ISSN 2522-1841 (Online) AZERBAIJAN CHEMICAL JOURNAL № 4 2021 ISSN 0005-2531 (Print)
UDC 547.245
SYNTHESIS AND PROPERTIES OF ORGANOSILICON EPISULFIDES O.V.Askerov, A.F.Mamedova, D.R.Nurullayeva
Institute of Polymer Materials, NAS of Azerbaijan
Received 21.06.2021 Accepted 26.08.2021
A study was made of the interaction of thiourea with saturated and unsaturated organosilicon oxiranes in absolute methyl alcohol in a medium of potassium hydroxide, and methods were developed for the synthesis of unsaturated and unsaturated organosilicon silicides with a yield of 65-75%.The studies carried out revealed that the synthesized organosilicon episulfides are very reactive compounds and can react with nucleophilic and electrophilic reagents, while forming the corresponding silicon derivatives. The IR- spectra of the products were studied. It should be noted that, when comparing the IR- spectra of oxiranes and episulfides, it was revealed that the stretching vibrations of the CH2 group of the episulfide ring are underestimated by 50-70 cm-1 in comparison with the oxirane ring.
Keywords: organosilicon episulfides, thiourea, potassium hydroxide, methyl alcohol, organosilicon oxirans.
doi.org/10.32737/0005-2531-2021-4-43-48 Introduction
The method of the synthesis of saturated and unsaturated organosilicon episulfides by interaction of saturated and unsaturated organo-silicon oxiranes with thiourea in a medium of the absolute methyl alcohol in the presence of potassium hydroxide has been developed.
The interest in organosilicon epoxy and episulfide functionally substituted compounds containing functional groups in its composition has been caused not only by their theoretical significance, but also by their practical importance as monomers for obtaining the polymeric materials with valuable operational properties, in particular, frost and petrol resistance on their basis [1-7].
For creation of the thermostable materials
suitable for work at higher and lower temperatures, the organosilicon polymeric materials differed by high stability to work at higher temperatures, long aging, stability under conditions of lower humidity are the most perspective [3-6].
Considering the above-mentioned one and in continuation of our investigations [5-7], this work has been devoted to the method of synthesis of Cl-, Br- and methoxy-containing organosilicon saturated and unsaturated episulfides by interaction of saturated and unsaturated functionally substituted organosilicon oxiranes with thiourea in a medium of the absolute methyl alcohol in the presence of KOH, leading to the production of functionally substituted orga-nosilicon episulfides, the yield of which is 6575%, according to the scheme:
CH2X
R'R^SiROCH2CH-OCH2CH—CH2 + H2N—C—NH2 ^ggl
i, ii xo I
CH2X
I
-► R'R!,SiROCH2CH-OCH2CH—CH2
V-XIII S
X = OCH3 , R = CH2 - CH2 - CH2 - (I), R' = R" = C2H5 (V), R' = CH3 , R" = C2H5 (VI) , C3HV (VII), C4H9 (VIII), C6H5 (IX) X = Cl, R = CH2 - CH2 - CH2 - (II), R' = CH3 , R" = C2H5 (X), C3H7 (XI), C4H9 (XII), C6H5 (XIII) .
The composition and structure of the synthesized Cl-, Br- and methoxy-containing orga-nosilicon episulfides (V-XXI) have been determined on the basis of their IR and PMR spectra, by chromatographic methods of analysis, as well as by counter synthesis by the interaction
of saturated and unsaturated organosilicon alcohols with thioepichlorohydrin in a medium of the absolute methyl alcohol in the presence of KOH, leading to the corresponding episulfides (V-XXI):
CH2X
I 2
R'R2SiROCH?CH-OCH?CH—CH + H2N—C—NH
I, II
2CH C
2 V
CH2X
I 2
R'R2SiROCH2CH-OCH2Œ—CH V-XIII
CH
V 2
II
S
MeOH KOH
X=OCH3 , R=CH2-CH2~CH2- (I), R'=R'' = C2H5 (V), R'= CH3 , R'' =C2H5 (VI), C3H7 (VII), C4H9 (VIII), C6H5 (IX) X=Cl, R= CH2-CH2"CH2-(II), R'= CH3 , R'' =C2H5 (X) C3H7 (XI), C4H9 (XII), C6H5 (XIII)
2
CH2X
R'R2SiROCH2CH-OCH2CH—CH2
III, IV
V
+ h2n—c—NH2 ' 2 II 2 S
MeOH
CH2X
-- R'R2SiROCH2CH~OCH2CH—CH2
XIV-XXI S
X = Br, R = CH2 = CHCH2 - (III), R' = CH3 , R'' = C2H5 (XIV), C3H7 (XV), C4H9 (XVI), C6H5 (XVII).
X = OCH3 , R = CH2 = CHCH2 - (IV), R' = CH3 , R'' = C2H5 (XVIII), C3H7 (XIX), C4H9 (XX), C6H5 (XXI).
The structure and physical constants of functionally substituted organosilicon episulfides (V-XXI), obtained by both direct and counter synthesis, and were identical.
In the IR spectra of organosilicon episulfides (V-XXI) there are the absorption bands at 550 (C-Br), 715 (C-Cl), 1050 (C-O-C), 1615 (C=CH) and 3000 cm-1 referring to the indicated groups [8, 9]. It has been revealed by study of the comparative spectra of oxirane and episulfide that the lowering of the absorption band
of episulfide is a consequence of a lower electro-negativity of the sulfur atom in comparison with the oxygen atom.
It has been revealed that the synthesized organosilicon episulfides (V-XXI) are very reactive compounds and can react with electro-philic and nucleophilic reagents. It has been shown that in interaction of organosilicon episulfides with diethylamine it is opened an epi-sulphide ring with the formation of aminomer-captans according to the scheme:
CH2X
I
R'R^SiROCH2CH-OCH2CH—CH2 + HN(C2H5)2-
V, XIV
CH2X
I
—► R'R2SiROCH2CH—OCH2CH—CH2N(C2H5)2
I
XXII, XXIII SH R = CH2 - CH2 - CH2 - (XXII), CH = CH - CH2 - (XXIII)
A yield of the compounds (XXII, XXIII) is 75-80%, the structure has been confirmed by IR and PMR spectroscopy.
An absence of the absorption band characteristic for episulfide group in the IR spectra, and an appearance of the bands at 2785 (N-Et) and in the field of 2600-2550 cm-1 characteristic for vibrations of SH-group indicate that the reaction proceeds on episulfide group. It should be noted that in comparison of IR spectra of oxiranes and episulfides (V, XIV), it has been revealed that the valence vibration of the CH2-group of the episulfide ring has been lowered in comparison with oxirane ring by 50-70 cm-1.
In the PMR spectrum of aminomercaptan (XXII), the signals of the aminomethyl group have been detected as a quartet at 5=2.35 ppm, and the dimethyl groups of the diethyl radical enter as a singlet at 5=1.30 ppm.
Experimental part
The IR spectra of the synthesized compounds were taken on spectrophotometer UR-20 in the range of 400-3600 cm-1 in a thin layer.
The PMR spectra were taken on spectro-photometer Tesla BS-487-B (60, 80 MHz) in a solution of carbon tetrachloride with internal standard HMDS. The purity of the synthesized compounds was controlled by a method TLC on the plates "Silufol UV-254" in the various systems of solvent and gaseous chromatography on chromatograph LKhM-8MD-5.
Synthesis of organosilicon episulfides.
a) 9.7 g (0.024 mol) of organosilicon oxirane (I), 27.4 g (0.036 mol) of thiourea, 50 g of absolute methyl alcohol and KOH are placed in round-bottom flask equipped with mechanical mixer. The content of flask is mixed for 24 h. After usual treatment and distillation of the solvent by vacuum 4.7 g of episulfide was isolated
(V): B.p.145 (0.5 mm merc.c.), n^ 1.4550,
df 0.9444, MR 96.10 (found), 96.51 (calculated). Yield - 58.3%. Found, %: C 57.76, 57.60; H 10.32, 10.43; S 9.75, 9.66; Si 8.60, 8.44. C16H34O3SSL Calculated, %: C 57.44; H 10.24; S 9.56; Si 8.39. The IR spectrum of this compound is presented in Figure 1.
There have been obtained the compounds (VI-XXI), physical-chemical constants of which have been presented in Table 1.
b) The reaction mixture consisting of 17.0 g (0.12 mol) of episulfide (V), 10.9 g (0.15 mol) of diethylamine is stirred at 400C to formation of thick mass. After distillation of the low-boiling components, 22.5 g of the compound (XXII) was isolated from residue by vacuum distillation. After the second distillation: B.p.
1810C (1mm merc.c.), ng0
1.4640, df 0.8555.
The compound XXIII was obtained similarly with b.p. 1920C (1.5 mm merc.c.), ng0 1.4670,
df 0.9480.
| CHjOOHJ
(tjH^jSfCHjijOCHjCH I OCHjCH—CHj
\ I llta, /f
f I'.W' I
1 Sjsis I P
—I—I—I—I—I—I—1—1—I—I—I—I—I—I—I—I ■ I ,
3000 2800 2600 1500 1300 1100 900 700 V"CM
Fig.1. IR spectrum of the compound (V). Table 1. Physical-chemical characteristics of episulfides_
75 cj MRd
o ^r o O Formula of compounds Yield, % Bp., (mm merc n20 nD d20 d4 Found Calculated
VI ^CH2OCH3 CH3(C2H5)2Si(CH2)3OCH2-CH A SOCH2CH—CH2 63 152 (0.3) 1.4530 0.9568 89.96 90.43
VII /CH2OCH3 CH3(C3H7)2Si(CH2)3OCH2-CH ^s noch2ch—CH2 60 158 (0.5) 1.4540 0.9476 95.03 95.02
VIII ^CH2OCH3 CH3(C4H9)2Si(CH2)3OCH2-CH /S XOCH2CH—CH2 62 165 (0.5) 1.4510 0.9370 103.64 104.52
IX xCH2OCH3 CH3(C6H5)2Si(CH2)3OCH2-CH OCH2CH—CH2 65 221 (0.5) 1.5430 1.07017 122.66 122.70
X yC H2C1 CH3(C2H5)2Si(CH2)3OCH2-CH noch2ch—CH2 66 156-157 (0.5) 1.4620 0.9217 91.00 90.44
XI ,CH2C1 CH3(C3H7)2Si(CH2)3OCH2-CH /S noch2ch—CH2 68.4 181 (0.5) 1.4630 0.9820 99.40 98.96
XII /CH2C1 CH3(C4H9)2Si(CH2)3OCH2-CH /S \)CH2CH—CH2 72 178 (0.5) 1.4650 0.9645 109.20 109.40
XIII ,CH2C1 CH3(C6H5)2Si(CH2)3OCH2-CH /S OCH2CH—CH2 79 221-222 (1) 1.5165 1.1006 121.20 121.04
d MRD
£ o t o O Formula of compounds Yield, % Bp., (mm merc n20 nD d20 d4 Found Calculated
/CH2OCH3
XIV CH3(C2H5)2SiCH=CHCH2OCH2CH s noch2ch—CH2 74 131.5 (0.5) 1.4630 0.9756 85.40 84.75
CH2OCH3
XV CH3(C3H7)2SiCH=CHCH2OCH2CH s XOCH2CH—CH2 72 141 (0.5) 1.4610 0.9578 94.70 94.75
/CH2OCH3
XVI CH3(C4H9)2SiCH=CHCH2OCH2CH s XOCH2CH—CH2 70 158 (0.5) 1.4620 0.9490 103.50 104.05
/CH2OCH3
XVII CH3(C6H5)2SiCH=CHCH2OCH2CH s XOCH2CH—CH2 80 201 (0.5) 1.5050 1.0460 95.98 95.25
XVIII CH2Br CH3(C2H5)2SiCH=CHCH2OCH2CH s noch2ch—CH2 79 186-187 (1) 1.5100 1.1779 92.4 92.81
XIX CH2Br CH3(C3H7)2SiCH=CHCH2OCH2CH s XOCH2CH—CH2 76 191-192 (1) 1.5160 1.1802 102.3 101.25
XX CH2Br CH3(C4H9)2SiCH=CHCH2OCH2CH s XOCH2CH—CH2 78 168-169 (1) 1.5240 1.1658 111.41 111.00
XXI ^CH2Br CH3(C6H5)2SiCH=CHCH2OCH2CH s \>CH2CH—CH2 80 203-204 (1) 1.5260 1.2250 114.5 114.00
Conclusions
1. The method of the synthesis of chloro-, bromo-, methoxy-containing saturated and unsaturated episulfides based on the interaction reaction of organosilicon saturated and unsaturated oxiranes with thiocarbamide in a medium of the absolute methyl alcohol in the presence of potassium hydroxide has been developed.
2. It has been shown that chloro-, bromo-, methoxy-containing saturated and unsaturated organosilicon episulphides are very reactive compounds and easily undergo the reaction with electrophilic and nucleophilic reagents, thus forming the corresponding silicon derivatives.
References
1. Voronkov M.G, Zelchan G.I, Lukevits E.Ya. Silicon and life. Riga: Zinatne, 1978. 588 s.
2. Sobolevsky M.V., Muzovskaya O.A., Popeleva G.S. Properties and applications of silicone products. M.: Chemistry, 1975. 296 p.
3. Borisov S.G., Voronkov M.G., Lukevits E.Ya. Sil-icone derivatives of phosphorus and sulfur. L.: Chemistry, 1968. P. 298.
4. Petrov A.D., Mironov V.F., Ponomarenko V.A., Sadykh-zade S.I., Chernyshev V.A. Izv. USSR Academy of Sciences, dep. chemical Sciences, 1958, 954 p.
5. Askerov O.V., Jafarov V.A., Guliyeva A.F. Khan-babaeva G.D. Halogen-containing heat-resistant composite materials based on silicone dioxides. / Int. scientific and technical conf. "Polymer Composites and Tribology (Polikomtrib-2017)", Gomel, Belarus, 2017. P. 110.
6. Askerov O.V, Jafarov V.A., Guliyeva A.F. Synthesis of Acetate and Silica Oxyoxanes / Materials Int. scientific Conf., dedicated to the 1150th anniversary of the Per-Sid-Tajik encyclopaedist, doc-
tor, alchemist and philosopher Abu-Bakr Mukha-med ibn Zakariya Razi, Dushanbe, 2016. 145 p.
7. Askerov O.V. Synthesis and some properties of silicone epoxy compounds. Dis.... cand. chem. sciences. Dnepropetrovsk: DGU, 1983. 136 p.
8. Bellamy L. New data on the IR spectra of complex molecules. M.: Mir, 1971. 318 p.
9. Kazitsina L.A., Kupletskaya N.B. The use of UV, IR and NMR spectroscopy in organic chemistry. M.: Higher School, 1971. 264 p.
SÍLÍSÍUM üzví epísulfídlorín síntezí va XASSOLORÍ
O.V.Osgarov, A.F.Mamm3dova, D.R.Nurullayeva
Tadqiqat naticasinda tiokarbamidla doymuç va doymamiç silisium oksiranlann mütlaq metil spirti mühitinda kalium hidroksidin içtiraki ila qarçiliqli tasiri naticasinda 65-75% çiximla doymuç va doymamiç silisium üzvi episulfidlarin sintez üsullari içlanib hazirlanmiçdir. Aparilan tadqiqatlar naticasinda açkar olunmuçdur ki, sintez olunmuç silisium üzvi episulfidlar yüksak reaksiyaya girma qabiliyyatina malik olub nukleofil va elektrofil reagentlarla reaksiyaya girarak müvafiq silisiumlu toramalarini amala gatirirlar. Alinan maddalarin ÍQ- spektrlari ôyranilmiçdir Bu zaman müayyan edilmiçdir ki, episulfid zancirinin CH2 qrupunun valent sûrûçmasi, oksiran zancirinin CH2 qrupunun valent sürüíj-masindan 50-70 sm-1 açagidir.
Açar sozlar: silisium üzvi episulfid, tiokarbamid, kalium hidroksid, metil spirti, silisium üzvi oksiranlar.
СИНТЕЗ И СВОЙСТВА КРЕМНИЙОРГАНИЧЕСКИХ ЭПИСУЛЬФИДОВ
О.В.Аскеров, А.Ф.Мамедова, Д.Р.Нуруллаева
Разработан метод синтеза предельных и непредельных кремнийорганических эписульфидов путем взаимодействия тиомочевины с предельными и непредельными кремнийорганическими оксиранами в среде абсолютного метилового спирта в присутствии КОН (выход до 65-75%). Выявлено, что синтезированные кремнийорганические эписульфиды, являются весьма реакционноспособными соединениями и могут вступать в реакцию с нуклеофильными и электрофильными реагентами, образуя при этом соответствлении производные кремния. Изучены ИК-спектры продуктов. Выявлено что, при сопоставлении ИК-спектров оксиранов и эписульфидов, валентное колебание СН2-группы эписульфидного кольца смещено, по сравнению с оксирановым кольцом, на 50-70 см-1.
Ключевые слова: кремнийорганические эписульфиды, тиомочевина, гидрооксь калия, метиловый спирт, кремнийорганические оксираны.