрытия чешуйчатого строения**.
* РФА проводился Н.А. Колмыковой.
** Исследования проводились И.С. Деевым.
Проведено исследование температуроустойчивости образцов теплозвукопоглощающего материала (ТЗПМ) с ТАП при температуре 750°С, выдержка 500 ч, при 1300°С, 2 ч и 1500°С, 2 ч. Испытания проводились в лабораторной печи при периодическом взвешивании через 5, 10 и 25 ч. Критерием оценки температуроустойчивости образцов являлось изменение линейных размеров и качество поверхности образцов. Результаты испытаний представлены на рис. 2 и 3.
1300°С, 2 ч 1500°С, 2 ч
Рис. 2. Температуроустойчивость (усадка обр азцов) при выдержке при 750°С материала ТЗПМ без покрытия (•) и с покрытием ТАП (• - 1 слой; • - 3 слоя)
Рис. 3. Температуроустойчивость об разцов ТЗПМ марки ТЗМК-10 без покрытия (■) и с термоармирующими покрытиями ТАП-11 (■) и ТАП-16 (■)
Проведенные исследования показали, что материал ТЗПМ с ТАП-16 температуроустойчив при температурах до 750°С в течение 500 ч. Линейные размеры образцов с трехслойным покрытием не меняются, не обнаружено каких-либо дефектов на поверхности образцов.
Усадка линейных размеров образцов ТЗМК с ТАП-16 при температурах 1300 и 1500°С с выдержкой до 2 ч составляла 1 и 3% соответственно, в то время как для образца без покрытия усадка 100%. Однако усадка линейных размеров образцов ТЗМК с ТАП-11 при 1300 и 1500°С (выдержка до 2 ч) составляла 48 и 100% соответственно. Полученные экспериментальные данные свидетельствуют, что состав ТАП оказывает существенное влияние на температуроустойчивость ТЗПМ. Проведенные исследования показали, что ТАП-16 является оптимальным составом и повышает температуроустойчивость ТЗПМ (ТЗМК-10) на 250-300°С.
Исследовано влияние состава ТАП на механические свойства (о^ , о^) образцов ТЗПМ (ТЗМК-10). Установлено, что механическая прочность образцов как при изгибе, так и при сжатии зависит от состава ТАП. Так, прочность при изгибе образцов ТЗПМ с ТАП-16 (оизг=40-60 МПа) выше в 2-3 раза, чем у образцов с покрытием ТАП-11 (оизг=20-30 МПа). Прочность при сжатии образцов ТЗПМ с ТАП-16 (осж=10-21 МПа) выше в 5-6 раз по сравнению с прочностью образцов с ТАП-11 (осж=2-3,5 МПа) или образцов без покрытия*. Анализ полученных данных показывает, что покрытия на основе поликарбосиланов повышают механические свойства ТЗМК-10 как в исходном состоянии, так и после испытания на температуроустойчивость в интервале температур 750-1500°С, тогда как ТАП на основе полиборсилоксанов повышают механические свойства ТЗМК-10 в исходном состоянии и после испытания только при температурах до 750°С.
* Исследования механических свойств проводились В. С. Ерасовым.
В работе были исследованы образцы ТЗПМ с ТАП с комбинированной перфорацией, разной по форме и занимаемому объему в материале. Были изготовлены образцы ТЗПМ с диаметром перфорационных отверстий от 1,5 до 3,5 мм, объем перфорации составлял до 15%. В таблице представлены результаты плотности образцов в зависимости от площади их перфорации.
Плотность перфорированных образцов ТЗПМ с ТАП
Диаметр перфорации, мм Площадь перфорации, % Плотность образцов, кг/м3
1,5 5 160
2,0 10 150
2,5 12,5 140
4,0 15 130
Исследования влияния состава ТАП, перфорации образцов ТЗПМ без покрытия и с покрытием на коэффициент звукопоглощения а проводились в филиале ФГУП ЦАГИ на интерферометре высоких уровней (ИВУ)*.
Установлено, что с увеличением площади перфорации образцов ТЗПМ с ТАП-16 до 15% коэффициент звукопоглощения увеличивается до 0,9-1 в диапазоне частот от 1 до 4,5 кГц. Коэффициент звукопоглощения образцов ТЗПМ с ТАП-16 без перфорации находится в интервале 0,7-0,8; образцов с перфорацией 0,8-1. Коэффициент звукопоглощения образцов ТЗПМ с ТАП-11 без перфорации и с перфорацией составляет соответственно 0,7-0,8 и 0,8-0,9 (рис. 4).
Рис. 4. Коэффициент звукопоглощения ТЗПМ с покрытиями ТАП-16 (•, •, •) и ТАП-11 (•) образцов с перфорацией (•, •, •) и без перфорации (•)
Применение трехслойного покрытия ТАП-16 уменьшает коэффициент звукопоглощения ТЗПМ с 0,8 до 0,5-0,6. Увеличение толщины покрытия приводит к снижению звукопоглощения за счет уменьшения пористости звукопоглощающего материала. Установлено, что на коэффициент звукопоглощения в большей степени влияют структура ТЗПМ, толщина покрытия, перфорация образцов ТЗПМ с ТАП и в меньшей степени -состав ТАП.
Проведен анализ полученных результатов технологических свойств, температуроустойчивости, фазовой стабильности (при температурах до 750°С, 500 ч), механических и акустических свойств ТЗПМ с ТАП. На основании полученных данных прове-
* Испытания проведены Р.Д. Филипповой (ФГУП ГОСНИИ ЦАГИ).
дена оптимизация состава ТАП. Оптимальным является состав ТАП-16 на основе кера-мообразующего полимера ПКСЗ-21 с наполнением мелкодисперсным порошком карбида кремния до 0,5% (по массе). Установлено, что коэффициент звукопоглощения ТЗПМ с ТАП данного состава находится в интервале 0,7-0,8, эти же образцы с перфорацией (площадь перфорации 15%) имеют a=0,7-1. Разработка ТАП позволила получить ТЗПМ со свойствами: осж=10-21 МПа, Траб=750°С (в течение 500 ч) и Траб=1300-1500°С (при выдержке до 2 ч); коэффициент звукопоглощения a=0,6-0,8 при полосе звукопоглощения 800-5000 Гц.
По результатам акустических, физико-химических, механических и термических испытаний установлено, что ТЗПМ с ТАП может найти применение для создания звукопоглощающих конструкций, используемых в силовых установках авиакосмической техники.
ЛИТЕРАТУРА
1. Дмитриев В., Мунин А.Г. Экологические проблемы гражданской авиации //Наука и производство, 2003, № 2, с. 15-17.
2. Кузнецов В.М., Мунин А.Г. Проблемы борьбы с шумом летательных аппаратов //80 лет ЦАГИ, с. 14-18 (ЦАГи).
3. Соболев А.Ф., Соловьева Н.М., Филиппова Р.Д. Расширение частотной полосы звукопоглощения облицовок силовых установок самолетов //Акустический журнал, 1995, т. 4 №1, с. 146-152.
4. Солнцев С.С., Минаков В.Т., Розененкова В.А., Швец Н.И., Миронова Н.А., Антонова С. В. Комплексные температуроустойчивые защитные покрытия для кера-мокерамических композиционных материалов: Труды ХУШ совещания по температуроустойчивым функциональным покрытиям, ч. 2.- Тула: ТГПУ им. Л.Н. Толстого, 2001, с. 8-10.
5. Солнцев С.С. Защитные технологические покрытия и тугоплавкие эмали.- М.: Машиностроение, 1984, с. 220-241.
6. Минаков В.Т., Солнцев С.С. Керамоматричные композиты - материалы XXI века /В кн.: Авиационные материалы. Избранные труды 1932-2002. Юбилейный научно-технический сборник.- М.: МИСИС, ВИАМ, 2002, с. 122-131.
УДК 678.84
С. С. Солнцев, В.А. Розененкова, Н.А. Миронова, С.В. Гаврилов
ТЕПЛОЗАЩИТНЫЙ МАТЕРИАЛ С ИСПОЛЬЗОВАНИЕМ ОКСИДНЫХ АРМИРУЮЩИХ НАПОЛНИТЕЛЕЙ
С применением теплозащиты в современных изделиях авиационно-космической техники 4-5 поколений потребовалось ужесточить требования, предъявляемые к разрабатываемым материалам, по обеспечению рабочей температуры до 1650°С и конструкционной прочности до 100 МПа. Для обеспечения функциональных характеристик современных летательных аппаратов широко применяют теплозащитные стеклокерамические композиционные материалы (СККМ).