THRESHOLD EIGENVALUES OF A TWO-CHANNEL
MOLECULAR-RESONANCE MODEL Nematova Sh.B.1, Rasulov T.H.2 (Republic of Uzbekistan) Email: Nem [email protected]
'Nematova Shohida Bobojon qizi — Student; 2Rasulov Tulkin Husenovich — PhD in Mathematics, Head of Department, DEPARTMENT OF MATHEMATICS, BUKHARA STATE UNIVERSITY, BUKHARA, REPUBLIC OF UZBEKISTAN
Abstract: in the present paper we consider a two-channel molecular-resonance model. This model can be represented as a bounded and self-adjoint 2 X 2 operator matrix A acting in the two-particle cut subspace of standard Fock space. It is associated with the Hamiltonian of a system consisting at
most two particles, interacting via both a pair contact potentials ^ 0) and creation and
annihilation operators (^ > 0) . We construct the Fredholm determinant corresponding to A . We find some necessary and sufficient conditions for that the number z = min CTess (A) to be an eigenvalue (threshold eigenvalue) of A .
Keywords: threshold eigenvalue, molecular-resonance model, coupling constant, nuclear space, molecular space, Hamiltonian, operator matrix, essential spectrum.
ПОРОГОВЫЕ СОБСТВЕННЫЕ ЗНАЧЕНИЯ ДВУХКАНАЛЬНОЙ МОЛЕКУЛЯРНО-РЕЗОНАНСНОЙ МОДЕЛИ Неъматова Ш.Б.1, Расулов Т.Х.2 (Республика Узбекистан)
'Неъматова Шохида Бобожон кизи — студент; 2Расулов Тулкин Хусенович — кандидат физико-математических наук, заведующий кафедрой,
кафедра математики, Бухарский государственный университет, г. Бухара, Республика Узбекистан
Аннотация: в настоящей работе мы рассмотрим двухканальную молекулярно-резонансную модель. Этамодель представляется как ограниченная и самосопряженная 2 X 2 операторная матрица A действующая в двухчастичном обрезанном подпространстве стандартного фоковского пространства. Оно ассоциировано гамильтониановской системой, состоящей из не более чем двух частиц, взаимодействующих как с помощью парного контактного
потенциала ^ 0), так и с помощью операторов рождения и уничтожения (^ > 0) .
Построим определитель Фредгольма соответствующий к A. Найдем необходимые и достаточные условия для того, чтобы число z = min CTess (A) являлось собственным
значением (пороговые собственное значение) оператора A .
Ключевые слова: пороговые собственное значение, молекулярно-резонансной модель, параметр взаимодействия, ядерное пространство, молекулярное пространство, Гамильтониан, операторная матрица, существенный спектр.
We adopt the following conventions the present paper. Let C be the field of complex numbers, T3 be the three-dimensional torus, the cube (- 7, 7] with appropriately identified sides
equipped with its Haar measure and L2 (Г ) be the Hilbert space of square integrable (complex) functions defined on 1 . We consider a two-channel Hilbert space H := H0 © Hl consisting of a one-dimensional "molecular" space H0 := C (channel 1) and a "nuclear" space (channel 2). The
elements of H are represented as vectors f = ( f0,fj), where f G HQ and f G Hj. The inner product
f,g)H := f0g0 +(^gi)
of any two elements f = (f0, fj), g = (g0, gj )g H, is naturally defined via the inner products f0 g0 in H0 and ^fj, g^ in Hthat is
(fl,H :=i¿(O&tfdH
T 3
As a Hamiltonian in the Hilbert space H we consider the 2 X 2 block operator matrix
A:=
r A A ^
V A01 A11 y
(1)
where the matrix elements A : H ^ H , i < J, i, J = 0,1 are defined by
A00 f0 ^/p A01 ./1 = f J C^ > f\C^ , ,
T3
( A11/1 )( p )= C (P )/1 ( P ) - f 2 V2 CP)f 1 J V2 (t )/1 (t .
T 3
Here fla, = 1,2 are real numbers, CO0 G ^ is a trial "molecular" energy, a vector V1 G H1 provides the coupling between the channels and An is the (self-adjoint) "nuclear Hamiltonian" in H . We assume that the functions Ua C'),^ = 1,2 and C1 (') are real-valued continuous functions on T 3 .
Under these assumptions the operator A is bounded and self-adjoint.
It should be mentioned that the Hamiltonian (1) is a rather more general model than that one considered by Friedrichs [1] (for a some discussion of An see, e.g., [2,3] and the references cited therein).
Molecules are usually treated as purely Coulombic systems, while the strong interaction between their nuclear constituents is assumed to play a negligible role. If there is no coupling between the
channels for D1 = 0 the spectrum of A consists of the spectrum of Au and the addition
discrete eigenvalue Co . A nontrivial coupling between the channels will, in general, shift the
eigenvalue Co into an unphysical sheet of the energy plane. The resulting perturbed energy appears
as a resonance, i.e., as a pole of the analytic continuation of the resolvent ( A - z) 1 taken between suitable states (see [4]). In [5], the Hamiltonian (1) was studied in order to exhibit explicitly the mechanism leading to the enhancement of fusion probability in case of a narrow near-threshold nuclear resonance.
Let the operator A0 acts in H as
A :
r 0 0 ^
with Ulf )(p)= (p(P)
0 • 0 A0
{ 0 A11J
The perturbation A - A of the operator A0 is a self-adjoint operator of rank 3, and thus, according to the Weyl theorem, the essential spectrum of the operator A coincides with the essential
spectrum of A0 . It is evident that C7ess (A0 ) = [W; M], where the numbers W and MM are defined by
m:=min (ol (p ), M:=max®1( p ).
x ^ T x ^ T
This yields (Tess (A) = [w; M].
For any fixed Li , X = 1,2 we define an analytic function A (•) (the Fredholm
* x ^ ^ Li L2
determinant associated with the operator A ) in C \ [w; MM] by
A^ (z) := A^ (z) (z) + ( A(3) (z))2,
where the functions A(;) (•), A(2) (•) and A(3) (•) are defined by
A™(z):=c -zJuU^,
1 ) - z
A(2) (z):=1-^2 r-^-, A(3)(z):= J u (t)u(td.
A ^c^t) - z Тз c(t) - z
By the Birman-Schwinger principle and the Fredholm theorem we conclude that the operator A has an eigenvalue z e C \ Tm; M] if and only if A ( z) = 0.
Suppose that the function ¿¿^ (•) has an unique non-degenerate minimum at the point po e T3, the functions ^ (•) , V^= 1,2 have continuous partial derivatives up to order 3 inclusive at some neighborhood of the point po eT3 and Lebesques measure of supp{Ll(-)}o supp{L>2(-)} is equal to zero, where supply (•)} of the function L>a (•) .
u;(t)dt
For the case C0 > m we set
(co - m)
, u;2 (t )dt л
j co; (t) - m
2/
Ao :=
J
c 1 (t) - m
Main result of the paper is the following theorem
Theorem 1. The number Z = m is an eigenvalue of A with multiplicity 2 if and only if
Ma = M°a and va (p0) = 0 for a = l,2.
This result plays important role in the investigations of the essential and discrete spectrum of the corresponding 2 X 2 (see e.g., [6-13]), 3 X 3 (see e.g., [14-23]) and 4 X 4 (see e.g., [24, 25]) operator matrices in the cut subspaces of standart Fock space.
References / Список литературы
1. Friedrichs K.O. Uber die Spectralzerlegung einee Integral operators // Math. Ann., 115:1, 1938. Pp. 249-272.
2. Abdullaev Zh.I., Ikromov I.A., Lakaev S.N. Embedded eigenvalues and resonances of a generalized Friedrichs model // Theor. Math. Phys. 103:1. 1995. Pp. 390-398.
3. Muminov M.E. Expression for the number of eigenvalues of a Friedrichs model // Math. Notes, 82:1-2, 2007. Pp. 67-74.
4. Reed M., Simon B. Methods of modern mathematical physics. IV: Analysis of Operators // Academic Press, New York, 1979.
5. Motovilov A.K., Sandhas W., Belyaev Y.B. Perturbation of a lattice spectral band by a nearby resonance // J. Math. Phys. 42, 2001. Pp. 2490-2506.
6. Muminov M.I., Rasulov T.H. On the eigenvalues of a 2 X 2 block operator matrix // Opuscula Mathematica. 35:3, 2015. Pp. 369-393.
7. Muminov M.I., Rasulov T.H. Infiniteness of the number of eigenvalues embedded in the essential
spectrum of a 2 X 2 operator matrix // Eurasian Mathematical Journal. 5:2, 2014. Pp. 60-77.
8. Rasulov T.H., Dilmurodov E.B. Eigenvalues and virtual levels of a family of 2 X 2 operator matrices // Methods of Functional Analysis and Topology, 25:1, 2019. Рр.273-281.
9. Rasulov T.H., Dilmurodov E.B. Investigations of the numerical range of a operator matrix. J. Samara State Tech. Univ., Ser. Phys. and Math. Sci. 35:2, 2014. Pp. 50-63.
10. Rasulov T.H., Dilmurodov E.B. Threshold analysis for a family of 2 X 2 operator matrices // Nanosystems: Physics, Chemestry, Mathematics, 10, 2019. № 6. Pp. 616-622.
11. Rasulov T.H., Dilmurodov E.B. Threshold effects for a family of 2 X 2 operator matrices // Journal of Global Research in Mathematical Archives, 6, 2019. № 10, Pp. 4-8.
12. Dilmurodov E.B. On the virtual levels of a family matrix operators of order 2 // Scientific reports of Bukhara State University. 2019. № 1. Pp. 42-46.
13. Rasulov T.Kh., Dilmurodov E.B. Estimates for quadratic numerical range of a operator matrix // Uzbek Math. Zh., 2015. № 1. Pp. 64-74.
14. Rasulov T.H. On the finiteness of the discrete spectrum of a 3 X 3 operator matrix // Methods of Functional Analysis and Topology, 22:1, 2016. Pp. 48-61.
15. Rasulov T.Kh. Discrete spectrum of a model operator in Fock space // Theor. Math. Phys., 153:2, 2007. Pp. 1313-1321.
16. Rasulov T.Kh. On the number of eigenvalues of a matrix operator // Siberian Math. J. 52:2, 2011. Pp. 316-328.
17. Muminov M.I., Rasulov T.Kh. An eigenvalue multiplicity formula for the Schur complement of a 3 X 3 block operator matrix // Siberian Math. J., 56:4, 2015. Pp. 878-895.
18. Muminov M., Neidhardt H., Rasulov T. On the spectrum of the lattice spin-boson Hamiltonian for any coupling: 1D case // Journal of Mathematical Physics, 56, 2015. 053507.
19. Rasulov T.Kh. Branches of the essential spectrum of the lattice spin-boson model with at most two photons // Theoretical and Mathematical Physics, 186:2, 2016. 251-267.
20. Rasulov T., Tosheva N. New branches of the essential spectrum of a family of 3 X 3 operator matrices // Journal of Global Research in Math. Archive. 6:9, 2019. Pp. 18-21.
21. Muminov M.I., Rasulov T.H. Embedded eigenvalues of an Hamiltonian in bosonic Fock space // Comm. in Mathematical Analysis. 17:1, 2014. Pp. 1-22.
22. Rasulov T.H. The finiteness of the number of eigenvalues of an Hamiltonian in Fock space // Proceedings of IAM, 5:2, 2016. Pp. 156-174.
23. Rasulov T.Kh. Study of the essential spectrum of a matrix operator // Theoret. and Math. Phys. 164:1, 2010. Pp. 883-895.
24. Rasulov T.H. Investigations of the essential spectrum of a Hamiltonian in Fock space // Appl. Math. Inf. Sci. 4:3, 2010. Pp. 395-412.
25. Rasulov T.H., Muminov M.I., Hasanov M. On the spectrum of a model operator in Fock space // Methods Funct. Anal. Topology 15:4, 2009. Pp. 369-383.