UDC 616.716-091.8-02:616.314.17-008.1-022.7-085.31:547.814.5]-092.9 https://doi.org/10.26641/2307-0404.2021.2.234488
A.Ye. Demkovych 1, Yu.I. Bondarenko 2, O.O. Fastovets 3, A.O. Hrad1, P.A. Hasiuk1, O.V. Denefil2
STATE OF COLLAGENOLYSIS IN EXPERIMENTAL PERIODONTITIS OF BACTERIAL-IMMUNE GENESIS AND ITS CORRECTION WITH FLAVONOL
I. Horbachevsky Ternopil National Medical University
Department of Orthopedic Dentistry1
Department of Pathological Physiology 2
Volia sq., 1, Ternopil, 46002, Ukraine
e-mail: demkovushae@tdmu. edu. ua
Dnipro State Medical University 3
Department of Orthopedic Dentistry
V. Vernadsky str., 9, Dnipro, 49044, Ukraine
e-mail: [email protected]
Тернотльський нацiональний медичний yuieepcumem iM. 1.Я. Горбачевського МОЗ Украти
кафедра ортопедично'1 стоматологП1
(зав. - д. мед. н., проф. П.А. Гасюк)
кафедра nатологiчно'í фiзiологГí 2
(зав. - д. мед. н., проф. О.В. Денефть)
майдан Волi, 1, Тернотль, 46002, Украна
Днтровський державний медичний утверситет 3
кафедра ортопедично'1 стоматологП
(зав. - д. мед. н., проф. О. О. Фастовець)
вул. В. Вернадського, 9, Днтро, 49084, Украша
Цитування: Медичт перспективы. 2021. Т. 26, № 2. С. 26-32 Cited: Medicniperspektivi. 2021;26(2):26-32
Key words: periodontitis, inflammation, collagenolysis, oxyproline, quercetin Ключовi слова: пародонтит, запалення, колагенолiз, оксипролiн, кверцетин Ключевые слова: пародонтит, воспаление, коллагенолиз, оксипролин, кверцетин
Abstract. State of collagenolysis in experimental periodontitis of bacterial-immune genesis and its correction with flavonol. Demkovych A.Ye., Bondarenko Yu.I., Fastovets O.O., Hrad A.O., Hasiuk P.A., Denefil O.V. The
article presents an assessment of the dynamics of changes in the content of the marker of collagenolysis - free oxyproline in the homogeniate of soft tissues and bone in experimental bacterial-immune periodontitis and elucidation of the effect offlavonol quercetin on these indicators. The aim of this study was to determine the role of cytokinogenesis and the effect of flavonol on it in the pathogenesis, development and course of experimental periodontitis. During the experiment, a fragment of the mandible was taken from the animals, from which the soft tissues and bone were carefully separated. The state of collagen was determined by the content of free oxyproline in the soft and bone tissues. The concentration was determined according to the calibration graph and expressed in fimol/g. The results of studies of the indicators of the state of biopolymers of connective tissue structures of periodontium on the 7th, 14th and 30th day of experimental bacterial-immune periodontitis and after its correction with flavonol (from the 7th to the 14th day of the experiment) are presented. The data on the nature of changes in the content of collagen monomers in the process of formation of the inflammatory focus in the periodontal complex are given. During the acute phase of the inflammatory process in rats there was revealed a slight increase in blood free oxyproline in bone homogenate and homogenate of soft periodontal tissues, on the 14th day the dynamics continued to increase, at a later stage of the experiment, namely on the 30th day, increase in bone resorption continued as compared to the 7th and 14th day. During the correction of disorders resulted from the development of this pathological process there was a decrease in the level of free oxyproline in the bone homogenate and homogenate of soft tissues of mandibular periodontium, as compared to the same indicators of animals who did not receive quercetin on the 14th day. The use of flavonol quercetin, which, by affecting immune processes, limited the inflammatory response in periodontal tissues and stabilized collagenolysis processes in periodontal tissues was manifested by a decrease in free oxyproline in bone and soft tissue homogenates of experimental animals.
МЕДИЧН1ПЕРСПЕКТИВИ / MEDICNIPERSPEKTIVI
Реферат. Стан колагенолiзу при експериментальному пародонтит 6aKTepiaibH0-iMyHH0ro генезу та корекцiя його флавонолом. Демкович A.C., Бондаренко Ю.1., Фастовець О.О., Град А.О., Гасюк П.А., Денефiль О.В. У cmammi показана оцтка динамжи змш eMicmy показника маркера колагенользу - вшьного оксипролту в гомогенатi м 'яких тканин та юстки при експериментальному бактерiально-iмунному пародонтитi та з'ясування впливу флавонолу кверцетину на цi показники. Метою цього дослiдження було визначення ролi цитоктогенезу та ефекту на нього флавонолу в патогенезi, розвитку та перебшу експериментального перiодонтиту. nid час експерименту для до^дження вiдбирали у тварин фрагмент нижньог щелепи, вiд якого ретельно вiдокремлювали м 'як тканини та юстку. Стан колагену визначали за вмiстом у м'яких i юстковш тканинах вшьного оксипролту. Концентрацiю визначали за калiбрувальним графтом i виражали в мкмоль/г. Наведет результати до^джень показниюв стану бiополiмерiв сполучнотканинних структур пародонта на 7-у, 14-у та 30-у добу експериментального бактерiально-iмунного пародонтиту i тсля корекцИ його флавонолом (з 7-г по 14-у добу до^ду). При цьому наводяться дан про характер змш вмiсту мономерiв колагену в процеа формування запального вогнища в пародонтальному комплексi. У щурiв у перюд гострог фази запального процесу виявлено незначне пiдвищення в кровi вмкту вшьного оксипролiну в тстковому гомогенатi та гомогенатi м 'яких тканин пародонта, на 14-у добу динамка продовжувала зростати, на тзшшш стадИ експерименту, а саме на 30-у добу до^дження продовжилося збшьшення резорбцИ юстковог тканини порiвняно з показниками на 7-у та 14-у добу. При корекцИ порушень у результатi розвитку цього патологiчного процесу вiдбувалось зниження рiвня вшьного оксипролту в тстковому гомогенатi та гомогенатi м 'яких тканин пародонта нижньог щелепи, порiвняно з такими показниками на 14-у добу, яю не отримували кверцетину. Застосування флавонолу кверцетину, який, впливаючи на iмуннi процеси, обмежував запальну реакцiю в тканинах пародонта i призводив до стабшзаци процесiв колагенолгзу в тканинах пародонтального комплексу, що приводило до зниження вшьного оксипролту в гомогенатi юстки та м 'яких тканин пiддослiдних тварин.
The paper is a part of the RSW "Systemic and organic disorders due to actions of extraordinary factors on the body, mechanisms of their development and pathogenetic correction" (registration number 0116 U003390).
In recent years, there has been a general trend of increasing severity of diseases associated with the development of inflammatory processes in the periodontal complex, and a significant predominance of periodontal disease (gingivitis and periodontitis) among adults and a sharp increase among young people [6]. It should be noted that in adults (after 35 years) generalized periodontitis increases the risk of concomitant systemic pathology, including cardiovascular, respiratory infections, rheumatoid arthritis, osteoporosis, diabetes, gastrointestinal diseases and others. The most important means in planning surgery or orthodontic treatment is the condition of the bone structures of the maxilla and mandible and, finally, it is the pathological resorption of the bone tissue of the jaw in periodontal disease, regardless of age that leads to premature loss of intact teeth. Plaque microorganisms, as a result of active secretion of various enzymes, contribute to the development of microcirculation disorders in the periodontium, cause a number of inflammatory reactions, depoly-merization of glycosaminoglycans, proteins of periodontal tissues, especially collagen. This mechanism of development of the pathological process occupies an important place in the pathogenesis of inflammatory and dystrophic-inflammatory periodontal diseases [10, 13].
Despite the increase in recent years in the arsenal of drugs for the treatment of periodontitis (new antiseptics and other powerful local antimicrobials, herbal medicines, anti-inflammatory and wound healing agents, etc.), the problem of periodontal diseases and their treatment remains topical and timely for theoretical and practical medicine.
The modern concept of treatment and prevention of generalized periodontitis is based on both local effects on the tissues of the dental apparatus, and on a system-wide approach. Traditional antimicrobial and anti-inflammatory treatment does not always provide correction of dystrophic changes in the cellular process, so it is important to find drugs that would help normalize metabolic processes in periodontal tissues, have antioxidant, adaptogenic and immunomodulatory properties [4]. It has been established that some polyphenols and flavonols of plant origin are able to show powerful antioxidant properties in many inflammatory and degenerative diseases [2, 14], which indicates the feasibility of their study in periodontitis.
Objective of the study: to determine the role of collagenolysis in the pathogenesis of experimental periodontitis and the use of flavonol quercetin in its correction.
MATERIALS AND METHODS OF RESEARCH
The study was performed on white outbred clinically healthy male rats weighing 150-200 g in vivarium setting. The experiments were performed in accordance with the general rules and provisions of the European Convention for the Protection of Vertebrate Animals Used for Research and Other
21/ Том XXVI/ 2
27
Scientific Purposes (Strasbourg, 1986) and the General Ethical Principles for Animal Experiments (Kyiv, 2001).
Experimental animals were divided into 5 groups: I - intact animals (n=10); II - animals with simulated experimental periodontitis, 7th day of the study (n=8); III - animals with simulated experimental periodontitis, 14th day of the study (n=8); IV - animals with simulated experimental periodontitis, 30th day of the study (n=8); V - animals with simulated experimental periodontitis, 14th day of the study, treated with quercetin (corvitin) (n=8).
Experimental bacterial-immune periodontitis in experimental animals was induced by introducing a mixture of microorganisms diluted with egg protein into the tissues of the periodontal complex [3]. In order to enhance the immune response, a complete Freund's adjuvant was injected into the rat's paw at the same time. On the 14th day of the study the pathogen was re-injected and the adjuvant was injected into the tissues. On the 7th, 14th and 30th days the experimental animals were killed by bloodletting under thiopental anesthesia. Tissue of the mandible was selected for further study.
To correct periodontitis, the animals were injected with a water-soluble preparation of quer-cetin (corvitin, manufactured by Borschahivsky CPF) at a dose of 100 mg/kg of animal weight for 7 days (from the 7th to the 14th day). The preparation of the bone homogenate was carried out in the conventional manner from the soft and bone tissues of the fragment of the mandible of the animal, which was carefully separated. Preparation of bone tissue
homogenate was performed by the conventional method, by separating tissues from the fragment of the animal's mandible. After taking a fragment of the animal's mandible, the mandible was thoroughly cleaned out of soft tissues. All processes involving bone isolation and preparation of the homogenate were performed at a low temperature (on an ice tray) to store enzyme activity. The state of collagen was determined by the content of free oxyproline in the soft and bone tissues. The concentration of the latter was determined by the method of Tetyanets SS [5], which is based on the reaction of pyrrolidine-2 carboxylic acid formed during the oxidation of oxyproline with paradimethylaminobenzaldehyde. The concentration was determined on a calibration graph and expressed in ^mol/g. The obtained data were statistically processed using non-parametric statistical methods using STATISTICA 6.1 software (Statsoft, USA) (License AGAR909E415822FA). The reliability of the difference between the values between the independent quantitative values was determined in the normal distribution by the U-test Mann-Whitney [1].
RESULTS AND DISCUSSION
In rats with experimental bacterial-immune periodontitis during the acute phase of the inflammatory process, namely on the 7th day of the study, we found a slight increase in blood (by1.19 times; p<0.05) of content of free oxyproline in bone homo-genate, taken from the mandible, relative to the intact group (Table).
The content of free oxyproline in the bone homogenate and soft tissues of experimental animals in different periods of development of experimental periodontitis and the use of quercetin (M±m)
Conditions of experiment and study indicator
Control, intact animals
White rats with experimental periodontitis
Duration of experiment (days)
Number of rats
10
14 14
(after correction with quercitin)
30
Free oxyproline in bone homogenate, mkmol/g
3.40±0.20
4.05±0.21 pi<0.05
5.35±0.17 pi<0.01; P2<0.01
4.73±0.17 pi<0.01; рз<0.05
6.04±0.20 pi<0.01; p2<0.01; рз<0.05
Free oxyproline
in homogenate of soft tissues,
mkmol/g
3.63±0.15
4.49±0.17 pi<0.01
5.84±0.17 pi<0.01; p2<0.01
5.17±0.24 pi<0.01; рз<0.05
6.60±0.22 pi<0.01; p2<0.01; рз<0.05
7
8
8
8
8
Notes: pi - the significance of differences relative to intact animals; p2 - the significance of differences in animals with experimental periodontitis on the 7th day of the study; p3 _ the significance of differences in animals with experimental periodontitis on the 14th day of the study.
MEffHHHI nEPCnEKTHBH / MEDICNIPERSPEKTIVI
In the subsequent period, on the 14th day, the dynamics of the content of this marker of bone resorption continued to increase (Fig. 1), its indicator increased by 1.32 times (p<0.01), compared with animals on the 7th day of the experiment. Compared with the values of the intact group of animals, the content of free oxyproline in the bone homogenate was by 1.57 times higher (p<0.01).
A detailed analysis of the results of collage-nolysis study revealed that the content of the marker of bone resorption in animals with experimental
bacterial-immune periodontitis on the 30th day of the study increased, compared with the 7th (by 1.49 times; p<0.01) and the 14th day (by 1.13 times; p<0.05). If we compare this indicator with the indicators of the control group, its level remained at a fairly high level, i.e. it was increased (by 1.78 times; p<0.01).
In the study of the marker of collagenolysis by the content of free oxyproline [7] in the homogenate of soft tissues of the periodontium, it was found that its relative content was by 1.24 times higher (p<0.01) compared with the control group of animals (Table).
180 160 140 120 100 80 60 40 20 0
* #
Pi
Periodontitis, 7th day Periodontitis, 14th day Periodontitis, 30th day
□ Control □ Free oxyproline (Bone)
Notes: * - the significance of differences relative to intact animals (p<0.01); • - significance of differences relative to intact animals (p<0.05); # -significance of differences in animals with periodontitis on the 7th day of the experiment (p<0.01); ° - the significance of differences in animals with periodontitis on the 14th day of the experiment (p<0.05).
Fig. 1. The dynamics of free oxyproline content in the bone homogenate of rats under conditions of experimental periodontitis (in % of the control)
On the 14th day of the study, there was a statistically significant increase in these indicators (by 1.30 times; p<0.01) compared to the previous study period (Fig. 2). It should be noted that at this time
the indicator of resorption of connective tissue structures of the periodontium was higher than the control values (by 1.61 times; p<0.01).
200 180 160 140 120 100 80 60 40 20 0
Periodontitis, 7th day Periodontitis, 14th day Periodontitis, 30th day
* # °
* #
■i: i
* m i
m
'■v.-
£
d ■■■
N £ £
N £
. - - —^
□ Control □ Free oxyproline (Soft tissue)
Notes: * - the significance of differences relative to intact animals (p<0.01); # - significance of differences in animals with periodontitis on the 7th day of the experiment (p<0.01); ° - the significance of differences in animals with periodontitis on the 14th day of the experiment (p<0.05).
Fig. 2. Dynamics of free oxyproline content in the soft tissue homogenate of white rats under the conditions of experimental periodontitis (in% of control)
21/ TOM XXVI/ 2
29
The study of the above indicator of collagen resorption on the 30th day of development of experimental periodontitis revealed an increase in free oxyproline in the homogenate of soft tissues (by 1.30 times; p<0.05) compared with the 14th day, and relative to the 7th day of the experiment - an increase by 1.47 times (p<0.01). It should also be noted that its content was significantly higher relative to the control group of animals (by 1.82 times; p<0.01).
It should be noted that in the correction of disorders as a result of the development of this
pathological process, there was also a decrease in the level of free oxyproline in the bone homogenate of the mandible by 1.13 times (p<0.05), compared with the following groups of animals with experimental periodontitis on the 14th day who did not receive quercetin; this reflected a decrease in the manifestations of collagen destruction of bone tissue, which is part of the periodontal complex (Fig. 3). However, it was still higher than the control group of rats (by 1.39 times; p<0.01).
18016014012010080 60 40 20 0
Free oxyproline (Soft tissue)
Free oxyproline (Bone)
□ Control □ Periodontitis, 14th day □ Periodontitis, 14th day (with correction)
Notes: * - the significance of differences relative to intact animals (p<0.01); # - significance of differences in animals with periodontitis on the 14th day of the experiment without correction with quercetin (p<0.05).
Fig. 3. Effect of quercetin on the content of free oxyproline in the homogenate of soft tissues of the periodontium and bone of white rats under conditions of experimental bacterial-immune periodontitis (in% of control)
Regarding the effect of this flavonol on the concentration of free oxyproline in the soft tissues of the periodontium adjacent to the central incisors of the mandible, then comparing the data of the day 14th in rats not receiving the drug, this figure was lower by 1.13 times (p<0.05). However, its level still remained increased relative to the control group of animals (by 1.42 times; p<0.01).
Connective tissue plays an important role in ensuring the functional state of the periodontium [12]. The intercellular matrix of connective tissue consists of three most important components - the main substance or gel-forming medium, collagen, reticular and elastic fibers, which provides rapid diffusion of substances and structural materials between blood and connective tissue cells [15]. Its components, such as collagen fibers and the main substance - proteoglycans and glycoproteins - are characterized by high sensitivity to the effects of endogenous and exogenous pathogens [11]. The leading place in the protective function of the gum epithelium, especially in preventing the
penetration of infection and toxins into adjacent tissues belongs to glycosaminoglycans, which, being "supporting" structures, can form complexes with other molecules that can retain and release various substances. Thus, the structural disorganization of glycosaminoglycans can lead to the disturbance of the barrier properties of connective tissue. The synthesis of glycosaminoglycans and proteoglycans always precedes the synthesis of collagen [8]. Collagen in the absence of glycosaminoglycans is a homogeneous mass, in the presence of chondroitin sulfate it has a clear striation characteristic of collagen fibers [9]. To assess the state of biopolymers of connective tissue structures of the periodontium, we determined the content of collagen monomers.
The introduction of egg white with a mixture of microorganisms reproduced the experimental model of periodontitis, which led to changes in its most important components of periodontal connective tissue - the main substance and protein structures. The destruction of the main substance of the
МЕДИЧН1ПЕРСПЕКТИВИ / MEDICNIPERSPEKTIVI
intercellular matrix of connective tissue led to the partial degradation of glycosaminoglycans, which in turn led to the destruction of gum collagen in both bone and soft periodontal tissues. Analysis of markers of connective tissue metabolism showed that the level of free oxyproline in the homogenates of bone tissue and soft tissues during the experiment increased, compared with the control group. The results of studies after the correction of this pathology with quercetin confirm the feasibility of using this flavonol.
CONCLUSIONS 1. Inflammation in the periodontal complex, which is caused by a combined effect of bacterial
and immune etiological factors, is accompanied by disorganization of connective tissue due to activation of collagenolysis in its bone and soft tissues with resorption of alveolar processes of the jaws.
2. Flavonol quercetin stabilizes the processes of collagenolysis in periodontal tissues, which is manifested by a decrease in the content of free oxyproline in the homogenate of soft tissues and bone tissue in experimental periodontitis of bacterial-immune origin.
Conflict of interests. The authors declare no conflict of interest.
REFERENCES
1. Antomonov M. [Mathematical processing and analysis of medical and biological data]. Kyiv; 2017. p. 19. Russian.
URL: http://www.health.gov.ua/www.nsf/16a436f1b0cca 21ec22571b300253d46/522e94120f630ce5c225803b004b 3867/$FILE/Antomonov_monogr_titul%2BOGLAVL%2 Bvvedenie.pdf
2. Horoshko OM, Zakharchuk OI, Zamorsky II, Ezhned MA, Drachuk VM, Palamar AO, Sakhatska IM. [Influence of long-term administration of corvitin on proteolytic activity in rats with gentamicin nephropathy]. Ukrainskyi zhurnal medytsyny, biolohii ta sportu. 2019;4(1):41-45. Ukrainian.
doi: https://doi.org/10.26693/jmbs04.01.041
3. Demkovych AYe. [Changes in lipoperoxidation parameters in experimental periodontitis of bacterial-immune genesis and the effect of quercetin on them]. Visnyk medychnykh i biolohichnykh doslidzhen. 2020;2:34-38. Ukrainian.
doi: https://doi.org/10.11603/bmbr.2706-6290.2020.2.11263
4. Mazur IP, Slobodyannik MV. [Systemic antibacterial drugs in periodontology]. Sovremennaia stoma-tolohyia. 2016;1:32-38. Russian. Available from: http://nbuv.gov.ua/UJRN/ss_2016_1_10
5. Pysareva EV, Vlasov MYu, Holub YuV, Stadler ER. [Modification of the method for determination of oxyproline fractions in blood serum]. Vestn SamHU Estestvennonauchn ser. 2012;9(100):211-216. Russian. Available from: https://elib.grsu.by/doc/12044
6. Savelieva NN. [Phagocytic activity of blood neutrophils in patients with chronic generalized perio-dontitis of I-II severity on the background of parasitosis]. Immunopatolohiia, allerholohiia, infektol. 2017;2:45-50. Russian. doi: https://doi.org/10.14427/jipai.2017.2.45
7. Saturskaya AS, Usinsky RS, Saturskaya UV, Levchuk RD. [Dynamics of humoral immunity indicators at the stages of development of experimental diffuse cardiosclerosis depending on individual resistance of the organism to hypoxia]. Imunolohiia ta alerholohiia: nauka i praktyka. 2018;4:24-32. Russian.
8. Förster Y, Bernhardt R, Hintze V, Moller S, Schnabelrauch M, Scharnweber D, Rammelt S. Colla-gen/glycosaminoglycan coatings enhance new bone formation in a critical size bone defect - A pilot study in rats. Mater Sci Eng C Mater Biol Appl. 2017;71:84-92. doi: https://doi.org/ 10.1016/j.msec.2016.09.071
9. Demkovych A, Bondarenko Yu, Hasiuk P. Effects of quercetin on antioxidant potential in the experimental periodontitis development. Interv Med and App Sc. 2019;11(1):60-64.
doi: https://doi.org/10.1556/1646.11.2019.06
10. Masola V, Zaza G, Arduini A, Onisto M, Gambaro G. Endothelial Glycocalyx as a Regulator of Fibrotic Processes. Int J Mol Sci. 2021;22(6):2996. Available from: https://www.mdpi.com/1422-0067/22/6/2996
11. Fukuhara D, Irie K, Uchida Y, Kataoka K, Akiyama K, Ekuni D, Tomofuji T, Morita M. Impact of commensal flora on periodontal immune response to lipopolysaccharid. Periodontal. 2018;89(10):1213-20. doi: https://doi.org/10.1002/jper.17-0567
12. Karthikeyan BV, Khanna D, Chowdhary KY, Prabhuji ML. The versatile subepithelial connective tissue graft: a literature update. Gen Dent. 2016;64(6):28-33. Available from:
https://pubmed.ncbi.nlm.nih.gov/27814265/
13. Klingler CH. Glycosaminoglycans: how much do we know about their role in the bladder? Urologia. 2016;83(1):11-14.
doi: https://doi.org/ 10.5301/uro.5000184
14. Massi A, Bortolini O, Rango D, Bernardi T, Sac-chetti G, Tacchini M, De Risi C. Research Progress in the Modification of Quercetin Leading to Anticancer Agents. Molecules. 2017;22(8):1270.
doi: https://doi.org/10.3390/molecules22081270
15. Sculean A, Romanos G, Schwarz F, Ramanaus-kaite A, Keeve PL, Khoury F, Koo KT, Cosgarea R. Soft-Tissue Management as Part of the Surgical Treatment of Periimplantitis: A Narrative Review. Implant Dent. 2019;2:210-216.
doi: https://doi.org/10.1097/id.0000000000000870
21/ Том XXVI/ 2
31
СПИСОК Л1ТЕРАТУРИ
1. Антомонов М. Ю. Математическая обработка и анализ медико-биологических данных. Киев, 2017. С. 19.
URL: http://www.health.gov.ua/www.nsf/16a436f1b0cca 21ec22571b300253d46/522e94120f630ce5c225803b004b 3867/$FILE/Antomonov_monogrJitul%2BOGLAVL%2 Bvvedenie.pdf
2. Вплив тривалого введения корвiтину на протеолiтичну актившсть у щурiв з гентамiциновою нефропапею / О. М. Горошко та ш. Укр. журнал медицини, бюлогп та спорту. 2019. Т. 4, № 1. С. 4145. DOI: https://doi.org/10.26693/jmbs04.01.041
3. Демкович А. £. Змши показникiв лшоперок-сидацп при експериментальному пародонтитi бак-терiально-iмунного генезу та вплив на них кверце-тину. В1сник медичних i б1олог1чних досл1джень. 2020. № 2. C. 34-38.
DOI: https://doi.org/10.11603/bmbr.2706-6290.2020.2.11263
4. Мазур И. П., Слободянник М. В. Системные антибактериальные препараты в пародонтологии. Современная стоматология. 2016. № 1. С. 38-42. URL: http://nbuv.gov.ua/UJRN/ss_2016_1_10
5. Писарева Е. В., Власов М. Ю., Голуб Ю. В., Стадлер Е. Р. Модификация метода определения фракций оксипролина в сыворотке крови. Вестн. СамГУ. Естественнонаучн. сер. 2012. Т. 100, № 9. С. 21-216.
6. Савельева Н. Н. Фагоцитарная активность ней-трофилов крови у больных хроническим генерализованным пародонтитом I-II степени тяжести на фоне паразитозов. Иммунопатология, аллергол, инфектол. 2017. № 2. С. 45-50.
DOI: https://doi.org/10.14427/jipai.2017.2.45
7. Сатурская А. С., Усинский Р. С., Сатур-ская У. В., Левчук Р. Д. Динамика показателей гуморального иммунитета на этапах развития экспериментального диффузного кардиосклероза в зависимости от индивидуальной резистентности орга-
I низма к гипоксии. Iмунологiя та алергологiя: наука i практика. 2018. № 4. С. 24-32.
8. Collagen/glycosaminoglycan coatings enhance new bone formation in a critical size bone defect - A pilot study in rats / Y. Förster et al. Sci. Eng. C. Mater. Biol. 2017. No. 71. P. 84-92.
DOI: https://doi.org/10.1016/j.msec.2016.09.071 i 9. Demkovych A., Bondarenko Yu., Hasiuk P. Ef-I fects of quercetin on antioxidant potential in the experimental periodontitis development. Interv. Med.
■ and App. Sc. 2019. Vol. ii, No. i. P. 60-64. DOI: https://doi.org/10.1556/1646.11.2019.06
10. Endothelial Glycocalyx as a Regulator of Fibrotic Processes / V. Masola et al. Int. J. Mol. Sci. 2021. Vol. 22, No. 6. P. 2996.
DOI: https://doi.org/10.3390/ijms22062996
11. Impact of commensal flora on periodontal immune response to lipopolysaccharid / D. Fukuhara et al. Periodontol. 2018. Vol. 89, No. 10. P. 1213-1220. DOI: https://doi.org/10.1002/JPER.17-0567
12. Karthikeyan B. V., Khanna D., Chowdhary K. Y., Prabhuji M. L. The versatile subepithelial connective tissue graft: a literature update. Gen. Dent. 2016. Vol. 64,
■ No. 6. P. 28-33.
13. Klingler C. H. Glycosaminoglycans: how much do we know about their role in the bladder? Urologia. 2016. Vol. 83, No. 1. P. 11-14.
DOI: https://doi.org/10.5301/uro.5000184
14. Research Progress in the Modification of Quercetin Leading to Anticancer Agents / A. Massi et al. Molecules. 2017. Vol. 22, No. 8. P. 1270. DOI: https://doi.org/10.3390/molecules22081270
15. Soft-Tissue Management as Part of the Surgical Treatment of Periimplantitis: A Narrative Review / A. Sculean et al. Implant Dent. 2019. No. 2. P. 210-216. DOI: https://doi.org/10.1097/ID.0000000000000870
Стаття надшшла до редакцп 02.10.2020
♦