Научная статья на тему 'Статистическое описание формирования микрогеометрии поверхности износостойких порошковых покрытий при трении скольжения'

Статистическое описание формирования микрогеометрии поверхности износостойких порошковых покрытий при трении скольжения Текст научной статьи по специальности «Физика»

CC BY
94
32
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ПОРОШКОВОЕ ПОКРЫТИЕ / ТРЕНИЕ СКОЛЬЖЕНИЯ / ИЗНОС / ПОВЕРХНОСТЬ ТРЕНИЯ / ТЕОРИЯ ВЕРОЯТНОСТЕЙ / БИНОМИАЛЬНОЕ РАСПРЕДЕЛЕНИЕ / POWDER COVERING / SLIDING FRICTION / WEAR / FRICTION SURFACE / PROBABILITY THEORY / BINOMIAL DISTRIBUTION

Аннотация научной статьи по физике, автор научной работы — Винокуров Геннадий Георгиевич, Попов Олег Николаевич

В работе разработано теоретико-вероятностное описание поверхности трения износостойких порошковых покрытий. При описании микрогеометрии поверхности трения учитывается макроструктура сечения порошковой среды, которая задается матричной статистической моделью. Вычислены условные вероятности линейного износа поперечных профилей, построено их двумерное распределение. Показано, что разработанный подход качественно описывает характерное строение поверхности трения износостойких порошковых покрытий.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по физике , автор научной работы — Винокуров Геннадий Георгиевич, Попов Олег Николаевич

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

STATISTICAL DESCRIPTION OF FORMATION THE SURFACE MICROGEOMETRY OF THE WEAR-RESISTANT POWDER COVERINGS AT SLIDING FRICTION

In work the probability-theoretic description of a friction surface of wear-resistant powder coverings is developed. At the description of microgeometry of a friction surface the macrostructure of powder section which is set by matrix statistical model is considered. The relative probabilities of the linear wear of transversal profiles are calculated, their bivariate distribution is constructed. It is shown that the developed approach qualitatively describes the reference structure of a friction surface of wear-resistant powder coverings.

Текст научной работы на тему «Статистическое описание формирования микрогеометрии поверхности износостойких порошковых покрытий при трении скольжения»

УДК 621.921.34:621.7.044.2

СТАТИСТИЧЕСКОЕ ОПИСАНИЕ ФОРМИРОВАНИЯ МИКРОГЕОМЕТРИИ ПОВЕРХНОСТИ ИЗНОСОСТОЙКИХ ПОРОШКОВЫХ ПОКРЫТИЙ ПРИ ТРЕНИИ СКОЛЬЖЕНИЯ

© 2014 Г.Г. Винокуров1, О Н. Попов2

1 Институт физико-технических проблем Севера им. В.П. Ларионова СО РАН,

г. Якутск

2 НИИ математики, Институт математики и информатики Северо-Восточного федерального университета им. М.К. Аммосова, г. Якутск

Поступила в редакцию 03.03.2013

В работе разработано теоретико-вероятностное описание поверхности трения износостойких порошковых покрытий. При описании микрогеометрии поверхности трения учитывается макроструктура сечения порошковой среды, которая задается матричной статистической моделью. Вычислены условные вероятности линейного износа поперечных профилей, построено их двумерное распределение. Показано, что разработанный подход качественно описывает характерное строение поверхности трения износостойких порошковых покрытий.

Ключевые слова: порошковое покрытие, трение скольжения, износ, поверхность трения, теория вероятностей, биномиальное распределение

Процесс изнашивания порошковых покрытий при трении скольжения зависит от фактической площади контакта, величина которой определяется микрогеометрией поверхности трения. На формирование микрогеометрии поверхности трения, безусловно, влияет и случайная макроструктура порошкового покрытия, поэтому статистические закономерности, описывающие макроструктуру износостойких покрытий, полученных высокоэнергетическими методами, проявляются и в процессе их изнашивания. С целью описания случайной макроструктуры в настоящее время широко используются статистические модели порошковой среды, которые с развитием информационных технологий достаточно развиты [1-8]. Для исследования микрогеометрии поверхности трения наиболее эффективным становится использование двумерных вероятностно-геометрических моделей изнашивания порошкового покрытия. Дело в том, что в описании процессов изнашивания при трении скольжения путь трения является выделенным направлением, поэтому в перпендикулярной к данному направлению плоскости характеристики микрогеометрии являются статистически однородными величинами. При таком упрощении одномерные характеристики вероятностно-геометрических

Винокуров Геннадий Георгиевич, кандидат технических наук, ведущий научный сотрудник Отдела материаловедения. Е-шаИ: [email protected] Попов Олег Николаевич, кандидат технических наук, доцент. Е-шаП: [email protected]

систем порошковой среды описываются законами классической теории вероятностей и могут сопоставляться со случайными величинами микрогеометрии поверхности трения, распределение и моменты которых можно оценить обработкой профилограмм, поперечных пути трения.

Цель работы: разработка теоретико-вероятностного подхода для описания микрогеометрии поверхности трения износостойкого порошкового покрытия с учетом макроструктуры порошковой среды.

Биномиальная модель для описания изнашивания сечения порошковых покрытий при трении скольжения. В работе для описания микрогеометрии поверхности трения покрытий использована элементарная модель макроструктуры порошковой среды на основе матричной вероятностно-геометрической системы частиц [1], которая ранее развита и использована авторами для моделирования изнашивания порошковых покрытий и материалов при трении скольжения [8]. Вследствие сравнительной простоты выбранная матричная вероятностно-геометрическая система позволяет рассматривать практически неограниченную порошковую среду, между тем более сложные модели допускают описание только до нескольких десятков тысяч взаимодействующих частиц. Так как сопротивление разрушению порошковой среды определяется, в основном, когезией частиц, то для учета макроструктуры при трении скольжения необходимо было связать ее характеристики с вероятностью

удаления отдельной частицы на поверхности трения. В модели было предположено, что удаление частиц с поверхности трения при установившемся изнашивании является испытанием Бернулли. За событие принято удаление частицы порошкового покрытия, второе событие - что частица остается в материале, дополнительно к первому. Так как удаления частиц являются независимыми событиями с повторением испытаний, то вероятность удаления из поверхности трения к частиц будет иметь вид биномиального распределения (закон Бернулли) [8, 9]:

Р (к) =

I!

к!(1 - к )!'

ук (1 - р)1 -к

(1)

где р - вероятность удаления частицы порошкового покрытия из всей поверхности трения, определяется размерами матрицы вероятностно-геометрической системы; I - общее количество испытаний Бернулли [8, 9].

В предложенной модели выражение (1) описывает распределение линейного износа поперечного сечения поверхности трения порошкового покрытия; количество испытаний I соответствует пути трения. Как известно, по теореме Муавра-Лапласа при 1^-<х> биномиальное распределение (1) стремится к нормальному [9], что соответствует известной закономерности профиля равновесной поверхности трения материалов в трибологии.

Двумерное распределение линейного износа поперечного профиля. Как установлено в многочисленных работах по трибологии, металлографические и профилометрические исследования показывают образование характерных продольных борозд по пути трения. Для описания микрогеометрии поперечного профиля

поверхности порошковых покрытий разработанная модель развита в следующем направлении.

Для описания характерных борозд вдоль пути трения необходимо рассматривать взаимосвязь значений линейного износа поперечного профиля при двух значениях пути трения I и 1+Л1 с учетом вероятностей (1). С этой целью необходимо построить двумерное распределение случайных величин Щ) и к(1+Л1), которые являются зависимыми. Поэтому данное распределение состоит из условных вероятностей случайной величины Щ+ёГ), если при пути трения I линейный износ составлял Щ). Таким образом, условные вероятности задаются произведениями выражений из распределения (1). Двумерное распределение также зависит от переменных I, Л1; по его виду можно оценить взаимосвязь значений линейного износа в зависимости от пути трения. Здесь можно отметить, что приращение Л является существенно положительной величиной, поэтому увеличение пути трения в выражении (1) означает переход к последующим поперечным профилям порошкового покрытия.

В разработанной модели случайные величины к(1) и Щ+ЛГ) являются дискретными; учитывая биномиальное распределение (1) и то, что линейный износ по пути трения не может уменьшаться, двумерное распределение можно выразить матрицей (табл. 1). Здесь случайная величина к(1) задана по столбцам, к(1+Л1) - по строкам, также предположено 1>Л1. Как видно из табл. 1, матрица является прямоугольной, заполняется сложным образом: в области в виде параллелограмма расположены произведения вероятностей из выражения (1) (ненулевые ячейки матрицы указаны полужирным шрифтом); остальные элементы матрицы тождественно равны нулю.

Таблица 1. Распределение линейного износа поперечного профиля

\*(0 А(/+М/)\ 0 1 2 м /

0 Р(0)Рл(0) 0 0 0 0

1 РМРшП) Р(1)Рш(0) 0 0 0

2 Р1(0)РЛ(2) Р(1)Рш(1) Рь(2)Рш(0) 0 0

• ♦ ♦ •

Л1 Р1(0)Рм(М) Р1(1)Рм(М -1) Р1(2)РЛ1(Ш-2) Рт)Р&(0) 0

Л1+1 0 Р(1)РМ Р1(2)Ра1(Ш-1) Р(М)Ра(1) 0

Л1+2 0 0 Р(2)РЛ1(М) Р1(Ш)Рш(2) • 0

• •

1+Л1-1 0 0 0 0 • Р1(1)Ра1(М-1)

1+Л1 0 0 0 0 Р1(1)Ра(М)

Обсуждение результатов. На рис. 1 приведен поверхностный график двумерного распределения. Расчеты проведены при различных

значениях пути трения и его приращения, разных вероятностях удаления частицы порошкового покрытия. Как видно из графика, функция

имеет узкую область ненулевых значений в направлении, обусловленном ростом среднего значения линейного износа р/, вне области быстро снижается. Ненулевые значения двумерного распределения в области линейного износа свидетельствуют о том, что всегда существует корреляция координат поперечного профиля вдоль пути трения. Таким образом, распределение табл. 1 качественно описывает формирование характерных борозд на поверхности трения порошкового покрытия. При небольших вероятностях удаления частицы р функция распределена в области малых значений к(/) вследствие небольшого уровня среднего линейного износа р1.

<(/) = 4 /р(1 - р)

<(/+а/) = 4 (/+а/) р(1 - р)

(3)

тогда коэффициент корреляции линейных изно-сов двух профилей определяется простым выражением:

к =

<(/)

/

<(/+а/) М /+а/

(4)

к(/+а/)

Рис. 1. Двумерное распределение линейного износа; путь трения / =40, а/=30, р=1/8.

Количественные характеристики двумерного распределения в табл. 1 - математические ожидания, дисперсии, среднеквадратические отклонения двух случайных величин - линейных износов к(/) и Щ-Щ можно рассчитать по известным общим формулам теории вероятностей [9]. В работе также использованы простые выражения для числовых характеристик двух случайных величин - математических ожиданий: < к(/) >= ф , (2)

< к (/+а/) >= (/+а/) р

и среднеквадратических отклонений:

Как видно из уравнений (2), угловой коэффициент прямой линейной регрессии равен 1,

Как видно из данной формулы, коэффициент корреляции не зависит от вероятности удаления частицы, а определяется текущим значением пути трения и расстоянием между поперечными профилями а.

На рис. 2 приведены графики зависимостей математических ожиданий и среднеквадратиче-ских отклонений линейного износа Щ+йЦ от приращения пути трения при различных параметрах расчетов: пути трения и вероятности удаления частицы. Данные, обозначенные маркерами на рис. 2, получены расчетами в МаЮаё, линиями - по формулам (2)-(3). Как видно из графиков и в согласии с известными формулами теории вероятностей [9] и (2), математические ожидания биномиального распределения являются линейными функциями, описываются прямыми линиями (рис. 2). Увеличение пути трения при постоянной вероятности удаления частицы р приводит к параллельному смещению прямой линии вверх. Среднеквадратическое отклонение случайной величины Щ+О/) с биномиальным распределением, как видно из (3), изменяется по зависимости -^Л)1^ [9], увеличение пути трения и вероятности удаления приводят к его росту (рис. 2).

Далее, для количественной оценки взаимосвязи линейного износа при значениях пути трения / и можно вычислять коэффициент корреляции случайных величин к( ) и к( +а ) по найденному распределению (табл. 1) с формулой теории вероятностей [9]. На рис. 3 приведены графики зависимостей коэффициента корреляции линейных износов поперечных профилей от приращения пути трения.

Следует отметить, что приращение пути трения означает расстояние между двумя поперечными профилями. Расчеты также проведены при различных значениях пути трения и вероятности удаления частицы порошкового покрытия. Данные, обозначенные маркерами на рис. 3, также получены расчетами в МаЮаё, линиями -по формуле (4). Как видно из графиков 1, 7, 6 на рис. 3, коэффициент корреляции не зависит от вероятности удаления частицы, что согласуется с формулой (4). При малых значениях пути трения с увеличением приращения а коэффициент корреляции снижается (рис. 3). Это означает, что линейные износы к( ) и к( +а ) поперечных сечений в начале пути трения слабо коррелируют.

Однако, как видно из графиков, увеличение пути статистическая модель изнашивания покрытий, трения приводит к росту коэффициента корре- учитывающая макроструктуру порошковой сре-ляции. Данная закономерность отражает форми- ды, позволяет качественно описывать формиро-рование характерных борозд вдоль пути трения вание микрогеометрии поверхности трения попри установившемся износе. Таким образом, рошковых покрытий.

25

20

15

10

» А' С

ж. А Г

' -1 ж -А Е"

1 ы - • 1 У Ы" к | ■ 1 1 ы ы н

Ж 1 ■ 5

♦ 3

□ 7 -4

---2

8

----6

0 30 60 30 120 150 1:11

Рис. 2. Характеристики линейного износа - математические ожидания: 1,2- Ь=8, р=1/8;3,4- Ь=40, р=1/8; среднеквадратические отклонения: 5,6- Ь=1/8, р=1/8;7,8- Ь=40, р=1/8

к

1

0,8 0,6 0,4 0,2 0

1 ■ ■ . 1 и

ф Ф-. >--

о 1 ■ 2

Д 3 ---5

л е

7

-4

30 60 90 120 150 (II

Рис. 3. Коэффициент корреляции линейных износов поперечных профилей; 1,7- Ь=8, р=1/8; 2,5- Ь=40, р=1/8; 3,4- Ь=80, р=1/50; 6- Ь=8, р=1/50

Выводы:

1. Разработан статистический подход для описания микрогеометрии поверхности трения износостойкого порошкового покрытия, учитывающий случайную макроструктуру порошковой среды. При этом использована матричная вероятностно-геометрическая модель сечения порошкового покрытия.

2. Характерные борозды на поверхности трения описываются взаимосвязью значений линейного износа поперечного профиля, распределенных по биномиальному закону. Вычислениями условных вероятностей линейного износа поперечного профиля построено их двумерное распределение, зависящее от пути трения.

3. Проведены расчеты математических ожиданий, среднеквадратических отклонений и коэффициентов корреляции линейного износа. Показано, что разработанный статистический подход качественно описывает характерную микрогеометрию поверхности трения порошковых покрытий.

Работа проведена при поддержке Российского Фонда Фундаментальных исследований (грант № 12-0898500).

СПИСОК ЛИТЕРАТУРЫ:

1. Каминский, В.М. Двумерная стохастическая модель уплотнения порошковых материалов / В.М. Каминский, А.Н. Николенко, И.Я. Сидоренко // Порошковая металлургия. 1982. №2. С.29-31.

2. Кадушников, Р.М. Геометрическое моделирование структуры полидисперсных материалов / Р.М. Кадушников, А.Р. Бекетов // Порошковая металлур- 6. гая. 1989. № 10. С.69-74.

3. Волошин, В.П. Исследование структуры пор в компьютерных моделях плотных и рыхлых упаковок 7. сферических частиц / В.П. Волошин, Н.Н. Медведев, В.Б. Фенелонов, В.Н. Парман // Журнал структурной химии. 1999. 40, № 4. С. 681-692.

4. Кадушников, Р.М. Компьютерное моделирование 8. спекания сферических частиц / Р.М. Кадушников, В.В. Скороход, И.Г. Каменин и др. // Порошковая металлургия. 2001. №3/4. С. 71-82.

5. Нурканов, Е.Ю. Исследование плотностных характеристик трехмерных стохастических упаковок 9. сферических частиц с использованием компьютерной модели / Е.Ю. Нурканов, Р.М. Кадушников,

И.Г. Каменин и др. // Порошковая металлургия. 2001. №5/6. С. 34-42.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Дик, И.Г. Моделирование случайной упаковки шаров / И.Г. Дик, Е.Н. Дьяченко, Л.Л. Миньков // Физическая мезомеханика. 2006. 9. №4. С. 63-69. Гнедовец, А.Г. Модель формирования макроструктуры покрытий при плазменном напылении / А.Г. Гнедовец, В.И. Калита // Физика и химия обработки материалов. 2007. № 1. С. 30-39. Vinokurov, G. Statistical approashes to describe the macrostructure formation and wear of powder coatings and materials obtained by high-energy metods / G. Vinokurov, O. Popov. - Moscow: Academia Publishers, 2013. 160 p.

Смирнов, Н.В. Курс теории вероятностей и математической статистики для технических приложений / Н.В. Смирнов, И.В. Дунин-Барковский. - М.: Наука, 1965. 512 с.

STATISTICAL DESCRIPTION OF FORMATION THE SURFACE MICROGEOMETRY OF THE WEAR-RESISTANT POWDER COVERINGS AT SLIDING FRICTION

© 2014 G.G. Vinokurov1, O.N. Popov2

1 Institute of Physical and Technical Problems of the North named after V.P. Larionov

SB RAS, Yakutsk

2 Scientific Research Institute of Mathematics, Institute of Mathematics and Informatics of Northeast Federal University named after M. K. Ammosov, Yakutsk

In work the probability-theoretic description of a friction surface of wear-resistant powder coverings is developed. At the description of microgeometry of a friction surface the macrostructure of powder section which is set by matrix statistical model is considered. The relative probabilities of the linear wear of transversal profiles are calculated, their bivariate distribution is constructed. It is shown that the developed approach qualitatively describes the reference structure of a friction surface of wear-resistant powder coverings.

Key words: powder covering, sliding friction, wear, friction surface, probability theory, binomial distribution

Gennadiy Vinokurov, Candidate of Technical Sciences, Leading Research Fellow of the Materials Science Department. E-mail: g.g. [email protected]. ru

Oleg Popov, Candidate of Technical Sciences, Associate Professor. E-mail: [email protected]

i Надоели баннеры? Вы всегда можете отключить рекламу.