УДК 621.798:664
DOI 10.29141/2500-1922-2023-8-1-10 EDN SZQQWO
Technological Properties Research of Biocomposites Based on the Natural Decomposable Compounds Reinforced with Buckwheat Husk
AleksandrS. Semukhin1 и, Natalia V. Zavorokhina1, Ekaterina V. Pastushkova1
1Ural State University of Economics, Ekaterinburg, Russian Federation
Abstract
The need to process packaging materials based on petrochemical polymers raises the question of the material for packaging production, while the raw materials for packaging should be multi-tonnage, biodegradable, cost-effective. The buckwheat husk containing up to 50 % fiber, 3-4 % crude protein, 4-5 % fat, 0.2-0.3 % sugars, 9-10% ash, tannins, which is able to inhibit metal corrosion is of a particular interest for the research. Buckwheat husk has a high bulk density - about 145 kg/m3. It is hydrophilic and is able to swell increased in volume by up to 25 %. The study aims at developing composite systems based on natural decomposable compounds reinforced with buckwheat husks. The researchers studied gelatin, sodium alginate, xanthan and guar gum, glycerin, potato starch as plasti-cizer compounds. They determined that the buckwheat husk surface under the microscope was porous with many cracks, which explains its hydrophilic properties. The thesis presents characteristics of biocomposites and films from them after drying. A man revealed that the glycerin use did not require water introduction, still the biocomposite had a crumbly structure and low water absorption capacity. Biocomposites based on sodium alginate had optimal characteristics: they were plastic, formed a strong film, were well applicable to the surface, had a water absorption of 65.33 and 71.08 %, respectively. The work presented physicomechanical parameters of biocomposite films.
For citation: Aleksandr S. Semukhin, Natalia V. Zavorokhina, Ekaterina V. Pastushkova. Technological Properties Research of Biocomposites Based on the Natural Decomposable Compounds Reinforced with Buckwheat Husk. Индустрия питания|Food Industry. 2023. Vol. 8, No. 1. Pp. 92-99. DOI: 10.29141/2500-1922-2023-8-1-10. EDN: SZQQWO.
Paper submitted: January 10,2023
Исследование технологических свойств биокомпозитов на основе природных разлагаемых компаундов, армированных лузгой гречихи
А.С. Семухин1 Н.В. Заворохина1, Е.В. Пастушкова1
1Уральский государственный экономический университет, г. Екатеринбург, Российская Федерация Н [email protected]
Реферат
Необходимость переработки упаковочных материалов на основе нефтехимических полимеров ставит вопрос о материале для создания упаковки, при этом сырье для упаковки должно быть многотоннажным, биоразлагаемым, экономически выгод-
Keywords:
buckwheat husk;
biocomposite;
compound;
biodegradable
packaging;
ecology
Ключевые слова:
лузга гречихи; биокомпозит; компаунд;
биоразлагаемая
упаковка;
экология
ным. Особый интерес для исследований представляет лузга гречихи, содержащая до 50 % клетчатки, 3-4 % сырого протеина, 4-5 % жира, 0,2-0,3 % сахаров, 9-10 % золы, дубильные вещества, которая способна ингибировать коррозию металлов. Лузга гречихи посевной обладает высокой насыпной плотностью - около 145 кг/м3, она гидрофильна и способна набухать, увеличивая свой объем до 25 %. Цель настоящего исследования - разработка композитных систем на основе природных разлагаемых компаундов, армированных лузгой гречихи. В качестве компаундов-пластификаторов исследовали желатин, альгинат натрия, ксантановую и гуаровую камеди, глицерин, крахмал картофельный. Определено, что поверхность лузги гречихи под микроскопом пористая, с множеством трещин, что объясняет ее гидрофильные свойства. Представлена характеристика биокомпозитов и пленок из них после высушивания. Установлено, что использование глицерина не требует добавления воды, но биокомпозит имеет крошливую структуру и низкую водопоглотительную способность. Оптимальными характеристиками обладали биокомпозиты на основе альгината натрия: они были пластичными, формировали прочную пленку, хорошо наносились на поверхность, имели водопоглощение 65,33 и 71,08 % соответственно. Представлены физико-механические показатели пленок биокомпозитов.
Для цитирования: Aleksandr S. Semukhin, Natalia V. Zavorokhina, Ekaterina V. Pastushkova. Technological Properties Research of Biocomposites Based on the Natural Decomposable Compounds Reinforced with Buckwheat Husk // Индустрия питания|Food Industry. 2023. Т. 7, № 1. С. 92-99. DOI: 10.29141/2500-1922-2023-8-1-10. EDN: SZQQWO.
Дата поступления статьи: 10 января 2023 г.
Introduction
In recent years, the production problem of packaging materials based on petrochemical polymers has been quite acute. One of the main reasons for the growth of waste is the uncontrolled production and consumption processes of disposable packaging [1].
On the one hand, traditional plastic packaging plays an important role in preserving food from spoilage during storage and transportation. On the other hand, its decomposition period after use can reach 100 years or more, which affects the environmental situation and causes concern to all developed countries of the world [2].
That is why the law introduced the so-called environmental fee for manufacturers and importers of products that are subject to recycling. In accordance with the article 24.5 of the Federal Law No. 89-FZ of June 24, 1998 "On Production Waste" this fee is a non-tax income of the federal budget. It stimulates the technologies development for the biodegradable packaging production, including the investment promotion of the packaging manufacturers themselves 1.
To reduce the negative impact on the environment, the Government of the Russian Federation has also approved the state program "Environmental Protection". Among the promising areas it con-
1 On Approval of the Industrial Development Strategy for the Processing, Disposal and Neutralization of Waste Production and Consumption for the Period up to 2030 (as amended on October 13, 2022): Decree of the Russian Federation Government No. 84-r Dated January 25, 2018.
tains the "Development of Industry for Processing, Disposal and Production and Consumption Waste Neutralization for the Period up to 2030". Until 2025, there is a program "Pure Country" aimed at reducing environmental damage, associated with the solid household waste disposal2.
In 2018, the European Union adopted an action strategy for the plastic products distribution. The document aims to change the development, production, use and recycling methods for plastic products in the EU, as well as to protect the environment, reduce marine debris, and greenhouse gas emissions and minimize dependence on imported fossil fuels3.
The main program document in the field of new types of packaging research and development is the national project "Ecology"4. According to the project, by 2030 more than 50 % of packaging will be recycled and the solid waste disposal volume will be reduced by 50 %5. Moreover, a man has re-
2 Initiative List of Socio-Economic Development of the Russian Federation until 2030: Decree of the Russian Federation Government No. 2816-r Dated October 6, 2021; Project "Pure Country": Electron. Resource. URL: https://vyvoz.org/blog/fed-eralnyy-proekt-chistaya-strana/?ysclid=ldamxpx1r2892729898.
3 On Reduction of the Environmental Impact of Certain Plastic Products: Directive (EU) 2019/904 of the European Parliament and Council Dated June 5, 2019: Electron. Resource.URL: https:// eur-lex.europa.eu/eli/dir/2019/904/oj.
4 Passport of the National Project "Ecology": Electron. Resource. URL: http://static.government.ru/media/files/pgU5Ccz2i Vew3Aoel5vDGSBjbDn4t7FI.pdf.
5 Project "Pure Country": Electron. Resource. URL: https://vy-voz.org/blog/federalnyy-proekt-chistaya-strana/?ysclid=ldamx-px1r2892729898.
cently updated the regulatory framework for the biodegradable packaging requirements: GOST ISO 18606-2022 "Packaging and Environment. Organic processing".
The GOST 33747-2016 "Oxo-Biodegradable Packaging" contains the main terms and definitions in the field of packaging decomposition methods. According to the standard, packaging can be abiot-ically decomposable (independently from microorganisms), decomposable by biodegradation (due to a cell-mediated phenomenon), biotically decomposable (influenced by microorganisms). As well, a man can also subject packaging to degradation, oxo-deg-radation and oxo-bio-degradation. Thus, the question arises about the material for the biodegradable packaging development.
According to the authors, there are the following principles when searching for the biodegradable packaging composition:
1) raw materials for packaging must be multi-tonnage, renewable, have the necessary physical and chemical properties, be safe for use in the food industry;
2) the packaging must meet the requirements for biodegradability (GOST ISO 18606-2022 and Directive 2019/9041);
3) packaging must be cost-effective, contribute to the preservation and quality improvement of the packaged material.
Food multi-tonnage waste of the flour and cereal industry, including buckwheat husk, corresponds to the specified principles. While processing buckwheat, a man obtains 40-62 % of straw, 68 % of peeled buckwheat, 20 % of husks, 6 % of husking bran [3]. Figure 1 shows the waste structure of the milling and cereal industry [4; 5].
Practically, a man can use all grain waste in the food and feed industry: bran, milldust, dust middlings, corn waste after processing for feeding cattle and poultry, and producing vegetable glue, dextrins, vegetable oil, etc. [6]. The buckwheat husk is used to produce a dye melamine [7; 8].
1 On the Reduction of the Impact of Certain Plastic Products on the Environment: Directive (EU) 2019/904 of the European Parliament and of the Council Dated June 5, 2019. URL: https:// eur-lex.europa.eu/eli/dir/2019/904/oj.
A man uses grain husk rarely, due to its hardness, complexity of grinding and further processing. Still, the grain husk share of processed raw materials in grain processing is unusually high, %: for panicum -16, buckwheat - 20, oats - 27, rice - 19.5, barley - 10, peas - 6 [7]. Some types of husks can be used as raw materials for obtaining fodder yeast, fuel, but due to the high ash content they are rarely used. At the same time, the chemical composition of the cereals and beans husk is quite a valuable raw material, since it contains from 60 to 85 % of polysaccharides (fiber, hemicellulose, etc.), minerals and vitamins.
Buckwheat husk is of particular interest for research, as it contains up to 50 % fiber, 3-4 % crude protein, 4-5 % fat, 0.2-0.3 % sugars, 9-10 % ash, tannins, and enables to inhibit metal corrosion as well [9].
Literature data analysis demonstrated that scientists have attempted to use waste from processing buckwheat husks as an ingredient in compound feeds. Still, this additive has excessive hardness and is poorly digested by animals [9]. The buckwheat husk volume reaches 5-7 million tons per year. Most of it stays unprocessed and is taken to landfill, affecting the environment.
Scientists have attempted to use and dispose buckwheat husks. So, in order to recycle buckwheat husk, Alexey A. Chevokin developed a technology for its introduction into composite packaging materials in an amount of 20% along with propylene waste [7].
Natalia A. Prishchenko and co-authors developed a technology for obtaining lignocellulose polymer composite material from buckwheat husk waste obtained after melanin removal from it [10].
Sergey G. Yazev and co-authors studied the enzymatic husk use in the biscuit procedure [11].
Svetlana M. Korpacheva and her colleagues developed technology for the confectionery products with 5% powder from buckwheat husk added [12].
Most studies concern untreated buckwheat huskro However, if considering buckwheat husk as an object for the biodegradable films production, it is more effective to use it after removing melanin from it, since this technology involves intermediate husk grinding, shortening the technological cycle.
Figure 1. Waste Structure of the Milling and Cereal Industry Рис. 1. Структура отходов мукомольно-крупяной промышленности
Buckwheat husk has a high bulk density - about 145 kg/m3, is hydrophilic and able to swell, increasing in volume up to 25 % [12].
Thus, due to large production volumes, biodegra-dability, rich chemical composition, hydrophilicity and inhibitory properties, buckwheat husk is the optimal basis of composite materials for biodegradable packaging. That is a reason why it became a research object.
Buckwheat husk does not have the plastic properties necessary for packings or trays, so it is necessary to choose a compound plasticizer that will enable to form a packing or tray of the required shape and thickness from buckwheat husk powder. The use of traditional polymers, such as polystyrene, polyethylene and polypropylene, is impractical, since it reduces the packaging biodegradability significantly.
In this regard, it is necessary to find alternative sources of raw materials to develop a new type of packaging - for example, absorbent substrates for food weeping during a storage. The types of ingredients that can be used as a medium compound are as follows.
Gelatin is a basic gelling agent obtained from animal bones, thus it contains a high content of animal protein, collagen and amino acids.
Potato starch, obtained by mechanical potatoes processing is an ingredient in various food industry branches.
Sodium alginate E401 is a gel-forming additive of vegetable origin obtained from brown seaweed. Alginate gels are resistant to low and high temperatures, and have plasticity when drying.
Xanthan gum E451 is an extracellular polysaccharide produced by microorganisms Xanthomonas campestris. Solutions with xanthan gum are highly plastic and heat-resistant.
Guar gum E412 is extracted from Cyamopsis tetra-ganoloba seeds. The substance has sufficient rigidity and increased elasticity, good solubility in water. Due to these properties, guar gum is a very effective emulsifier and stabilizer.
Glycerin E422 is a moisture-retaining agent with a viscous structure. The additive gained wide use in the food industry.
Thus, the study aim is to develop composite systems based on natural decomposable compounds reinforced with buckwheat husk.
Research Objects and Methods
The study objects were:
• cultivated buckwheat husk Diana, crushed by the grinding crash method, sifted to a particle size of no more than 1,000 microns;
• components used as a medium (compounds), including: sodium alginate E401 (Molecularmeal,
China);potato starch according to the GOST R 53876-2010 (Relish, Russia); gelatin according to the GOST 11293-2017 (Relish, Russia); xanthan gum E451 (Flavarine, China); guar gum E412 (Spirulina-food, India); glycerin according to the GOST 682496 (Molecularmeal, Russia). The authors selected compounds according to the following criteria: 1) approved for use in the food industry; 2) has hydrophilic properties; 3) has viscosity and can serve as a basis for reinforcing material; 4) has good biodegradability.
• biodegradable mixtures (hereinafter referred to as biocomposites) based on buckwheat husk powder and compound in the amount of 12; 13; 11; 10; 13 and 8 % by weight for gelatin, potato starch, sodium alginate, xanthan gum, guar gum and glycerin, respectively;
• biodegradable films based on the studied biocomposites.
The researchers prepared biocomposites by mixing a compound sample with distilled water, stirring continuously. Than they heated the mixture to a temperature of 30-45 °C until a stable homogeneous thick composition / gel was obtained. Then, a man introduced buckwheat husk powder suspension to the mixture in the amount necessary to achieve a plastic mass; mixed thoroughly and applied the thinnest possible layer on the glass to obtain a film layer with a thickness of no more than 2 mm. Thereafter, the researchers dried the film at a temperature of 22-24 ° C to a constant mass naturally, removed with a scalpel from the glass, kept in a desiccator for 24 hours.
A man determined the water absorption according to the GOST 4650-2014 by immersion of the dried biocomposite film in distilled water for 24 hours and calculated as the wet composition mass ratio applied to the glass to the dried film mass, expressed as a percentage relative to the initial mass. The experiment repeatability is threefold with a weighing accuracy of 0.1 mg. The authors studied husk surface structure on a microscope "Micromed 100-900x". Experts (5 people) examined appearance and consistency of the obtained biocomposites visually on a 5.0-point scale, where 5 is excellent, 4 is good, 3 is satisfactory, 2 is unsatisfactory, unacceptable. The limiting wetting angle of the film surface upon contact was sharp. The researchers assessed breaking force for dried films in the longitudinal direction of the sample; determined the breaking tension using a desktop electromechanical testing machine; rated the breaking force and tensile strength at break as the ratio of the applied load to the cross-sectional area of the sample, and tensile strength at break as the ratio of the initial and final length difference of the sample to the initial length.
Results and Their Discussion
The researchers examined the particles surface under a microscope to understand the husks hy-drophilicit causes. They determined that the husk surface was porous, with many cracks, explaining its hydrophilic properties (Fig. 2).
Table 1. Biocomposites Formulations, % wt Таблица 1. Составы биокомпозитов, % мас.
— ■ - ЯГЛ1
Fig. 2. Buckwheat Husk Surface under a Microscope Рис. 2. Поверхность лузги гречихи под микроскопом
The Table 1 shows the biodegradable composites formulations selected experimentally.
Sample Number Compound Buckwheat Husk Powder Water for Gel Formation
1 Gelatin - 12,5 12.50 75.00
2 Potato Starch - 13,34 6.63 80.00
3 Sodium Alginate - 5,98 4.49 89.50
4 Xanthan Gum - 5,79 7.65 86.56
5 Guar Gum - 5,94 5.15 88.90
6 Glycerin - 41,59 58.41 0
The Table 2 presents films characteristics of biocomposites - the study objects before and after drying.
While developing biocomposites the authors revealed that the glycerin use did not require water introduction, but the resulting biocomposite had a crumbly structure and low water absorption capacity. Biocomposites based on gelatin and sodium alginate had optimal characteristics: they were plas-
Table 2. Characteristics of Biocomposites and Films from Them after Drying Таблица 2. Характеристика биокомпозитов и пленок из них после высушивания
Photo and Descriptive Characteristics (Magnification 1:10) Water Absorption of the Dried Composite Film, % Score,
Biocomposit Biocomposite Film after Drying Point
Gelatin Compound
Viscous, Plastic, Well-Formed, Lustrous
Smooth,
Thick,
Viscous,
Well-Formed,
Paste-Like
Smooth, Thick, Viscous, Daubing, with a Strong Luster
Smooth, Thick, Viscous, Daubing, with a Weak Luster
Plastic, Flexible
Non-Plastic, Very Tiny
Plastic,
Very
Flexible
Nonplastic, Crumbly
65.33 ± 0.93
74.67 ± 0.87
71.08 ± 0.91
84.51 ± 0.89
4.5 ± 0.3
2.5 ± 0.3
4.4 ± 0.3
2.5 ± 0.3
Table 2 (Breakover) Окончание табл. 2
Photo and Descriptive Characteristics (Magnification 1:10) Water Absorption of the Dried Composite Film, % Score,
Biocomposit Biocomposite Film after Drying Point
Guar Gum Compound
ИиШТ ■ВВ». 81.03 ± 0.78 3.4 ± 0.3
Glycerin Compound
¡¡¡¡¡§ [ | ¡Very Thick, Poorly Formed, ! with a Slight 1 > Luster ! | ЩЩ 42.11 ± 0.85 2.5 ± 0.3
tic, formed a strong film, were well applied to the surface, which is important for extrusion, and had water absorption of 65.33 and 71.08 %, respectively.
The Table 3 presents results of measuring the biocomposite films strength.
Table 3. Physical and Mechanical Biocomposite
Films Properties Таблица 3 Физико-механические свойства пленок биокомпозитов
The films based on sodium alginate demonstrated the most pronounced reinforcing properties: they had the greatest stretch and were more durable, withstood a greater load at break than the rest of the films. Considering their high water absorption capacity, a man can assume that films based on buckwheat husk powder and sodium alginate can be used as moisture-retaining components of packing and can replace absorbent trays for fish and meat.
Compound Breaking load, N Tensile strength, mm
Gelatin 71.1 ± 5.5 11.1 ± 1.82
Potato starch 62.1 ± 4.5 8.2 ± 0.8
Sodium alginate 92.3 ± 6.2 15.3 ± 1.1
Xanthan gum 81.4 ± 7.3 11.2 ± 0.9
Guar gum 72.1 ± 6.7 10.9 ± 0.8
Glycerin 58.1 ± 4.7 7.0 ± 0.7
Conclusion
The authors developed biocomposites based on natural decomposable compounds reinforced with buckwheat husk. Biocomposites based on gelatin and sodium alginate had optimal characteristics. Films based on sodium alginate demonstrated the most pronounced reinforcing properties. Films from the suggested biocomposites have elasticity, are flexible and hydrophilic.
The development of a new packing type based on plant biopolymers is of great interest and opens opportunities for the new biodegradable systems.
Bibliography
1. Zavorokhina, N.V.;Semuhin, A.S. Perspektivy Ispol'zovaniya Sel'skohozyajstvennyh Othodov dlya Proizvodstva Biorazlagaemoj Upakovki [Use Prospects of Agricultural Waste for the Biodegradable Packaging Production]. Promyshlennost' i Sel'skoe Hozyajstvo. 2022. No. 8(49). Pp. 5-9. EDN: VWYPVA. (in Russ.)
2. Kuznetsova, E.A.; Klimova, E.V.; Shayapova, L.V. i dr. Proizvodstvo Poroshka iz Grechnevoj Luzgi - Put' k Sozdaniyu Bezothodnyh Vy-sokoeffektivnyh Tekhnologij [Buckwheat Husk Powder Production as the Way to Waste-Free and Highly Efficient Technologies De-
Библиографический список
1. Заворохина Н.В., Семухин А.С. Перспективы использования сельскохозяйственных отходов для производства биоразлага-емой упаковки // Промышленность и сельское хозяйство. 2022. № 8(49). С. 5-9. EDN: VWYPVA.
2. Кузнецова Е.А., Климова Е.В., Шаяпова Л.В. и др. Производство порошка из гречневой лузги - путь к созданию безотходных высокоэффективных технологий // Зернобобовые и крупяные культуры. 2021. № 1(37). С. 69-75. DOI: https://doi.org/10. 24412/2309-348X-2021-1-69-75. EDN: ZSWIJV.
velopment]. Zernobobovye i Krupyanye Kul'tury. 2021. No. 1(37). Pp. 69-75. DOI: https://doi.org/10.24412/2309-348X-2021-1-69-75. EDN: ZSWIJV. (in Russ.)
3. Davidovich, E.A. Othody Pishchevoj Promyshlennosti - Perspek-tivnoe Syr'e dlya Biorazlagaemyh Upakovochnyh Kompozicij [Food Industry Waste as a Promising Raw Material for Biodegradable Packaging Compositions]. Pishchevaya i Pererabatyvayushchaya Promyshlennost'. Referativnyj Zhurnal. 2010. No. 1. Pp. 16. EDN: LILTHX. (in Russ.)
4. Nawirska-Olszanska, A.; Figiel, A.; Pl^skowska, E., et al. Qualitative and Quantitative Assessment of Buckwheat Husks as a Material for Use in Therapeutic mattresses. International Journal of Environmental Research and Public Health. 2021. Vol. 18. Iss. 4. Article Number: 1949. DOI: https://doi.org/10.3390/ijerph18041949.
5. Semuhin, A.S. Obosnovanie Vybora Luzgi Grechihi kak Osnovnogo Ingredienta dlya Sozdaniya BiorazlagaemojUpakovki dlya Pish-chevyh Produktov [Choice Justification of Buckwheat Husk as the Main Ingredient for Biodegradable Packaging Development for Food]. Innovacionnyj Potencial Razvitiya Obshchestva: Vzglyad Molodyh Uchenyh: Sb. Nauch. St. 3-j Vseros. Nauch. Konf. Perspek-tivnyh Razrabotok (Kursk, 1 Dekabrya 2022 g.): v 4 T. Kursk: Yugo-Za-padnyj Gosudarstvennyj Universitet. 2022. Vol. 3. Pp. 240-242. EDN: HVGQKM. (in Russ.)
6. Timurbekova, A.K. Pererabotka Othodov PishchevojPromyshlen-nosti [Food Industry Waste Processing]: Uchebnoe Posobie: Elektron. Resurs. Almaty: Nur-Print, 2014. 58 p. ISBN 978-601-278-389-6. (in Russ.)
7. Chevokin, A.A. Kompleksnaya Tekhnologiya Pererabotki Grechihi s Utilizaciej Luzgi [Complex Technology of Buckwheat Processing with Husk Utilization]: Avtoref. Diss. ... Kand. Tekhn. Nauk: 05.18.01. Moskva, 2008. 26 p. EDN: NKMKDL. (in Russ.)
8. Shekurov, V.N.;Tarenko, B.I.; Shekurov, K.V. Uglublennaya Pererabotka Sheluhi Grechihi [In-Depth Processing of Buckwheat Husks]. Vestnik Kazanskogo Tekhnologicheskogo Universiteta. 2014. Vol. 17. No. 7. Pp. 205-207. EDN: SCNLUP. (in Russ.)
9. Klincevich, V.N.; Flyurik, E.A. Sposoby Ispol'zovaniya Luzgi Grechihi Posevnoj[Buckwheat Husk Use Methods]. Trudy BGTU. Seriya 2: Himicheskie Tekhnologii, Biotekhnologiya, Geoekologiya. 2020. No. 1(229). Pp. 68-81. EDN: FDQERP. (in Russ.)
10. Prishchenko, N.A.; Lim, L.A.; Reutov, V.A. i dr. Razrabotka Tekhnologii Polucheniya Lignocellyuloznogo Termoplastichnogo Kompozicionnogo Materiala na Osnove Polietilena i SHeluhi Grechihi [Production Technology Development for the Lignocellulose Thermoplastic Composite Material Based on Polyethylene and Buckwheat Husk]. Resurso- i Energosberegayushchie Tekhnologii v Himicheskoji Neftekhimicheskoj Promyshlennosti: Materialy VII Mezhdunar. Konf. Rossijskogo Himicheskogo Obshchestva Im-eni D.I. Mendeleeva, Posvyashchennoj 100-Letiyu so Dnya Rozh-deniya L.A. Kostandova (Moskva, 28 Oktyabrya 2015 g.). M.: RHO im. D.I. Mendeleeva. 2015. Pp. 171-172. EDN: UYCWEH. (in Russ.)
11. Yazev, S.G.; Levochkina, L.V.; Golubeva, Yu.I. Ispol'zovanie Grech-nevoj Sheluhi v Prigotovlenii Biskvitov [Buckwheat Husks Use in the Biscuits Production]. Pishchevaya Promyshlennost'. 2016. No. 5. Pp. 46-48. EDN: WDFMWP. (in Russ.)
12. Korpacheva, S.M.; Chugunova, O.V.; Poznyakovskij, V.M. Ispol'zovanie Poroshka iz Luzgi Grechihi v Recepturah i Tekhnologii Proizvodstva Biskvitnogo Polufabrikata [Buckwheat Husk Powder Use in Recipes and Production Technology of Biscuit Semi-Finished Product]. Industriya Pitaniya|Food Industry. 2021. Vol. 6. No. 4. Pp. 55-63. DOI: https://doi.org/10.29141/2500-1922-2021-6-4-6. (in Russ.)
3. Давидович Е.А. Отходы пищевой промышленности - перспективное сырье для биоразлагаемых упаковочных композиций // Пищевая и перерабатывающая промышленность. Реферативный журнал. 2010. № 1. С. 16. EDN: LILTHX.
4. Nawirska-Olszanska, A.; Figiel, A.; Pl^skowska, E., et al. Qualitative and Quantitative Assessment of Buckwheat Husks as a Material for Use in Therapeutic mattresses. International Journal of Environmental Research and Public Health. 2021. Vol. 18. Iss. 4. Article Number: 1949. DOI: https://doi.org/10.3390/ijerph18041949.
5. Семухин А.С. Обоснование выбора лузги гречихи как основного ингредиента для создания биоразлагаемой упаковки для пищевых продуктов // Инновационный потенциал развития общества: взгляд молодых ученых: сб. науч. ст. 3-й Всерос. науч. конф. перспективных разработок (Курск, 1 декабря 2022 г.): в 4 т. Курск: Юго-Западный государственный университет, 2022. Т. 3. С. 240-242. EDN: HVGQKM.
6. Тимурбекова А.К. Переработка отходов пищевой промышленности: учебное пособие: электрон. ресурс. Алматы: Нур-Принт, 2014. 58 c. ISBN 978-601-278-389-6.
7. Чевокин А.А. Комплексная технология переработки гречихи с утилизацией лузги: автореф. дисс. ... канд. техн. наук: 05.18.01. Москва, 2008. 26 с. EDN: NKMKDL.
8. Шекуров В.Н., Таренко Б.И., Шекуров К.В. Углубленная переработка шелухи гречихи // Вестник Казанского технологического университета. 2014. Т. 17, № 7. С. 205-207. EDN: SCNLUP.
9. Клинцевич В.Н., Флюрик Е.А. Способы использования лузги гречихи посевной // Труды БГТУ. Серия 2: Химические технологии, биотехнология, геоэкология. 2020. № 1(229). С. 68-81. EDN: FDQERP.
10. Прищенко Н.А., Лим Л.А., Реутов В.А. и др. Разработка технологии получения лигноцеллюлозного термопластичного композиционного материала на основе полиэтилена и шелухи гречихи // Ресурсо- и энергосберегающие технологии в химической и нефтехимической промышленности: материалы VII Междунар. конф. Российского химического общества имени Д.И. Менделеева, посвященной 100-летию со дня рождения Л.А. Костандова (Москва, 28 октября 2015 г.). М.: РХО им. Д.И. Менделеева, 2015. С. 171-172. EDN: UYCWEH.
11. Язев С.Г., Левочкина Л.В., Голубева Ю.И. Использование гречневой шелухи в приготовлении бисквитов // Пищевая промышленность. 2016. № 5. С. 46-48. EDN: WDFMWP.
12. Корпачева С.М., Чугунова О.В., Позняковский В.М. Использование порошка из лузги гречихи в рецептурах и технологии производства бисквитного полуфабриката // Индустрия пи-тания^ Industry. 2021. Т. 6, № 4. С. 55-63. DOI: https://doi. org/10.29141/2500-1922-2021-6-4-6.
Information about Authors / Информация об авторах Семухин
Александр Сергеевич
Semukhin,
Aleksandr Sergeevich
Тел./Phone: +7 (343) 283-10-19 E-mail: [email protected]
Аспирант
Уральский государственный экономический университет
620144, Российская Федерация, г. Екатеринбург, ул. 8 Марта/Народной Воли, 62/45
Post-Graduate Student
Ural State University of Economics
620144, Russian Federation, Ekaterinburg, 8 March St./Narodnoy Voli St., 62/45 ORCID: https://orcid.org/0000-0003-0689-0166
Заворохина Наталия Валерьевна
Zavorokhina, Natalia Valerievna
Тел./Phone: +7 (343) 283-10-19 E-mail: [email protected]
Доктор технических наук, доцент, профессор кафедры технологии питания Уральский государственный экономический университет
620144, Российская Федерация, г. Екатеринбург, ул. 8 Марта/Народной Воли, 62/45
Doctor of Technical Sciences, Associate Professor, Professor of the Food Technology Department Ural State University of Economics
620144, Russian Federation, Ekaterinburg, 8 March St./Narodnoy Voli St., 62/45 ORCID: https://orcid.org/0000-0001-5458-8565
Пастушкова
Екатерина Владимировна
Pastushkova, Ekaterina Vladimirovna
Тел./Phone: +7 (343) 283-10-59 E-mail: [email protected]
Доктор технических наук, доцент, профессор кафедры управления качеством и экспертизы товаров и услуг
Уральский государственный экономический университет
620144, Российская Федерация, г. Екатеринбург, ул. 8 Марта/Народной Воли, 62/45
Doctor of Technical Sciences, Associate Professor, Professor of the Department of Goods and Services Quality Management and Expertise Ural State University of Economics
620144, Russian Federation, Ekaterinburg, 8 March St./Narodnoy Voli St., 62/45 ORCID: https://orcid.org/0000-0001-6992-1201