SRSTI 53.31.15
https://doi.org/10.48081/GOJT6832
G. M. Bazenov1, *G.T. Itybayeva2, R. B. Kussainov3,
A. L. Galinovskiy4, Zh. K. Mussina5
1,2,3,5Toraighyrov University, Republic of Kazakhstan, Pavlodar;
4Bauman Chuvash State University, Russian Federation, Moscow.
*e-mail: galia-itibaeva@mail.ru
STRESS-DEFORMABLE STATE
OF GLASS DURING WATERJET CUTTING
The most common modern technology for cutting float glass is cutting with
cutting wheels, which have a wedge-shaped obtuse cross section and are made of
hard alloys. Cutting glass is the creation of a system of cracks. During this, an area
of destruction is inevitably formed, consisting of a large number of tiny digs and
cracks that occur because of the action of the cutting tool.
In the process of waterjet cutting, the depth of surface and lateral cracks
increases. In addition, this increases the variation in the depth of the middle cracks.
These factors worsen the quality of the cut and increase the likelihood of a split not
along the cut. All this results in the necessity to ensure the wheel sharpening angle,
pressure and cutting speed that are optimal for the quality of the cut. These optimal
values depend on the thickness of the glass and the retained stresses in the glass.
The quality of the cut depends on the number and depth of microcracks
(especially the middle ones). With a decrease in the angle of sharpening of the wheel,
an increase in cutting pressure and speed, the average depth of the median cracks
increases, which has a positive effect on the quality of the cut.
As a result of the conducted research, optimal parameters of waterjet cutting
(treatment) were established, namely, the angle of sharpening of the wheel (110°160°),
cutting pressure (35 N) and speed, which is favorable for the quality of the cut
and a reduction in the reject percentage.
Keywords: stress-deformable state, glass, waterjet cutting, wheel, sharpening,
sharpening angle.
Introduction
The most common modern technology for cutting float glass is cutting with cutting
wheels. The glass cutting wheels have a wedge-shaped obtuse-angle section and are
made of hard alloys (mainly based on tungsten carbide). The sharpening angle of the
wheel used depends on the thickness of the glass. In this case, the cutting takes place
in two stages: first a notch is made, that is a scratch is formed with a chain of cracks
appearing under it (usually from edge to edge of a sheet of glass with a straight cut),
and then a bending force is applied across the cutting line (splitting). Such glass cutting
is not cutting in the ordinary understanding of the word (such as cutting bread), but the
creation of microcracks in the glass under the action of a cutting wheel, along which
the glass then splits.
Thus, cutting glass is not cutting in the usual sense of the word, but the creation of
a system of cracks. In this case, an area of destruction is inevitably formed, consisting
of a large number of tiny digs and cracks that occur because of the action of the cutting
tool. A thinner trace, contributing to a better separation of the cut surfaces, is obtained
using a diamond. Diamond, being the hardest mineral, regardless of whether its natural
or polished face touches the glass, is the most suitable tool for cutting glass [1–7].
Materials and methods
The quality of the cut is influenced by many technological factors – the type
and quality of the wheels, the quality of their fixation in the cutting head, the cutting
pressure and speed, the brand of cutting fluid and the uniformity of its flow, the type
and thickness of the glass, the quality (roughness, presence of scratches, cuts, surface
bubbles and stones) and the temperature of its surface, the size of the glass sheets,
cutting chart, stress distribution in glass (annealing curve), etc. The quality of the cut
depends on the number and depth of microcracks (especially the middle ones). With
a decrease in the angle of sharpening of the wheel, an increase in cutting pressure and
cutting speed, the average depth of the middle cracks increases, has a positive effect
on the quality of the cut [8–14].
Waterjet treatment increases the depth of surface and lateral cracks. In addition,
this increases the variation in the depth of the middle cracks. These factors worsen the
quality of the cut and increase the likelihood of a split not along the cut. All this results
in the necessity to ensure the wheel sharpening angle, pressure and cutting speed that
are optimal for the quality of the cut. These optimal values depend on the thickness of
the glass and the retained stresses in the glass [15–21].
Results and discussions
Most manufacturers of cutting equipment give their recommendations on the
parameters of cutting various types of glass in the documentation for the equipment.
It is also very important to properly fix the wheel in the cutting head: it must rotate
freely around its axis, while remaining perpendicular to the plane of the glass. When
the wheel slips, a large number of cracks parallel to the surface are formed and the edge
of the glass is crumbling. With the inclined position of the wheel, the main crack does
not pass perpendicular to the surface of the glass and the cut is also non-perpendicular.
If the wheel swings on its axis, then the cut turns out to be intermittent and wavy and
therefore the split will be non-linear.
Figures 1, 2 and 3 show the types of glass cuts.
Figure 1 – A clean cut of good quality with small notches
Figure 2 – Poor quality of the cut with noticeable notches and chips
Figure 3 – Very bad cut with notches, chips and a jagged edge
The critical load of microcrack development depends on its depth. When splitting,
in the case of large bending loads applied to the cut, it is necessary to ensure a large
difference in size between the middle and other cracks. At the same time, the depth
of cracks is not too important here, since with large bending loads, the applied load
exceeds the critical value for most middle cracks.
As a result, for example, for cutting glass of large thickness, it is necessary to
select cutting parameters in such a way as to reduce the number of surface and lateral
cracks, even at the expense of a general reduction in the size of all cracks, including the
«useful» middle ones. For this reason, for cutting heavy thickness glasses, equipment
manufacturers recommend wheels with a high sharpening angle. Depending on the
thickness of the glass and the equipment used, wheels with a sharpening angle from
110° (for thin glass) to 165° (for thick glass) are used. For example, Bottero company
recommends using the following wheels for its cutting tables, depending on the thickness
of the glass: 4–6 mm – 145°, 8–19 mm – 155°, 25 mm – 160°. When increasing the
thickness of the glass, it is also recommended to increase the cutting pressure and
reduce its speed.
The recommendations of Bohle company on the choice of the angle of sharpening
of the wheel for rectangular cutting of float glass are given in Table 1.
Table 1 – Recommended sharpening angles of the wheel (diameter 5 mm)
Glass thickness Sharpening angle
0.8-1.0 mm 110°
1.0-2.0 mm 120°
2.0-3.0 mm 130°
3.0-4.0 mm 135°
4.0-10.0 mm 140°
5.0-12.0 mm 145°
8.0-15.0 mm 150°
10.0-20.0 mm 155°
20.0-25.0 mm 160°
Figure 4 shows the distribution of stresses created by the wheel over the thickness
of the glass.
Figure 4 – Distribution of stresses created
by the wheel over the thickness of the glass
Figure 5 shows the stress distribution in the glass after cutting.
Figure 5 – Stress distribution in glass
1 – cutting depth; 2 – pressure depth; 3 – tensile stress;
4 – compressive stress; 5 – reduced tensile stress
The wheel force is the most important cutting parameter. Figure 6 shows photographs
(in polarized light) of the edge of the glass. Cutting was performed with wheels with
the same sharpening angle (135°), but at different pressures: 35 N, 100 N and 35 N
(photo 30 minutes after cutting).
35 N 100 N 35 N (in 30 minutes)
Figure 6 – Stress distribution in glass
Conclusions
As a result of the conducted research, optimal parameters of waterjet cutting
(treatment) were established, namely, the angle of sharpening of the wheel (110°-160°),
cutting pressure (35 N) and speed, which is favorable for the quality of the cut and a
reduction in the reject percentage.
ReFeReNCeS
1 Popelyukh, A. I., Tyurin, A. G., Plotnikova, N. V. Promising methods of
material processing: Textbook– Chelyabinsk: SUSU Publishing House, 2014. – P. 49.
2 Ablyaz, T. R., Vil’deman, V. E., Muratov, K. R. et al. Mechanical Properties
of Products after electric-Discharge Machining // Russian engineering Research, 2018
– Vol. 39 – Issue 10 – P. 892–894.
3 Dudak, N. S., Itybaeva, G. T., Musina, Zh. K. et al. A New Pass-Through
Lathe Cutter // Russian engineering Research, 2014 – Vol. 34 – Issue 11 – P. 705–707.
4 Zvezdin, V. V., Khisamutdinov, R. M., Grechishnikov, V. A. et al. Laser
Machining of Tool Steels // Russian engineering Research, 2018 – Vol. 38 – Issue
12 – P. 1038–1041.
5 Mukanov, R. B., Kasenov, A. Z., Itybaeva, G. T. et al. Face Turning of Holes
// Russian engineering Research, 2019 – Vol. 39 – Issue 1 – P. – 75–78.
6 El-Hofy, H. Advanced machining processes. Nontraditional and Hybrid machining
processes // The McGraw-Hill Companies. – 2005. – P. 32–46.
7 Ospantaev, M. K. Geometric parameters of a peakless cutting tool in the
instrumental coordinate system // Science and Technology of Kazakhstan. – 2022. – №
1. – P. 40–51. – DOI 10.48081/VYTH5824.
8 Mendaliyeva, S. I., Kossatbekova, D. Sh., Akulovich, L. M. Technology and
equipment of hydraulic cutting and waterjet treatment in modern mechanical engineering
// Bulletin of Science of the Kazakh Agrotechnical University named after S. Seifullin.
– 2016. – № 2 (89). – P. 144–153.
9 Galinovsky, A. L., Tarasov, V. A., Elfimov, V. M. Minimization of the
technological cost of waterjet cutting taking into account the cost and technological
parameters of the treatment process // News of higher educational institutions
«Mechanical Engineering». – 2011. – № 4. – P. 46–54.
10 Stepanova, E. Yu., Kozhus, O. G., Barsukov, G. V. Innovative cutting
technologies with supersonic liquid jet: economy, market, state and prospects of
development // Bulletin of the Bryansk State Technical University. – 2017. – № 1
(54). – P. 243–253.
11 Stepanov, Yu. S., Barsukov, G. V., Alyushin, E. G. Modern technologies of
hydro- and hydroabrasive processing of workpieces // Science-driven technologies in
mechanical engineering. – 2012. – № 6. – P. 15–20.
12 Tikhonov, A. A. Improving the efficiency of the process of waterjet treatment:
dissertation, Candidate of Technical Sciences. Rostov-on-Don. 2011. – P. 156.
13 Verchenko, A. V., Tamarkin, M. A., Kishko, A. A. Research of the roughness
of the cut surface in case of waterjet cutting // Advanced engineering Research. 2017.
– № 2 (89). – P. 116–130.
14 Smirnov, M. I., Spiridonov, Yu. A., Karapetyan, A. R. Modern technologies
of sheet glass cutting // Glass and ceramics. – 2011 – № 1 – P. 6–10.
15 Galinovskiy, A. L., Izotov, N. A. An experimental study of hydroerosion
of surface of a chill metal under the influence of an abrasive-liquid ultra-jet // AIP
Conference Proceedings, 2021 – Vol. 2318. – Art. No 150013.
16 Dudak, N., Itybaeva, G., Kasenov, A. et al. Multi-flute drill-broach for precision
machining of holes // Scientia Iranica, 2019 – Vol. 26 – Issue 3 – P. 1415–1426.
17 Popov, V., Yanyushkin, A., Arkhipov, P. Combined electric diamond grinding
of materials prone to adhesive diffusive interaction // Materials Today: Proceedings this
link is disabled, 2019 – № 11 – P. 36–41.
18 Shpilev, V. V. Improving the efficiency of the process of waterjet cutting of
sheet parts by optimizing the processing modes and parameters of the working fluid
jet: dissertation, Candidate of Technical Sciences. Saratov, 2012. – P. 147.
19 Kasenov, A. Precision of hole processing by reamer-broaching // Science and
Technology of Kazakhstan. – 2023. – № 1. – P. 28–36. – DOI 10.48081/MSMF5347
20 Bazenov, G. M. On the issue of the use of waterjet treatment in modern
mechanical engineering // Science and Technology of Kazakhstan. – 2021. – № 2. – P.
39-47. – DOI 10.48081/BDFH9117
Material received on 22.07.23.
СпиСок иСпользованных иСточников
1 Попелюх, А. И., Тюрин, А. Г., Плотникова, Н. В.
перспективные способы
обработки материалов: Учебное пособие – челябинск: изд-во ЮУрГУ, 2014. – 49 с.
2 Ablyaz, T. R., Vil’deman, V. E., Muratov, K. R. et al. Mechanical Properties
of Products after electric-Discharge Machining // Russian engineering Research, 2018
– Vol. 39 – Issue 10 – P. – 892–894.
3 Dudak, N. S., Itybaeva, G. T., Musina, Zh. K. et al. A New Pass-Through
Lathe Cutter // Russian engineering Research, 2014 – Vol. 34 – Issue 11 – P. 705–707.
4 Zvezdin, V. V., Khisamutdinov, R. M., Grechishnikov, V. A. et al. Laser
Machining of Tool Steels // Russian engineering Research, 2018 – Vol. 38 – Issue
12 – P. – 1038–1041.
5 Mukanov, R. B., Kasenov, A. Z., Itybaeva, G. T. et al. Face Turning of Holes
// Russian engineering Research, 2019 – Vol. 39 – Issue 1 – P. – 75–78.
6 El-Hofy, H. Advanced machining processes. Nontraditional and Hybrid machining
processes // The McGraw-Hill Companies. – 2005. – P. 32–46.
7 Ospantaev, M. K. Geometric parameters of a peakless cutting tool in the
instrumental coordinate system // Science and Technology of Kazakhstan. – 2022. –
№. 1. – P. 40–51. – DOI 10.48081/VYTH5824.
8 Мендалиева, С. И., Косатбекова, Д. Ш., Акулович, Л. М.
технология
и оборудование гидрорезки и
гидроабразивной обработки
в современном
машиностроении // вестник науки казахского агротехнического университета
имени С. Сейфуллина. – 2016. – № 2 (89). – С. 144–153.
9 Галиновский, А. Л., Тарасов, В. А., Елфимов, В. М.
Минимизация
технологической
себестоимости
гидроабразивного резания с учетом стоимостных
и технологических параметров процесса обработки // известия высших учебных
заведений «Машиностроение». – 2011. – № 4. – С. 46–54.
10 Степанова, Е. Ю., Кожус, О. Г., Барсуков, Г. В.
инновационные
технологии
резания сверхзвуковой
струей
жидкости: экономика, рынок, состояние
и перспективы развития // вестник Брянского государственного технического
университета. – 2017. – № 1 (54). – С. 243–253.
11 Степанов, Ю. С., Барсуков, Г. В., Алюшин, Е. Г.
Современные технологии
гидро-и гидроабразивной обработки заготовок // наукоемкие технологии в
машиностроении. – 2012. – № 6. – С. 15–20.
12 Тихонов, А. А.
повышение
эффективности процесса
гидроабразивной
обработки: дис. кандидат технических наук. Ростов-на-Дону. 2011. – 156 с.
13 Верченко, А. В., Тамаркин, М. А., Кишко, А. А.
исследование
шероховатости поверхности реза
при гидроабразивной резке
//
Advanced
Engineering Research. 2017. – № 2 (89). – С. 116–130.
14 Смирнов, М. И., Спиридонов, Ю. А., Карапетян, А. Р.
Современные
технологии резки листового стекла // Стекло и керамика. – 2011 – №1 – С. 6–10.
15 Galinovskiy, A. L., Izotov, N. A. An experimental study of hydroerosion
of surface of a chill metal under the influence of an abrasive-liquid ultra-jet // AIP
Conference Proceedings, 2021 – Vol. 2318. – Art.no 150013.
16 Dudak, N., Itybaeva, G., Kasenov, A. et al. Multi-flute drill-broach for precision
machining of holes // Scientia Iranica, 2019 – Vol. 26 – Issue 3 – P. 1415–1426.
17 Popov, V., Yanyushkin, A., Arkhipov, P. Combined electric diamond grinding
of materials prone to adhesive diffusive interaction // Materials Today: Proceedingsthis
link is disabled, 2019 – № 11 – P. 36–41.
18 Шпилев, В. В.
повышение эффективности процесса гидроабразивной
резки листовых деталей путем оптимизации режимов обработки и параметров
струи рабочей жидкости: дис. канд. техн. наук. Саратов, 2012. – 147 с.
19 Kasenov, A. Precision of hole processing by reamer-broaching // Science and
Technology of Kazakhstan. – 2023. – № 1. – P. 28–36. – DOI 10.48081/MSMF5347.
20 Bazenov, G. M. On the issue of the use of waterjet treatment in modern
mechanical engineering // Science and Technology of Kazakhstan. – 2021. – № 2. – P.
39–47. – DOI 10.48081/BDFH9117.
Г. М. Базенов1, *Г. Т. Итыбаева2, Р. Б. Кусаинов3,
А. Л. Галиновский4, Ж. К. Мусина5
1,2,3,5торайғыров университеті, Қазақстан Республикасы, павлодар қ.;
4н. Э. Бауман атындағы Мәскеу мемлекеттік техникалық университеті,
Ресей Федерациясы, Мәскеу қ.
Материал 22.07.23 баспаға түсті.
ГИДРОАБРАЗИВТІ КЕСУ КЕЗІНДЕГІ ШЫНЫНЫҢ
КЕРНЕУ-ДЕФОРМАЦИЯЛАУ КҮЙІ
Флоат шыныларды кесудің
ең кең таралған заманауи технологиясы-сына
тәрізді доғал
қимасы бар және қатты қорытпалардан жасалған кескіш
роликтермен кесу. Шыны кесу-бұл жарықтар жүйесін құру. Бұл жағдайда
кесу құралының әсерінен пайда болатын көптеген ұсақ сынықтар мен
жарықтардан тұратын жойылу аймағы сөзсіз қалыптасады.
Гидроабразивті өңдеу кезінде беткі және бүйірлік жарықтардың
тереңдігі артады. Сонымен қатар, бұл ортаңғы жарықтардың тереңдігі
бойынша таралуды арттырады. Бұл факторлар кесу
сапасын нашарлатады
және кесілмеген ақаулардың ықтималдығын арттырады. Мұның бәрі роликті
қайрау бұрышының, қысымның және кесу жылдамдығының кесу сапасы үшін
оңтайлы мәндерін қажет етеді. Бұл оңтайлы мәндер шыны қалыңдығына
және шыныдағы қалдық кернеулерге байланысты.
Кесу сапасы микрожарықтардың саны мен тереңдігіне байланысты
(әсіресе орташалар). Роликтің қайрау бұрышы азайған кезде, қысым және
кесу жылдамдығы жоғарылағанда, ортаңғы жарықтардың орташа тереңдігі
артады, бұл кесу сапасына оң әсер етеді.
Жүргізілген зерттеулер нәтижесінде гидроабразивті кесудің (өңдеудің)
оңтайлы параметрлері анықталды, атап айтқанда роликті қайрау бұрышы
(110°-160°), қысым (35Н) және кесу жылдамдығы, бұл кесу сапасына және
ақау пайызының төмендеуіне жағымды әсер етеді.
Кілтті сөздер: кернеулі деформацияланатын күй, шыны, гидроабразивті
кесу, ролик, қайрау, қайрау бұрышы.
Г. М. Базенов1, *Г. Т. Итыбаева2, Р. Б. Кусаинов3,
А. Л. Галиновский4, Ж. К. Мусина5
1,2,3,5торайгыров университет, Республика казахстан, г. павлодар;
4Московский государственный технический университет
имени н. Э. Баумана, Российская Федерация, г. Москва.
Материал поступил в редакцию 22.07.23.
НАПРЯЖЕННО-ДЕФОРМИРУЕМОЕ СОСТОЯНИЕ
СТЕКЛА ПРИ ГИДРОАБРАЗИВНОЙ РЕЗКЕ
Наиболее распространенной современной технологией раскроя флоатстекла
является резка режущими роликами, которые имеют клиновидное
тупоугольное сечение и изготавливаются из твердых сплавов. Резка стекла
является созданием системы трещин. При этом неизбежно образуется
область разрушения, состоящая из большого количества мельчайших выколок
и трещин, возникающих под действием режущего инструмента.
При гидроабразивной обработке увеличивается глубина поверхностных
и боковых трещин. Кроме того, при этом увеличивается разброс по глубине
срединных трещин. Эти факторы ухудшают качество реза и увеличивают
вероятность разлома не по резу. Все это приводит к тому, что необходимы
оптимальные для качества реза значения угла заточки ролика, давления и
скорости реза. Эти оптимальные значения зависят от толщины стекла и
остаточных напряжений в стекле.
Качество реза зависит от количества и глубины микротрещин (в
особенности срединных). При уменьшении угла заточки ролика, увеличении
давления и скорости реза средняя глубина срединных трещин увеличивается,
что положительно влияет на качество реза.
В результате проведённых исследований установлены оптимальные
параметры гидроабразивной резки (обработки), а именно угла заточки ролика
(110°–160°), давления (35Н) и скорости реза, что благоприятно влияет на
качество реза и уменьшение процента брака.
Ключевые слова: напряженно-деформируемое состояние, стекло,
гидроабразивная резка, ролик, заточка, угол заточки.