<3
CHEMICAL PROBLEMS 2022 no. 2 (20) ISSN 2221-8688
133
UDC 547.245
SYNTHESIS AND PROPERTIES OF UNSATURATED AROMATIC OXIRANOSILANES
O.V. Askerov, A.F. Mamedova, D.R. Nurullayeva, G.Dzh. Khanbabayeva
Institute of Polymer Materials of the National Academy of Sciences of Azerbaijan, S. Vurgun str., 124, AZ 500, Sumgait e-mail: [email protected]
Received 25.04.2022 Accepted 17.05.2022
Abstract: The method of the synthesis of unsaturated aromatic oxiranosilanes by interaction of trialkyl-(aryl)-hydridesilanes with aromatic oxiranes of the acetylene series in the presence of catalyst (platinum-hydrochloric acid) in a medium of absolute benzene (yield up to 82-85%) was developed and their properties studied. It was showed that the addition reaction proceeded on a triple bond according to Farmer's rule with the formation of trans-adducts and the maintenance of the oxirane ring. The composition and structure of the obtained unsaturated aromatic oxiranosilanes were confirmed by IR and PMR spectra. It revealed that the obtained unsaturated aromatic oxiranosilanes were highly reactive compounds and can undergo the reaction with nucleophilic and electrophilic reagents.
Keywords: acetylene bond, oxirane rings, unsaturated aromatic oxiranes, hydridesilanes, addition reaction. DOI: 10.32737/2221-8688-2022-2-133-13 7
Introduction
The development of new fields of technique and technology and the use of thermostable materials in technological processes put forward a task of creation of new thermostable materials with valuable exploitation properties for science and industry. Among them, the element-organic (Si, Ge, Sn) compounds are of great interest, allowing to obtain oligomers and polymers with high thermal stability and petrol-resistance on their basis [1-3].
For continuation of the research and with
the aim of synthesizing unsaturated aromatic oxiranosilanes and oxiranosiloxanes [4-5] and revealing a comparative estimation of the chemical activity of two reactive centers - the acetylene bond and the oxirane ring - and for clarification of the structural directionality, the addition reaction of trialkyl(aryl) hydridesilanes to 3-phenyl-1-methyl-1-glycidyloxyprop-2-ane in the presence of platinum-hydrochloric acid according to the scheme has been examined as follows:
CH3 CH3 I____________ _ H2ptci6-6H2o _____L
h3CR2SiH3+c6h5c=cchoch2ch—ch2 ——2—► c6h5c=cchoch2ch—ch2
® 0 H3CSi—R2 (II-VIII) 0
r'2 = c2h5 (ii); c3h7 (iii); c4h9 (iv); c5hn (v); c6h5 (vi); (ch2)^ (vii); -oc2h5 (viii)
Results and discussion
From the analysis of literature materials reaction behavior proceed along the oxirane [5,6] one can expect the above-mentioned ring. The presence of this ring in the
www.chemprob.org
CHEMICAL PROBLEMS 2022 no. 2 (20)
134
O.V. ASKEROV et al.
epoxysilane spectrum is confirmed by the availability of frequency in the field of 3060 cm-1 belonging to the valence vibrations of the CH2 group of the oxirane ring in the spectrum of adducts (II-VIII). Consequently, the triorganosilanes are joined to the investigated oxirano-olefins exclusively on C=C bond, and the oxirane cycle remains unaffected in this
case.
However, according to spectral data, it is impossible to establish the order of addition of hydridsilanes to the studied oxiranoolefins. In this connection, we carried out a counter synthesis with use of substances of the known structure:
OH CH3
| KOH ether I
C6H5C=CCHOH + C1CH2CH—CH2-~~~—► C6H5C=CHCHOCH,CH—CH,
I s / - KC1 I \ /
H3C-Si—R.2 0 H3C-SiR.2 °
R' = C2H5
Organosilanes obtained by both direct hydrosilylation and counter synthesis had identical properties and IR spectra. Thus, under the conditions accepted by us, the addition
reaction of triorganosilanes to oxirano-olefins, catalyzed by platinum-hydrochloric acid, proceeds by a multiple C=C bond with the formation of carbofunctional oxirano-silanes.
Fig.1. IR spectrum of 1-methyl-1-phenyl-1-glycidyloxy-3-methyldiethylsilylpropn-2-ene (ffl)
In the IR spectra there are absorption bands in the fields of 1615 cm-1 (Si-Calk), 1019 cm-1 (C-O-C), 1180, 950, 3060 cm-1 (oxirane bond), respectively [7]. The individuality of compounds (II-VIII) was proved by TLC data, and trans-configuration confirmed by the availability of the absorption band with a frequency 1310 and 965 cm-1 in the spectra and PMR spectra. The spin-spin interaction J (HA, HB) value is 13.5-14.5 Hz which indicates a trans-structure, and the triorganosilyl group is fixed at the peripheral carbon atom of C=C bond. The investigations revealed that the
oxirane groups in the synthesized oxiranosilanes had a high reactivity and easily underwent the interaction with electrophilic and nucleophilic reagents, forming the corresponding silicon derivatives [8-10]. In particular, it found that in the course of interaction of compound (III) with diethylamine, the oxirane cycle opening with the formation of the corresponding amino-alcohols with vibration of 2875 cm-1 occured; the interaction of compound (IV) with methanol led to the disappearance of the absorption band at 3060 cm-1 and the appearance of wide band with center 3450 cm-1 belonging to CH-group,
associated with intermolecular hydrogen bond in the spectrum of ether alcohol (X), and the interaction of compound (V) with thiourea
CH3 I
C6H5C=CHCHOCH2CH—CH,
' V/
H3C-SiR^ °
The IR spectra of the synthesized adducts were taken on the spectrometer UR-20 in the range of 400-3600 cm-1 in a thin layer.
The PMR spectra were recorded on the spectrometer Tesla BS-487C in CDCl3 solution, working frequency - 80 MHz, internal standard - hexamethyldisiloxane.
The individuality of the obtained compounds was controlled by the method of TLC on Silufol UV-366 plates (eluent -benzene-diethyl ether (3:1)) and gas chromatography on the chromatograph LKhM-8MD, column - 200x0.4 cm. Stationary phase was SE-30 on Chromaton UW (3%).
The physical-chemical characteristics of the newly synthesized organo-silicon oxiranes are given in Table.
1-methyl-1-phenyl-1-glycidyloxy-3-methyl-diethylsilylprop-2-ene (II). 10.1 g
proceeds by substitution of the oxirane oxygen for sulfur with the formation of thiiranes (XI).
(0.05 mol) of freshly distilled compound (I), 50 ml of anhydrous benzene and 1 ml of 0.1 N platinum- hydrochloric acid in isopropyl alcohol were placed in a three-necked flask equipped with a reflux condenser and a dropping funnel. Then the mixture was boiled at the boiling point of benzene, 5.1 g (0.05 mol) of methyldiethylsilane was added and the mixture boiled for 20 h. After distillation of the solvent, 11.85 g of oxiranosilane (II) was isolated from the residue by vacuum. Yield - 78%, B.p. 198-199°C (0.5 mm merc.c.), n^0 = 1.5400, df = 1.0267. Calculated, %: C 70.40; H 9.25; Si 8.98. C18 H29 Si O2. Found, %: C 70.25; H 9.00; Si 8.98.
Similarly, the compounds (III-VIII) were obtained, the properties of which are given in Table.
№ comp. Yield, % Bp., °c (mm merc.c.) n20 nd d20 d4 M [Rd Brutto formula
found calculated
II 76 190-191 (0.5) 1.5400 1.0267 92.91 91.26 C18H28Ö2Si
III 70 197-198 (0.5) 1.5405 1.0218 101.52 101.86 C20H32Ö2Si
IV 81 210-211 (0.5) 1.5435 1.0207 110.60 110.86 C22H36Ö2Si
V 68 209-210 (0.5) 1.5401 0.9989 120.31 120.58 C24H40Ü2Si
VI 74 225 (0.5) 1.6255 1.1498 122.63 122.88 C26H28Ö2Si
VII 83 192-193 (0.5) 92.00 92.06 C20H33Ü2Si
VIII 73 180-181 (0.5) 1.5510 0.8609 119.60 119.94 C18H29Ü2Si
CH3
ch,oh i
——C6H5C=CHCHOCH2CH-CH2OCH3 H3C_SiR2 (x) OH
CH3 I
NEt2 » C6H5C=CHCH-OCH2-CHCH2NEt2 H3C-SiR2 (ix) OH
CH3
(nh,),cs „ „ i
» C6H5C=CHCH-OCH2-CH-CH, I. , \/
H3C S1R2 s
(XI)
Experimental part
Table 1. Properties of aromatic oxirano-silanes
136
O.V. ASKEROV et al.
Interaction of 1-methyl-3-phenyl-1-glycidyloxymethyldiprop-2-ene (III) with diethylamine. A mixture consisting of 30 ml of diethylamine and 20 g of oxiranosilane (III) was stirred at temperature 30°C for 40 h, and then was subjected to the vacuumization. 39 g of amino-alcohol (IX) was isolated by vacuum. Yield - 82%, B.p.. 221°C (0.5 mm merc. c.),
20
nr
= 1.5415, d;u = 1.0633, MRd 120.38 (calculated), 120.00 (found). Found, %: C 71.04; H 10.60; Si 6.92; N 3.45. C24 H49 Si O2 N. Calculated, %: C 71.00; H 10.45; Si 7.00; N 3.40.
Interaction of 1-methyl-3-phenyl-1-glycidyloxymethyldibutylprop-2-ene (IV) with methanol. 16 g of oxiranosilane (IV) was slowly added to 50 g of absolute methanol containing 0.1 ml of boron trifluoride etherate at 0°C. The reaction mixture was then stirred at room temperature for 40 h. After distillation of excess methanol, 11 g of ether alcohol (X) was isolated from the residue by vacuum. Yield -
78%, B.p. 228-229°C (0.5 mm merc.c.), n^0 = 1.5473, df = 1.0975, MRd 119.00 (calculated), MRd 119,7 (found). Found, %: C 72.12; H 10.16; Si 7.34. C23 H40 SO3. Calculated, %: C 72.00; H 10.11; Si 7.10
Interaction of 1-methyl-3-phenyl-1-glycidyloxymethyldiamylprop-2-ene with thiourea (V). 9.7 g (0.024 mol) of oxiranosilane (V), 27.4 g (0.036 mol) of thiourea and 50 ml of absolute methyl alcohol were placed in a round-bottomed flask with a reflux condenser and a mechanical stirrer. The contents of the flask were stirred at temperature 30°C for 25 h. After the usual treatment and distillation of unreacted components, 4.7 g of episulfide was isolated (XI) by vacuum. B.p. -. 209°C (0.5 mm merc.c.), n20 = 1.5401, df = 0.5889, MRd 125.76 (calculated), 125.40 (found). Found, %: C 71.03; H 10.06; Si 6.96; S 7.85. C24 H40 Si S. Calculated, %: C 70.93; H 9.96; Si 6.91; S 7.91.
Conclusions
The addition reactions of trialkyl(aryl)hydridesilanes to aromatic acetylene compounds with oxirane groups in the presence of platinum-hydrochloric acid were investigated. It established that the addition reaction proceeded exclusively on the acetylene bond with the maintenance of the oxirane ring
with the formation of unsaturated organosilicon oxiranes.
It shown that the obtained unsaturated organosilicon oxiranes easily underwent the interaction with compounds containing a mobile hydrogen atom with the formation of the appropriate silicon derivatives.
References
1. Yuryev V.A., Salimgarayeva I.M. Olefin hydrosilylation reaction. Moscow: Nauka Publ., 1982, p. 224.
2. Brandsma L.H., Vasilevsky S.F., Verkruijsse H.D. Application of Transition Metal Catalysts in Organic Synthesis. Barcelona-Hong Kong-Milan-Paris-Singapore-
Tokyo: Springer-Verlag. 1998, 335 p.
3. Motsarev S.G., Sobolevsky M.S., Rosenberg V.R. Carbofunctional organosilanes and organosiloxanes. Moscow: Chemistry Publ., 1990, p. 240.
4. Bernd Weyershausen, Martin Niger, Karl Heinz Dötz. Organotransition metal-modified sugars: Part 16. Diastereoselective synthesis of
carbohydrate-derived spirocyclic 2-oxacyclohexylidene chromium and tungsten complexes. J. Organometallic chem. 2000, vol. 602, pp. 37-44. DOI: 10.1016/S0022-328X(00)00115-7.
5. Bakhtin S.G., Sinelnikova M.A., Shved E.N., Bespalko Y.N. Nucleophilic opening of the oxirane ring with tetraalkylammonium salt anions in the presence of proton donors // Russian Journal of Organic Chemistry. 2021, vol. 57, no. 4, pp. 524-531. DOI: 10.1134/S1070428021040047
. Gonzalo Blay, Ana M.Collado, Begona Garcia, Jose R.Pedro. Synthesis of sesquiterpenes via silicon-guided
rearrangement of epoxydecalins. NPC. 2008, vol.3, no. 3, pp. 385-398.
7. Kozitsina L.A., Kupletskaya N.B. Application of UV, IR and NMR spectroscopy in organic chemistry. Moscow, 2012, 262 p.
8. Singh G.S., Mollet K., D'Hooghe M., De Kimpe N. Epihalohydrins in Organic Synthesis. Chem. Rev. 2013, vol. 113, pp. 1441-1498, DOI: 10.1021/cr3003455.
9. Lejars M., Margaillan A., Bressy Ch. Fouling Release Coatings: A Nontoxic Alternative to Biocidal Antifouling Coatings. Chem.Rev. 2012, vol. 112, no. 8, pp. 4347-4390. DOI: 10.1021/cr200350v.
10. Asgerov O.V., Mamedova A.F., Nurullayeva D.R. Synthesis and properties of organosilicon episulfidies. Azerb.Chem.J., 2021, no. 4, pp. 43-48.
DOYMAMIS AROMATÍK OKSÍRANSÍLANLARINSÍNTEZÍ VdXASSdLdRI
O. V. dsgarov, A.F. M9mmadova, D.R. Nurullayeva, G.C. Xanbabayeva
AMEA Polimer Materiallari institutu AZ5004 Sumqayit, S.Vurgun küg., 124; e-mail: [email protected]
Xülas9:Trialkil(aril)silanlarla asetilen sirali aromatik oksiranlarin reaksiyasi Иэ doymami? aromatik oksiransilanlarin sintez üsullari i§tenmi§ (giximi 82-85%) vэ xassэlэri 0угэшМ^г. Reaksiya müthq benzol mühitindэ vэ katalizatorun (xloroplatin tur?usu) i?tirakinda aparilir. Göstэrilmцdir ki, ЬМэ^э reaksiyasi Farmer qaydasina uygun olaraq ügqat rabitэdэn gedir, trans adduktlar alinir vэ oksiran halqasi toxunulmaz qalir. Alinmi? doymami? aromatik oksiranlarin qurulu?lari iQ vэ NMR spektrbri йэ tэsdiq edilmi?dir. Müэyyэn edilmi?dir ki, doymami? aromatik oksiranlar yüksэк reaksiyayagirmэ qabiliyyэtinэ malik olub nukleofil vэ elektrofil reagentbrb reaksiyaya girэ bilirhr.
Agar sözlw. asetilen rab^si, oksiran halqasi, doymami? aromatik oksiranlar, hidridsilanlar, ЬМэ^э reaksiyasi.
СИНТЕЗ И СВОЙСТВА НЕПРЕДЕЛЬНЫХ АРОМАТИЧЕСКИХ ОКСИРАНОСИЛАНОВ
О.В. Аскеров, А.Ф. Мамедова, Д.Р. Нуруллаева, Г.Дж. Ханбабаева
Институт полимерных материалов Национальной АН Азербайджана AZ 5004 Сумгайыт, ул С. Вургуна, 124; e-mail:askerov. [email protected]
Аннотация: Разработан метод синтеза непредельных ароматических оксираносиланов путем взаимодействия триалкил-(арил)-гидридсиланов с ароматическими оксиранами ацетиленового ряда в присутствии катализатора (платинохлористоводородная кислота) в среде абсолютного бензола (выход до 82-85%) и изучены их свойства. Показано, что реакция присоединения протекает по тройной связи по правилу Фармера с образованием транс- аддуктов и сохранением оксиранового кольца. Состав и строение полученных непредельных ароматических оксираносиланов подтверждены данными ИК и ПМР-спектров. Показано, что полученные непредельные ароматические оксираносиланы являются весьма реакционноспособными соединениями и могут вступать в реакцию с нуклеофильными и электрофильными реагентами.
Ключевые слова: ацетиленовая связь, оксирановые кольца, непредельные ароматические оксираны, гидридсиланы, реакция присоединения.