Heterocycles Гетероциклы
Макрогэтэроцмклы
http://macroheterocycles.isuct.ru
Microreview Миниобзор
DOI: 10.6060/mhc171261s
Synthesis of Starting Heterocycles: 2-Aminobenzothiazoles, 2-Aminothiazoles and 2-Aminobenzenethiols - Potential Precursors for Macroheterocycles
Praveen Kumar Sharma
Department of Chemistry, School of Physical Science, Lovely Professional University, 144411 Phagwara, Punjab, India E-mail: [email protected]
This article reviews the synthetic methods used for obtaining of 2-aminobenzothiazoles, 2-aminothiazoles and 2-aminobenzenethiols - important precursors in synthetic organic chemistry and material science.
Keywords: Heterocycles, thiaaza heterocycles, 2-aminobenzothiazoles, 2-aminothiazoles, 2-aminobenzenethiols.
Получение 2—аминобензотиазолов, 2—аминотиазолов и 2—аминобензотиолов — прекурсоров для синтеза макрогетероциклов
П. К. Шарма
Кафедра химии, Школа физических наук, Профессиональный университет Лавли, 144411 Фагвара, Пенджаб, Индия E-mail: [email protected]
Тиазолы, тиолы и их производные используются в качестве исходных или промежуточных соединений для синтеза фармацевтических препаратов. В данном обзоре рассматриваются методы получения 2-аминобензоти-азолов, 2-аминотиазолов, 2-аминобензотиолов, используемые в синтетической органической химии и материаловедении.
Ключевые слова: Гетероциклы, тиаазагетероциклы, 2-аминобензотиазолы, 2-аминотиазолы, 2-аминобензо-тиолы.
Introduction
Heterocycles have constituted important research area in organic chemistry. Heterocycles are widely used in the development of the modern raw material used for preparation of pharmaceuticals. Amongst the diverse heterocyclic systems, sulfur-nitrogen heterocycles [thiaaza based] are particularly interesting as far as their role in the field of biochemistry and medicinal chemistry. Thiazole, thiols and thiazine heterosystems have long been the subject of chemical research because thiazole, thiols and thiazine ring systems are important constituents of numerous bioactive natural/synthetic products and phar-
maceuticals. A large number of heterocycles with thiazole and thiazine ring systems have emerged as potential pharmaceuticals with their use as antimicrobial,[1] anti-HIV,[2] antitumor,[3,4] antileishmanial,[5-7] anti-inflammatory,[8,9] antifungal,[10] etc. A number of 2-aminobenzothiazoles and 2-aminobenzenethiols which have been used as starting materials to synthesize structurally diverse heterocycles, pyrimidobenzothiazoles, 4^-1,4-benzothiazines, mor-pholinyl/piperazinyl substituted 4^-1,4-benzothiazines and pyrazolylbenzothiazines. In recent days, a variety of biomedical and industrial applications such as viral inhibition, fluorescence detection, photodynamic tumor therapy, polymerization, photonucleases, insecticides component
synthesis, synthesis of dyes etc. are mainly based on macroheterocycles.[11]Macroheterocycles present in various biodynamic natural systems and synthetic materials have been synthesized by either substituted thiazoles, thiols directly or as precursors.[12-13]. This review includes the recent developments relating to the synthetic methods of 2-aminobenzothiazoles and 2-aminobenzenethiols, which have been used for the synthesis of a variety of therapeutically interesting heterocyclic compounds with diverse structural specificity.
Different methods have been reported in the literature for the synthesis of 2-aminobenzenethiazoles and 2-aminobenzenethioles. Some recently reported important methods have been briefly presented.
Scheme 3.
Herz method
In this method, arylamine I is treated with sulfur monochloride II to afford thiazothiolium chloride III, Herz compound,1141 which on alkaline hydrolysis provides sodium salt of 2-aminobenzenethiol. In this method, the replacement of chloride ion by hydroxyl group is followed by the cleavage of five membered ring of IV during hydrolysis to yield sodium salt of 2-aminobenzenethiol V (Scheme 1).[15-19]
The Herz method has been reported to be successful in certain cases, but in some cases, it has some limitations.
Scheme 4.
Limitations
When arylamine (unsubstituted at para position) is treated with sulfur monochloride, chlorination takes place at para position and therefore chlorinated product is obtained because of Herz reaction (Schemes 2-4).[20-26]
The preparation of 2-aminobenzenethiols by Herz method, therefore, requires the para position of arylamine to
nh2 Herz reaction
Cl
NH2
SNa
Scheme 2.
be occupied by such a group, which cannot be substituted by chloro group. The chloro group does not replace the groups such as ethoxy, phenoxy, methyl, methoxy, dimethylamino, bromo etc. during Herz reaction. However, some groups such as sulfonic acid, arsonic, carbonyl etc. at 5-position are relatively replaced.[27]
Reduction of bis-(o-nitrophenyl) disulfides
It involves two steps: In the first step, bis(o--nitrophenyl) disulfide is obtained by the reaction of halonitrobenzene with sodium polysulfide. The second step involves the reduction of bis(o-nitrophenyl) disulfide with zinc and acetic acid
NH,
S2CI2
RXX>
SCI
3HCI +2S
Hydrolysis
NH,
SNa
+ NaHSCV
>0
S-OH
V
IV
Scheme 1.
or with zinc and hydrochloric acid to provide zinc salt of 2-aminobenzenethiol.[28-32]
S
no2 o2n
Zn/HCI
Zn/AcOH
NH3+CI ■ SH
hydrolysis of the corresponding 2-aminobenzothiazoles (Scheme 7).
nh,
R'
Scheme 7.
NH2 SH
(scn)2
Cu2(CN)2 + Br2 R or
NH4SCN
HOH
4"c-nh2
/
Scheme 5.
The reduction of diphenyl sulphides has also been reported with Sn/HCl.[33-35]
FX
no,
CI
n02 o2n
Sn/HCI
РзС^^/МН,
Scheme 6.
The reduction of diphenyl sulphide has also been reported recently by In/NH4Cl in ethanol.[36]
However, this method suffers from following drawbacks:
(i) Differently substituted o-halonitrobenzenes required in this method are not commercially available and their laboratory preparation is time consuming.
(ii) Separation of substituted 2-aminobenzenethiol hydro-chloride from metallic chloride obtained during this method is very difficult.
(iii) Substituted dinitrodiphenyl sulfides are reduced into the corresponding 2-aminobenzenethiols by the reduction of disulfide as well as NO2 group into -SH group and -NH2 group, respectively.
Thiazolation
Following methods of thiazolation have been reported for the synthesis of 2-aminobenzothiazols and 2-aminoben-zenethiols:
(A) Thiocyanogenation: Thiocyanogenation is the most widely used method for the synthesis of 2-aminoben-zothiazoles and 2-aminobenzenethiols. Thiocyanogenation is carried out by thiocyanogen gas produced in situ by the reaction of Cu2CN2 and bromine or NH4SCN/KCNS. [37-40] 2-Aminobenzenethiols are obtained by alkaline
This method also has some limitations: 2-aminoben-zothiazoles and 2-aminobenzenethiols cannot be easily synthesized by the thiocyanogenation reaction of arylamine with unoccupied para position, because thiocyanogenation occurs at both unoccupied ortho as well as para positions to the amino group.
(B) 2-Aminobenzothiazoles and 2-aminobenzenethiols can be conveniently prepared from aryl amines substituted or unsubstituted at para positions.141-54
This method involves two steps: In the first step, hydrochloride of substituted arylamine is treated with KCNS or NH4SCN to obtain corresponding phenylthi-ourea. The second step involves brominative cyclization of phenylthiourea by bromine and chloroform to provide the corresponding 2-aminobenzothiazole. The alkaline hydrolysis of substituted 2-aminobenzothiazole and subsequent neutralization by glacial acetic acid provides substituted 2-aminobenzenethiol (Scheme 8).
Synthesis of 2-aminobenzothiazoles and 2-aminothiazoles individually
(i) Recently, 2-aminobenzothiazoles have been prepared in quantitative yields by using organic ammoniumtri-bromide (OATB) [benzyltrimethylammoniumtribro-mide] as an alternative electrophilic bromine source in place of bromine and chloroform.[53]
(ii) 2-Aminothiazoles have been prepared by treating arylamines with thiourea and bromine in acetic acid via bromide[54] (Scheme 9).
(iii) 2-Aminothiazoles have also been prepared by treating cyclohexanone with thiourea and iodine at 100 °C[55] (Scheme 10).
(iv) 2-Aminobenzothiazoles have also been prepared recently by means of copper and palladium-catalyzed intramolecular C-S bond formation[56] (Scheme 11).
(v) 2-Aminobenzothiazoles have also been synthesized by reaction of carbon chlorosulphide with 4-cynoaniline in the presence of NH4OH/Dioxane[57] (Scheme 12).
Synthesis of 2-aminobenzenethiols individually
Some recently reported synthetic methods of 2-ami-nobenzenethiols are presented schematically. The reactants,
318
Макрогетероциклы /Macroheterocycles 2018 11(3) 316-321
R--
(1 mole equlv)
N-C-NHMe H i
AcOH
Scheme 9. О
S
и
+ h2n—с—nh2
R--
^—NHMe
100 °C
N
(i)
x (i) DMF + Et-0-CS2H-
NH, (N)HCI
(iii)AcOH,Fe,EtOH
(iv)NaOH
(v)HCI
X=Halo,N02, alkylsulphonyloxy Scheme 13.
(Ref:-58)
Scheme 10.
Br
S il
Cul or
n-c-NH2 Pd(PPh3)4,Cs2C03
Rir
I
H
(ii)
rrc'
(i) NaSH/H20
/)—NH2 "^^^NOs (ii)Na2S/HCI/C6H5Me «J
Scheme 14.
SH
NH,
(Ref.:-59)
Scheme 11.
[P?TR * S=
Scheme 12.
nh4oh nc
CCI2 —-R
dioxane ^
reagents and solvents along with reaction conditions are given in the schematic presentation of synthetic meth-ods[58"66] (Schemes 13-21).
Conclusion
The data available in this review give an idea that thiazoles, thiols containing molecules constitute a chief cat-
(iii)
S. Na0H/H20
z/-NH2-
(CH2OH)2,24-hrs,reflux Ri
Scheme 15.
egory of heterocycles. A study of thiazoles, benzenethiols and their derivatives exposed a huge interest to the chemist/ researchers in designing possible biological active compounds, which exhibit various pharmacological activities. I expect that this review will help to researchers for synthesis
(iv)
H
N (i)KOH
^O-
s (ii)HCI
(iii)NaHC03
Scheme 16.
(v)
Ph O (Ref.:-61)
CI'
Scheme 17.
N02
(Ref.:-62)
of specific heterocycles to produce various commercially important materials.
References
1. (a) Yildiz-Oren I., Yalcin I., Aki-Sener E., Ucarturk N. Eur. J. Med. Chem. 2004, 39, 291. (b) Latrofa A., Franco M., Lopedota A., Rosato A., Carone D., Vitali C. II Farmaco 2005, 60, 291.
2. Bell F.W., Cantrell A.S., Hoegberg M., Jaskunas S.R., Johansson N.G., Jordan C.L., Kinnick M.D., Lind P., Morin Jr. J.M. J. Med. Chem. 1995, 38, 4929.
3. Hutchinson I., Jennings S.A., Vishnuvajjala B.R., Westwell A.D., Stevens M.F.G. J. Med. Chem. 2002, 45, 744.
4. Goldfarb R.H., Kitson R.P., Brunson K.W., Yoshino K., Hirota N., Kirii Y., Inoue Y., Ohashi M. Anticancer Res. 1999, 19, 1663.
5. Amit B.N., Kamath R.V., Khadse G.B. Indian J. Heterocycl. Chem. 2000, 9, 309.
6. Delmas F., Avellaneda A., Giorgio C.D., Robin M., Clercq E.D., Timon-David P., Galy J.P. Eur. J. Med. Chem. 2004, 39, 685.
(vi)
(i)NaH/C6H5Me/DMF
(ii)Na0H/H20,(CH20H)2
(iii)HCI/H20, 2,6-di-t-butylcresol/Et20
(iv)HCI/MeOH/Doxane
(Ref. >63)
Scheme 18.
Scheme 19.
(viii)
Scheme 20.
(ix)
(Ref.:-66)
Scheme 21.
7. Delmas F., Giorgio C.D., Robin M., Gasquest N.A.M., Detang C., Costa M., Timon-David P., Galy J.P. Antimicrob. Agents Chemother. 2002, 46, 2588.
8. Miwatashi S., Arikawa Y., Kotani E., Miyamoto M., Naruo K.-I., Kimura H., Tanaka T., Asahi S., Ohkawa S. J. Med. Chem. 2005, 48, 5966.
9. Papadopoulou C., Geronikaki A., Hadjipavlou-Litina D. II Farmaco 2005, 60, 969.
10. El-Shaaerh M., Foltinova P., Lacova M. Farmaco 1998, 53, 224.
11. Nussbaumer T., Neidlein R. Helv. Chim. Acta 2000, 83, 1161.
12. Vinicius M. J. Sulfur Chem. 2005, 26, 429.
13. Zhdanova K.A., Bragina N.A. Russ. Chem. Bull., Int. Ed. 2015, 64, 2294.
14. Herz R. U.S. Pat. 1, 1928, 699, 432, Chem. Abstr. 1929, 23, 1140.
15. Plamer K.J. J. Am. Chem. Soc. 1938, 60, 2360.
16. Zubarovskii V.M. J. Gen. Chem. (USSR), 1947, 17, 613, Chem. Abstr. 1948, 42, 906.
Li /WNH2 _„ N T (Ref.:-65)
TÍCI3/THF ^^SH
17. Leaper J.M.F. J. Am. Chem. Soc. 1931, 53, 1891. (a) Cassella and Co., Ger. Pat., 367,344, Frdl., 1922, 14, 912. (b) Cassella and Co., Ger. Pat., 367,345, Frdl., 1922, 14, 914. (c) Cassella and Co., Ger. Pat., 367,346, Frdl., 1922, 14, 918. (d) Cassella and Co., Ger. Pat., 364,822, Frdl., 1922, 14, 920.
18. Ast M.T., Bogert M.T. Rec. Travl. Chem. 1935, 54, 917.
19. Cassella and Co., Ger. Pat., 360,690, Frdl., 1922, 14, 908.
20. Farrington K.J., Warburton W.K. Aust. J. Chem. 1955, 8, 545.
21. Farrington K.J., Warburton W.K. Aust. J. Chem. 1956, 9, 480.
22. Gupta V., Ph.D. Thesis, University of Rajasthan, Jaipur, India, 1990.
23. Konig W. Chemische Berichte 1928, 61, 2065.
24. Weinberg H.V. Chemische Berichte 1930, 63A, 117.
25. Weinberg H.V. Chim. Ztg. 1930, 42, 404.
26. Blomquist A.T., Duguid L.I. J. Org. Chem. 1947, 12, 720.
27. Warburton W.K. Chem. Rev. 1957, 57, 1011.
28. Hodgson H.H., Wilson J.H. J. Chem. Soc. 1925, 440.
29. Pollak J., Riesz E., Kahane Z. Monatsh. Chem. 1928, 49, 213.
30. Cauquil G., Cassadevall A. Bull. Soc. Chim. Fr. 1955, 768.
31. Baltzy R., Harfenist M., Webb F.J. J. Am. Chem. Soc. 1946, 68, 2673.
32. Onda M., Kawanishi M., Onishi S., Tominaga T., Kunugi Y., Sasamoto M., Suzuki M. J. Pharm. Soc. Jap. 1956, 76, 562.
33. Lankelma H.P., Knauf A.E. J. Am. Chem. Soc. 1931, 53, 309.
34. Bourdais J. French. Pat. 1966, 1,443,917, Chem. Abstr. 1967, 66, 37933.
35. Dannley R.L., Zazaris D.A. Can. J. Chem. 1965, 43, 2610.
36. Reddy G.V.S., Rao G.V., Iyengar D.S. Synth. Commun. 2000, 30, 859.
37. Gupta R.R., Jain S.K. Bull. Chem. Soc. Jpn 1976, 49, 2026.
38. Gupta R.R., Jain S.K., Ojha K.G. Synth. Commun. 1979, 9, 457.
39. Organic Reactions (Adams R., Ed.) New York: John Wiley and Sons, 1959, 3, 240 and 1957, 3, 259.
40. Mital R.L., Jain S.K. J. Chem. Soc. C 1969, 2148.
41. Rathore B.S., Kumar M. Bioorg. Med. Chem. 2006, 14, 5678.
42. Rathore B.S., Gupta V., Gupta R.R., Kumar M. Heteroat. Chem. 2007, 18, 81.
43. Rathore B.S, Kumar M. Res. Chem. Intermed. 2006, 32, 647.
44. Ankodia V., Sharma P.K., Gupta V., Kumar M. Heterocycl. Commun. 2008, 14, 155.
45. Kachhee T.L., Gupta V., Gautam D.C., Gupta R.R. Phosphorus, Sulfur Silicon Relat. Elem. 2005, 180, 2225.
46. Gupta K., Rathore B.S., Gupta R., Gupta V., Kumar M. Het-erocycl. Commun. 2003, 9, 381.
47. Gupta K., Gupta V., Gupta R., Kumar M. Heterocycl. Commun. 2002, 8, 485.
48. Gupta K., Gupta R., Gupta R.R., Kumar M. Heterocycl. Commun. 2002, 8, 265.
49. Thomas L., Gupta A., Gupta V. Heterocycl. Commun. 2002, 8, 343.
50. Srivastav V., Gupta R., Gupta R.R. Heterocycl. Commun. 2000, 6, 563.
51. Sharma N., Gupta R., Kumar M., Gupta R.R. J. Fluorine Chem. 1999, 98, 153.
52. (a) Kumar M., Sharma N., Gupta R., Gupta R.R. Heterocycl. Commun. 1998, 4, 187. (b) Sharma P.K. Der Pharmacia Lettre 2016, 8(11), 140. (c) Sharma P.K. Der Pharmacia Lettre 2016, 8(11), 79. (d) Sharma P.K. Der Pharma Chemica 2016, 8(11), 156. (e) Sharma P.K. Der Pharma Chemica 2016, 8(5), 191. (f) Sharma P.K. Der Pharmacia Lettre 2016, 8(4), 86. (g) Sharma P.K. Res. Chem. Intermed. 2015, 41, 6141. (h) Sharma P.K. Med. Chem. Res. 2012, 21, 2072. (i) Sharma P.K. Res. Chem. Intermed. 2011, 37, 1103. (j) Sharma P.K. Res. Chem. Intermed. 2010, 36, 985. (k) Sharma P.K. Synth. Commun. 2010, 40, 2347. (l) Sharma P.K. Res. Chem. Intermed. 2009, 35, 35. (m) Ankodia V, Sharma P.K., Sharma K., Kumar M., Gupta A. Heterocycl. Commun. 2009, 15, 127. (n) Sharma P.K. J. Chem. Pharm. Res. 2015, 7, 462. (o) Sharma P.K. Drug Invent. Today 2017, 9, 18-22. (p) Sharma P.K. Drug Invent. Today 2017, 9, 23-25.
53. Jordan A.D., Luo C., Reitz A.B. J. Org. Chem. 2003, 68, 8693.
54. Cocco M., Congiu C., Onnis V., Ianelli S. Heterocycles 2004, 63, 259.
55. Ueda S., Terauchi H., Kawasaka M., Yano A., Ido M. Chem. Pharm. Bull. 2004, 52, 634.
56. Huang S., Connolly P. Tetrahedron Lett. 2004, 45, 9373.
57. Bussiere D., Fang E., Murray J. (Chiron Corporation, USA). PCT Int. Appl. 2006, 228 p. WO 2006022718 A1 20060302.
58. Tomoji A., Kentarou K., PCT Int. Appl. 2008047694, 2008, 47 p.
59. Choudary B.M., Jeyalakshmi K., Aduri R., Kantam M.L. Indian Pat. Appl. 2003DE00405, 2007, 14 p.
60. Bessis A.S., Christelle B., Beatrice B., Mark E.J., Maria S. PCT Int. Appl. 2005123703, 2005, 308 p.
61. Pascal C., Ziaeddine M., Ahmed S., Nicolas L. Tetrahedron 2006, 62, 9054-9058.
62. Chen J.L. PCT Int. Appl. 2005086904, 22 Sep 2005.
63. Van Zandt M.C., Jones M.L., Gunn D.E., Mitschler A., Pod-jarny A.D. J. Med. Chem. 2005, 48, 3141.
64. Hoegberg T., Clavier S., Hansen S., Rist O., Gerlach L.O. Org. Biomol. Chem. 2003, 1, 4248.
65. Chattopadhyay S., Shadakshari U., Talukdar S. Indian J. Chem. 2001, 40B(10), 1007.
66. Song Y.L., Chen Z.B. JingxiHuagong 2002, 19(1), 59-61.
Received 20.12.2017 Accepted 15.06.2018