Научная статья на тему 'Технология ручной плазменной закалки'

Технология ручной плазменной закалки Текст научной статьи по специальности «Технологии материалов»

CC BY
1116
206
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ПЛАЗМЕННАЯ ПОВЕРХНОСТНАЯ ЗАКАЛКА / ИЗНОСОСТОЙКОСТЬ / PLASMA SURFACE HARDENING / WEAR RESISTANCE

Аннотация научной статьи по технологиям материалов, автор научной работы — Коротков В. А.

Разработанная в 2002 г. установка УДГЗ-200 позволяет вручную закаливать то, что ранее закалке неподвергалось, быстро изнашивалось и становилось причиной частых и дорогостоящих ремонтов. Ухудшение шероховатости поверхности и искажение размеров при закалке столь незначительные, что многие детали после нее не нуждаются в финишной механообработке, а сразу направляются в эксплуатацию, что снижает продолжительность и себестоимость их производства. Слой плазменной закалки многократно превосходит в износостойкости металл в нормализованном или состоянии объемной закалки с отпуском, что делает применение плазменной закалки высокоэффективным. Плазменная закалка установкой УДГЗ-200 производится без подачи воды на деталь, что позволяет выполнять ее не только в специализированных термических цехах, но также по месту обработки и эксплуатации деталей. Это в совокупности с тем, что закалку установкой УДГЗ-200 осваивают сварщики 2-3-го разрядов, упрощает внедрение ее в производство.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Developed in 2002, setting UDGZ-200 allows you to manually temper what had previously not been subject to hardening, wear out quickly and cause frequent and costly repairs. Deterioration of surface roughness and dimensional distortion during hardening so minor that many of the items after her do not need finish machining, and immediately sent to the operation, which reduces the duration and cost of production. Layer of plasma hardening surpasses in wear metal in the normalized condition or bulk quenched and tempered, which makes use of a highly effective plasma hardening. Plasma hardening installation UDGZ-200 is produced without the water supply is not the item that allows her not only in specialized thermal shops, but also at the place of processing and operation details. This coupled with the fact that the hardening installation UDGZ-200 master welder 2-3 discharges facilitates its introduction into production.

Текст научной работы на тему «Технология ручной плазменной закалки»

ВЕСТИ IT

ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА

МОРСКОГО И РЕЧНОГО ФЛОТА ИМЕНИ АДМИРАЛА С. О. МАКАРОВ^

2. СП 52-104-2006*. Сталефибробетонные конструкции. — М.: НИИЖБ: ОАО «НИЦ «Строительство», 2010. — 68 с.

3. Рабинович Ф. Н. Композиты на основе дисперсно-армированных бетонов. Вопросы теории проектирования, технологии, конструкции / Ф. Н. Рабинович. — М.: Изд-во АСВ, 2004. — 560 с.

4. СНиП 2.03.01-84*. Бетонные и железобетонные конструкции. — М.: НИИЖБ Госстроя СССР, 1989. — 80 с.

5. СНиП 2.03.03-85*. Армоцементные конструкции. — М.: НИИЖБ Госстроя СССР, 1986. —

51 с.

УДК 621.785; 621.791; 621.762 В. А. Коротков,

Разработанная в 2002 г. установка УДГЗ-200 позволяет вручную закаливать то, что ранее закалке не подвергалось, быстро изнашивалось и становилось причиной частых и дорогостоящих ремонтов. 'Ухудшение шероховатости поверхности и искажение размеров при закалке столь незначительные, что многие детали после нее не нуждаются в финишной механообработке, а сразу направляются в эксплуатацию, что снижает продолжительность и себестоимость их производства. Слой плазменной закалки многократно превосходит в износостойкости металл в нормализованном или состоянии объемной закалки с отпуском, что делает применение плазменной закалки высокоэффективным. Плазменная закалка установкой УДГЗ-200 производится без подачи воды на деталь, что позволяет выполнять ее не только в специализированных термических цехах, но также по месту обработки и эксплуатации деталей. Это в совокупности с тем, что закалку установкой УДГЗ-200 осваивают сварщики 2-3-го разрядов, упрощает внедрение ее в производство.

Developed in 2002, setting UDGZ-200 allows you to manually temper what had previously not been subject to hardening, wear out quickly and cause frequent and costly repairs. Deterioration of surface roughness and dimensional distortion during hardening so minor that many of the items after her do not needfinish machining, and immediately sent to the operation, 'which reduces the duration and cost of production. Layer of plasma hardening surpasses in wear metal in the normalized condition or bulk quenched and tempered, 'which makes use of a highly effective plasma hardening. Plasma hardening installation UDGZ-200 is produced 'without the water supply is not the item that allows her not only in specialized thermal shops, but also at the place of processing and operation details. This coupled 'with the fact that the hardening installation UDGZ-200 master welder 2-3 discharges facilitates its introduction intoproduction.

Ключевые слова: плазменная поверхностная закалка, износостойкость.

Key words:plasma surface hardening, wear resistance.

В современный век роботов и «безлюдных» производств разработка ручной технологии может показаться ошибочной. Однако ручные технологии благодаря универсальности демонстрируют живучесть. В мире основной объем сварки (более 80 %) продолжает выполняться электродами или полуавтоматами, то есть вручную. По аналогии полагали (этот расчет оправдался), что с разработкой ручного способа поверхностной закалки объемы ее применения возрастут и произойдет

д-р техн. наук, профессор, Нижнетагильский филиал

Уральского федерального университета

ТЕХНОЛОГИЯ ручной плазменной закалки

TECHNOLOGY MANUAL PLASMA HARDENING

Введение

Выпуск 5

|Выпуск 5

ДВЕСТИ И К

государственного университета

.МОРСКОГО И РЕЧНОГО ФЛОТА ИМЕНИ АДМИРАЛА С. О. МАКАРОВА

это за счет тех изделий, которые ранее по тем или иным причинам закалить было невозможно. Это контактные поверхности корпусов и станин оборудования, а также иных крупногабаритных деталей. Их термическому упрочнению известными способами мешают большие размеры и масса, а также плохая восприимчивость к закалке некоторых сталей, из которых они изготавливаются. Вместе с тем упрочнение этих поверхностей является важным в решении задач по увеличению сроков межремонтной эксплуатации и надежности оборудования [6].

Проблема ручной плазменной закалки была решена в 2002 г. в ООО «Композит», созданном в 1990 г. при Нижнетагильском филиале УПИ (ныне — УрФУ). Здесь выполнили разработку способа и установки УДГЗ-200 для ручной плазменной закалки. В установке (рис. 1, табл. 1) предусмотрена горелка, небольшие размеры которой делают ее удобной для ручного манипулирования и позволяют добираться до труднодоступных мест, то есть упрочнять, что ранее эксплуатировалось без упрочнения и становилось причиной частых и дорогостоящих ремонтов.

Рис. 1. Закалка установкой УДГЗ-200: слева — вручную, справа — роботом

Таблица 1

Характеристики установки УДГЗ-200 и процесса плазменной закалки

Процесс закалки Установка УДГЗ-200

Производительность — 25-85 см2/мин Рабочий газ — аргон (15л/мин) Глубина закалки —0,5-1,5мм Твердость — HRC35-65 (зависит от марки стали) Напряжение сети — 380 В Мощность — 10 кВт Масса — 20 + 20 кг (источник питания и блок охлаждения горелки)

Установка УДГЗ-200 выпускается по ТУ 3862-001-47681378-2007. К концу 2013 г. было произведено более 50 шт. установок, которые поставлены на предприятия России, Украины, Казахстана, Киргизии. В 2008 г. установка была отмечена серебряной медалью на Женевском салоне изобретений и инноваций

При закалке сварщик перемещает дугу по поверхности со скоростью, обеспечивающей «вспотевание» (состояние, предшествующее плавлению) поверхности под дугой. Это контролировать не труднее, чем плавление при сварке, но оно обеспечивает необходимый для закалки нагрев и не допускает грубого оплавления поверхности. Работу на установке осваивают сварщики 2-3 -го разрядов, при этом она может применяться в механизированных, автоматизированных и роботизированных (рис. 1, справа) комплексах, что делает ее пригодной к применению в современных высокотехнологичных производствах. Наличие установок УДГЗ-200 восполняет отсутствие традиционного оборудования для закалки, делает закалку экологически чистой.

Общие сведения о свойствах закаленного слоя

Дуга оставляет на поверхности закаленные полосы шириной 7-12 мм, окрашенные «цветами побежалости», то есть покрытые тонкой пленкой окислов, которые не оказывают существенного влияния на шероховатость в диапазоне Rz 8-60 (рис. 2). Глубина закаленного слоя составляет ~ 1 мм, благодаря чему не происходит значительных деформаций закаливаемых деталей. Это в совокупности с минимальным изменением шероховатости позволяет многие детали отправлять в эксплуатацию без трудоемкой финишной механообработки твердого закаленного слоя, что снижает себестоимость их изготовления [7, р. 475-479].

Рис. 2. Плазменная дуга и оставленная ею закаленная полоса

Расчетами и экспериментально установлено, что при закалке массивных тел на режимах, типичных для УДГЗ-200, скорости охлаждения превышают критические [8, р. 407-410]. При закалке пластин они уменьшаются, но возможность неполной закалки углеродистых сталей (на твердость ~ HV360) сохраняется для толщин > 4 мм. Это дает возможность выполнять закалку без подачи воды на место нагрева, что упрощает организацию рабочих мест и позволяет применять установку УДГЗ-200 на ремонтных площадках, по месту механообработки и эксплуатации деталей, а не только в термических цехах. Благодаря этому расширяется номенклатура упрочняемых деталей — закалке подлежит то, что ранее было ей недоступно.

Рис. 3. Распределение твердости в слое плазменной закалки на стали 40

Типичная структура закаленного слоя аналогична зоне термического влияния в основном металле сварных соединений [9]. У поверхности возможно образование дендритной структуры

Выпуск 5

|Выпуск 5

от ее оплавления; ниже идет участок перегрева с укрупненным зерном; затем — мелкозернистый участок нормализации; еще ниже — участок неполной перекристаллизации, за которым следует последний участок — отпуска. Таким образом, твердость закаленного слоя по мере удаления от поверхности снижается постепенно (рис. 3), что предупреждает образование отколов.

Износостойкость слоя плазменной закалки

Исследовалась износостойкость сталей с плазменной закалкой на машине трения по схеме «диск-колодка» без смазки. Частота вращения диска (d 40*10 мм) 425 об/мин. Предусматривалось пять этапов испытаний по 5 мин с нагрузкой 200Н на первых четырех и полуторным увеличением нагрузки до 300 Н на 5-м этапе со взвешиванием после каждого этапа для определения износа. На первом этапе происходит приработка пар, 2-4-й этапы характеризуют установившийся процесс изнашивания. Пятый этап показывает способность пар трения выдерживать перегрузку; во всех случаях применения плазменной закалки увеличения износа на пятом этапе не наблюдалось. В каждом сочетании материалов испытывались три пары образцов.

Рис. 4. Средний износ (г) дисков (Д) из конструкционных сталей с различной твердостью (НВ) на этапах 2-4-м установившегося изнашивания. Виды упрочнения дисков:

Норм — нормализация, 03 — объемная закалка с отпуском, ПЗ — плазменная закалка

Проведено сравнение износостойкости дисков из конструкционных сталей при трении о нормализованную колодку из стали 45. Из рис. 4 видно, что в нормализованном состоянии износ легированной стали 30ХГСА примерно втрое меньше, чем углеродистой стали 45. Объемная закалка с отпуском почти не отразилась на износе стали 30ХГСА. Плазменная закалка по сравнению с нормализованным состоянием существенно уменьшила износ обеих сталей: примерно в 10 раз стали 45и в 4 раза стали 30ХГСА.

Из табл. 2 видно, что плазменная закалка колодок из рельсовой стали снизила их износ в 126 раз; при этом неупрочненный диск из колесной стали не только не снизил износостойкости, но и увеличил ее в 2,1 раза. Существенное увеличение износостойкости в результате плазменной закалки объясняется сменой механизма изнашивания. Поверхности трения без упрочнения имели возможность «схватываться», то есть образовывать выступами микронеровностей точечные сварные соединения, которые создавали абразивный фактор, ускоряющий износ. Исключение явлений схватывания за счет упрочнения плазменной закалкой привело к более медленному изнашиванию по механизму усталостного диспергирования.

Таблица 2

Влияние плазменной закалки на износ* рельсовой стали в парах трения с колесной сталью

Колодка, рельсовая сталь Диск, колесная сталь 65Г

Состояние Износ, г Киз Состояние Износ, г Киз

Без закалки 1,507 1,0 Сорбитизация 2,125 1,0

С плазменной закалкой 0,012 126 Сорбитизация 1,021 2,1

* Суммарный за 1-4 циклы испытаний.

Было также установлено, что закаленные диски из низкоуглеродистой стали 20ГЛ снижают износ по сравнению с нормализованным состоянием в ~ 9 раз, а сопрягаемые с ним колодки из той же стали — в 1,8 раза. Отсюда следует целесообразность применения установки УДГЗ-200 для упрочнения контактных поверхностей корпусных частей оборудования, обычно изготавливающихся из низкоуглеродистых сталей и термическому упрочнению не подвергающихся из-за высоких затрат при минимальном упрочняющем эффекте.

Рис. 5. Износ чугунных колодок при трении о диски из стали ЗОХГСА

Были приготовлены колодки из чугуна: ВЧ120, ВЧ60, СЧ25, и диски из стали ЗОХГСА (НВ 330); результаты испытаний представлены на рис. 5. Чугун ВЧ60 без плазменной закалки сразу получил износ на глубину 3 мм, то есть больше обычного в 250 раз. Еще больше был износ серого чугуна СЧ25, поэтому эти результаты на графике не приведены. Наименьший износ получил чугун ВЧ60 с плазменной закалкой, который оказался меньше износа чугуна ВЧ120 на ~ 50 %. Износ серого чугуна СЧ25 с плазменной закалкой, хотя и больше износа ВЧ120 на ~ 80%, но не катастрофичен как износ СЧ25 без плазменной закалки. Отсюда можно сделать заключение о целесообразности применения плазменной закалки подшипниковых гнезд крупных редукторов, изготавливаемых из чугуна, и других изделий.

Примеры практического применения плазменной закалки

Корпуса конусов дробилок мелкого и среднего дробления (КСМД-2200, Sandvik-7800, FKB-2100 и др.) быстро изнашиваются по поясу контактирования со сменной броней. На Качканарском ГОКе ежегодно восстановлению наплавкой подлежало до 25 конусов. С конца 2011 г. приступили к упрочнению их плазменной закалкой (рис. 6), благодаря этому потребность в восстановлении изношенных конусов в 2013 г. снизилась до 5 шт., то есть в пять раз.

Выпуск 5

|Выпуск 5

Рис. 6. Корпус конуса дробилки среднего дробления, контактный пояс которого упрочнен плазменной закалкой

Рис. 7. Технологический барабан с зубчатым венцом, упрочненным плазменной закалкой

Зубчатый венец (40ГЛ) крупногабаритного технологического барабана (рис. 7), работающий в зацеплении с приводной шестерней (34ХН1М), представляет собой дорогостоящее изделие. Наработка до предельного износа зубьев (30 %) составляла: венца — 2 месяца, приводной шестерни — один месяц. Плазменная закалка увеличила наработку до износа закаленного слоя толщиной 1 мм: у венца — до 4 месяцев, а у приводной шестерни — до 2,5 месяцев. Затем во время плановых профилактических ремонтов без демонтажа деталей была выполнена повторная закалка зубьев установкой УДГЗ-200. До предельного износа зубьев закалку повторяют 4 раза, что увеличило срок службы зубчатого венца до 12-16 месяцев, а приводной шестерни до 6-8 месяцев, то есть приблизительно в 7 раз. Экономия от применения плазменной закалки составила 38 млн руб. при эффективности вложений в плазменную закалку 5 руб. экономии на рубль затрат.

Быстро изнашиваемыми являются ручьи канатных блоков и барабанов. Малые размеры горелки установки УДГЗ-200 позволяют производить их закалку (рис. 8). На Качканарском ГОКе плазменная закалка двух витков, наиболее часто включающихся в работу, канатных барабанов узла «напора» карьерного экскаватора ЭКГ-8 и втрое увеличила их межремонтную наработку; одновременно замечено увеличение сроков службы канатов.

Рис. 8. Канатный барабан (слева) и шкивы, упрочненные плазменной закалкой

Половина рельсов (КР-100) кранового пути была упрочнена плазменной закалкой, а другая половина поставлена без упрочнения. Через год эксплуатации износ незакаленных рельсов составил 2 мм, а износ закаленных характеризовался как «потертость». Еще через год эксплуатации износ незакаленных рельсов составлял 4 мм, а закаленных достиг значения, доступного измерению — около 1 мм.

Заключение

Разработанная в 2002 г. установка УДГЗ-200 позволяет вручную закаливать то, что ранее закалке не подвергалось, быстро изнашивалось и становилось причиной частых и дорогостоящих ремонтов.

Ухудшение шероховатости поверхности и искажение размеров при закалке столь незначительные, что многие детали после нее не нуждаются в финишной механообработке, а сразу направляются в эксплуатацию, что снижает продолжительность и себестоимость их производства.

Слой плазменной закалки многократно превосходит в износостойкости металл в нормализованном или состоянии объемной закалки с отпуском, что делает применение плазменной закалки высокоэффективным.

Плазменная закалка установкой УДГЗ-200 производится без подачи воды на деталь, что позволяет выполнять ее не только в специализированных термических цехах, но также по месту обработки и эксплуатации деталей. Это в совокупности с тем, что закалку установкой УДГЗ-200 осваивают сварщики 2-3-го разрядов, упрощает внедрение ее в производство.

Список литературы

1. Хренов К. К. Дуговая поверхностная закалка / К. К. Хренов, Г. В. Васильев // Автогенное дело. — 1950. — № 10. — С. 1-5.

2. Кобяков О. С. Использование микроплазменного нагрева в процессах упрочняющей технологии / О. С. Кобяков, Е. Г. Гринзбург // Автоматическая сварка. — 1985. — № 5. — С. 65-67.

3. Лещинский Л. К. Структура и свойства наплавленного металла углеродистых сталей, упрочненных плазменной струей / Л.К Лещинский, И. И. Пирч, С. С. Самотугин [и др.] // Сварочное производство — 1985. — № 11. — С. 20-22.

4. Бердников А. А. Упрочнение чугунных валков методом плазменной закалки / А. А. Бердников, В. С. Демин, Е. Л. Серебрякова [и др.] // Сталь. — 1995. — № 1. — С. 56-59.

5. Сафонов Е. Н. Поверхностное упрочнение железоуглеродистых сплавов дуговой закалкой / Е. Н. Сафонов, В. И. Журавлев // Сварочное производство — 1997. — № 10. — С. 30-32.

6. Орлов П. И. Основы конструирования: справ.-метод. Пособие: в 2 кн. / П. И. Орлов; под ред. П. Н. Учаева. — М.: Машиностроение, 1988. — Кн. 1. — 560 с.

7. Korotkov V. A. Investigations into plasma quenching / V. A. Korotkov, A. V. Shekurov //Welding International. — 2008. — Vol. 22, № 7.

8. Korotkov V. A. Surfacing of plungers for high-pressure vessels / V. A. Korotkov, S. P. Anan’ev,

A. V. Shekurov II Welding International. — 2013. — T. 27, № 5.

9. Теория сварочных процессов / под ред. В.М. Неровного. — М.: Изд-во МГТУ им. Н. Э. Баумана, 2007.

Выпуск 5

i Надоели баннеры? Вы всегда можете отключить рекламу.