Научная статья на тему 'Structure of the numerical range of Friedrichs model with rank two perturbation'

Structure of the numerical range of Friedrichs model with rank two perturbation Текст научной статьи по специальности «Математика»

CC BY
77
14
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
European science
Область наук
Ключевые слова
МОДЕЛЬ ФРИДРИХСА / ВОЗМУЩЕНИЯ / КВАНТОВЫЕ ЧАСТИЦЫ / ПОЛЯ ЗНАЧЕНИЙ / СПЕКТР / ПОРОГОВЫЕ СОБСТВЕННЫЕ ЗНАЧЕНИЕ / ВИРТУАЛЬНЫЙ УРОВЕНЬ / FRIEDRICHS MODEL / PERTURBATION / QUANTUM PARTICLES / NUMERICAL RANGE / SPECTRUM / THRESHOLD EIGENVALUES / VIRTUAL LEVEL

Аннотация научной статьи по математике, автор научной работы — Bahronov Bekzod Islom O’G’Li, Rasulov Tulkin Husenovich

In this paper we consider a Friedrichs model with rank two perturbations. It is associated with a system of two quantum particles on ddimensional lattice. We investigate the structure of the closure of numerical range of this operator in detail by terms of its parameters for all dimensions d of the torus . For and we find the critical value of the parameter such that for all there is no eigenvalues outside of the essential spectrum of and for all there are two eigenvalues of . Moreover, we find the conditions, which guarantees that the set is closed.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

СТРУКТУРА ЧИСЛОВОЙ ОБЛАСТИ ЗНАЧЕНИЙ МОДЕЛИ ФРИДРИХСА С ДВУМЕРНЫМ ВОЗМУЩЕНИЕМ

В работе рассматривается модель Фридрихса с двумерным возмущением. Оно ассоциировано с системой двух квантовых частиц на -мерной решетке. Структура замыкания числовой области значений этого оператора подробно исследована в терминах его параметров при всех размерностях тора . Для и находим критическое значение параметра такое, что при всех не существуют собственные значения, лежащие вне существенного спектра оператора и для любых оператор имеет два собственных значения. Найдем условие, гарантирующее замкнутость множества .

Текст научной работы на тему «Structure of the numerical range of Friedrichs model with rank two perturbation»

STRUCTURE OF THE NUMERICAL RANGE OF FRIEDRICHS MODEL WITH RANK TWO PERTURBATION Bahronov B.I.1, Rasulov T.H.2 (Republic of Uzbekistan) Em ail: Bahronov451@scientifictext.ru

'Bahronov Bekzod Islom o 'g 'li - Master Student; 2Rasulov Tulkin Husenovich - PhD in Mathematics, Head of Department, DEPARTMENT OF MATHEMATICS, BUKHARA STATE UNIVERSITY, BUKHARA, REPUBLIC OF UZBEKISTAN

Abstract: In this paper we consider a Friedrichs model H with rank two perturbations. It is associated with a system of two quantum particles on d— dimensional lattice. We investigate the structure of the closure of numerical range W(H) of this operator in detail by terms of its

parameters for all dimensions d of the torus T . For d > 3 and X — 1,2 we find the critical value Ha of the parameter Ja > 0 such that for all J( £ (0;j(] there is no eigenvalues

outside of the essential spectrum of H and for all fj,a > Ja there are two eigenvalues of H .

Moreover, we find the conditions, which guarantees that the set W (H) is closed.

Keywords: Friedrichs model, perturbation, quantum particles, numerical range, spectrum, threshold

eigenvalues, virtual level.

СТРУКТУРА ЧИСЛОВОЙ ОБЛАСТИ ЗНАЧЕНИЙ МОДЕЛИ ФРИДРИХСА С ДВУМЕРНЫМ ВОЗМУЩЕНИЕМ Бахронов Б.И.1, Расулов Т.Х.2 (Республика Узбекистан)

'Бахронов Бекзод Ислом угли — магистрант; 2Расулов Тулкин Хусенович - кандидат физико-математических наук, заведующий кафедрой,

кафедра математики, Бухарский государственный университет, г. Бухара, Республика Узбекистан

Аннотация: в работе рассматривается модель Фридрихса H с двумерным возмущением. Оно ассоциировано с системой двух квантовых частиц на d —мерной решетке. Структура замыкания числовой области значений W(H) этого оператора подробно исследована в

терминах его параметров при всех размерностях d тора Td . Для d > 3 и a —1,2

находим критическое значение Ца параметра JUa > 0 такое, что при всех

Ja £ (0; Jx ] не существуют собственные значения, лежащие вне существенного

спектра оператора H и для любых Ja > Ja оператор H имеет два собственных значения. Найдем условие, гарантирующее замкнутость множества W(H) . Ключевые слова: модель Фридрихса, возмущения, квантовые частицы, поля значений, спектр, пороговые собственные значение, виртуальный уровень.

In a well-known monograph [1], Friedrichs considered the operator of multiplication by an independent variable as an unperturbed operator and chose a perturbation to be given by an integral operator. This model was subsequently called the model of the perturbation theory of the continuous spectrum because the continuous (essential) spectrum of a self-adjoint operator is unchanged under compact perturbation. The present paper is devoted to the study the numerical range of a Friedrichs model, where as a perturbation chosen an integral operator with rank two.

First, we recall the definition of numerical range. Let L be a complex Hilbert space with inner product (•; •) and H be a linear operator in L with domain D(H) C L. Then the numerical

range of an L is the subset of the complex numbers C, given by

W(H) := {(Hx, x) : x £ D(H), ||x|| = 1} . It was first studied by O.Toeplitz in [2]. In [3]

F.Hausdorff showed that indeed the set W(H) is convex. We recall that the numerical range of a bounded linear operator satisfies the so-called spectral inclusion property

W(H) c up (H), W(H) c u(H)

for the point spectrum U (H) (or set of eigenvalues) and the spectrum u(H) of H ; note

that W(H) is closed if dim L <<n .

The notion of numerical range is generalized by the different ways, see for example [4-7]. One important use of W(H) is to bound the spectrum u(H) .

For positive integer number d let Td be the d -dimensional torus, the cube (—ff, ff] with

appropriately identified sides equipped with its Haar measure and L2(Td ) be the Hilbert space of

square integrable (complex) functions defined on Td .

Let us consider a so-called Friedrichs model H acting on the Hilbert space L2 (Td )

H := H0 — juV + u2V2, (1)

where the operators H0 and V , X = 1,2 are defined by

(Hof)(p) = u(p)f (p), (Vaf)(p) = uava(p)\Td va(t)f (t)dt, x = 1,2.

Here ja > 0, X = 1,2 are positive reals, u(-) and Vi (•) , i = 1,2 are real-valued

continuous functions on Td . Under these assumptions, operator H defined by (1) is bounded and self-adjoint.

Notice that when we study the model operators associated to a system of three particles on ad -dimensional lattice [8-19] and interacting via non-local potentials, the role of a twoparticle discrete Schrodinger operator is played the Friedrichs model. Such type operators are also important in the investigations of the essential spectrum and the number of eigenvalues, located inside (in the gap, in the below of the bottom) of the essential spectrum of operator matrices [20-25].

It is clear that the essential spectrum of the operator H coincides with the spectrum of [m;M] , where the numbers m and M are defined by m := min u(p), M := max u(p).

p£Td p£Td

Throughout this paper, we assume that the function u(-) has the continuous partial derivatives up

to the third-order inclusive on Td , in addition it has an unique non-degenerate minimum at the point px £ T3 and an unique non-degenerate maximum at the point p2 £ T3. For the case d > 3 it is easy to check that the integrals

, vl(t)dt , vl(t)dt *Tdu(t) — m' >TdM — u(t),

are positive and finite. In this case we introduce the following quantities: j- uf(t )dt ^Td u(t) — m

0 _ f f ^12(t)dt \' 0 _ ^ u22(t)dt vl

j1:=|JT"u(t)- m ' U2:=|Jl

jTdM — u(t)

One can show that under the condition

mes(supp {u1(-)} o supp {u2(-)}) = 0. (3)

for any /a < /1°, C = 1,2 the operator H has no eigenvalues lying in the outside of [m;M] and for any / > /1°, C = 1,2 the operator H has two simple eigenvalues e1 e (-ro; m) and E2 e (M; ro).

The following theorem describes the numerical range W(H) of H . Theorem 1. Let d > 3 and the condition (3) be fulfilled.

1) If J < J0 for any a — 1,2, then w(h) — [m;m] — <r(H);

2) If j < j0 and j2 > j20, then w(h) — [m; E2] с );

3) If j > j0 and j2 < J0, then W(H) — [E:;m] с a(h);

4) If j > J0 for any a — 1,2, then W(H) — [ex;E2] с ).

A simple calculations show that if d — 1,2 and Ua (pa ) ^ 0, a — 1,2, then the integrals (2) are infinite. Therefore, for any Ja > 0, a — 1,2 the operator H has two simple eigenvalues Ej £ (-да; m) and e2 £ (m; да). From these fact it follows that

w (h) — E E2] c^(H).

References / Список литературы

1. Friedrichs K.O. Perturbation of spectra in Hilbert space // Amer. Math. Soc. Providence, Rhole Island, 1965.

2. Toeplitz O. Das algebraische Analogon zu einem Satze von Fejer // Math. Z., 2:1-2, 1918.. Pp. 187-197.

3. HausdorffF. Der Wertvorrat einer Bilinearform // Math. Z., 3:1, 1919. Pp. 314-316.

4. Langer H., Markus A.S., Matsaev V.I., Tretter C. A new concept for block operator matrices: the quadratic numerical range // Linear Algebra Appl., 330:1-3, 2001. Pp. 89-112.

5. Tretter C., Wagenhofer M. The block numerical range of an n x n block operator matrix // SIAM J. Matrix Anal. Appl. 24:4, 2003. 1003-1017.

6. Rodman L., Spitkovsky I.M. Ratio numerical ranges of operators // Integr. Equ. Oper. Theory. 71, 2011. Pp. 245-257.

7. Cheung W.-S., Liu X., Tam T.-Y. Multiplicities, boundary points and joint numerical ranges // Operators and Matrices. 5:1, 2011. Pp. 41-52.

8. Rasulov T.Kh. Asymptotics of the discrete spectrum of a model operator associated with the system of three particles on a lattice // Theor. Math. Phys., 163:1, 2010. Pp. 429-437.

9. Rasulov T.Kh. Essential spectrum of a model operator associated with a three particle system on a lattice // Theor. Math. Phys., 166:1, 2011. Pp. 81-93.

10. Rasulova Z.D. Investigations of the essential spectrum of a model operator associated to a system of three particles on a lattice // J. Pure and App. Math.: Adv. Appl., 11:1 (2014). Pp. 37-41.

11. Rasulova Z.D. On the spectrum of a three-particle model operator // J. Math. Sci.: Adv. Appl., 25, 2014. Pp. 57-61.

12. MuminovM.I., Rasulov T.H. Universality of the discrete spectrum asymptotics of the three-particle Schrodinger operator on a lattice // Nanosystems: Physics, Chemistry, Mathematics, 6:2, 2015. Pp. 280-293.

13. Rasulov T.Kh., Rasulova Z.D. On the spectrum of a three-particle model operator on a lattice with non-local potentials // Siberian Electronic Mathematical Reports. 12, 2015. Pp. 168-184.

14. Rasulov T.H. Number of eigenvalues of a three-particle lattice model Hamiltonian // Contemporary Analysis and Applied Mathematics. 2:2, 2014. Pp. 179-198.

15. Rasulov T.H., Rasulova Z.D. Essential and discrete spectrum of a three-particle lattice Hamiltonian with non-local potentials // Nanosystems: Physics, Chemistry, Mathematics, 5:3 (2014). P. 327.

16. Rasulov T.Kh., Mukhitdinov R.T. The finiteness of the discrete spectrum of a model operator associated with a system of three particles on a lattice // Russian Math., 58:1, 2014. Pp. 52-59.

17. Rasulov T.Kh. Structure of the essential spectrum of a model operator associated to a system of three particles on a lattice // J. Samara State Tech. Univ., Ser. Phys. and Math. Sci. 27:2, 2012. Pp. 34-43.

18. Rasulov T.Kh. On the essential spectrum of a model operator associated with the system of three particles on a lattice // J. Samara State Tech. Univ., Ser. Phys. and Math. Sci. 24:3, 2011. P. 42-51.

19. Rasulov T.Kh., Rakhmonov A.A. The Faddeev equation and location of the essential spectrum of a three-particle model operator // J. Samara State Tech. Univ., Ser. Phys. And Math. Sci. 23:2, 2011. Pp. 166-176.

20. Rasulov T.Kh. Study of the essential spectrum of a matrix operator // Theoret. And Math. Phys. 164:1, 2010. Pp. 883-895.

21. Muminov M.I., Rasulov T.H. The Faddeev equation and essential spectrum of a Hamiltonian in Fock Space // Methods Funct. Anal. Topology. 17:1, 2011. Pp. 47-57.

22. Muminov M.I., Rasulov T.H. Infiniteness of the number of eigenvalues embedded in the essential spectrum of a 2x2 operator matrix // Eurasian Mathematical Journal. 5:2, 2014. Pp. 60-77.

23. Muminov M.I., Rasulov T.H. Embedded eigenvalues of an Hamiltonian in bosonic Fock space // Comm. in Mathematical Analysis. 17:1, 2014. Pp. 1-22.

24. Muminov M.I., Rasulov T.H. On the eigenvalues of a 2x2 block operator matrix // Opuscula Mathematica. 35:3, 2015. Pp. 369-393.

25. Rasulov T.H. On the finiteness of the discrete spectrum of a 3x3 operator matrix // Methods of Functional Analysis and Topology, 22:1, 2016. Pp. 48-61.

i Надоели баннеры? Вы всегда можете отключить рекламу.