Научная статья на тему 'STABILITY OF NATURAL REGENERATION AT RAVINE-GYLLY SYSTEMS'

STABILITY OF NATURAL REGENERATION AT RAVINE-GYLLY SYSTEMS Текст научной статьи по специальности «Сельское хозяйство, лесное хозяйство, рыбное хозяйство»

CC BY
86
20
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
SANITARY STATE / GROWTH / COEFFICIENT OF TENSION / NATURAL REGENERATION / THINNING / FALLOW LANDS / SELF-SEEDLING

Аннотация научной статьи по сельскому хозяйству, лесному хозяйству, рыбному хозяйству, автор научной работы — Khryk Vasyl Mykhailovych, Kimeichuk Ivan Vasyliovych, Nosnikau Vadzim Valeravich, Rabko Siarhei Uladzimiravich, Kozel Aliaksandr Uladzimiravich

Peculiarities of growth and current sanitary condition of natural regeneration of Scots pine on ravine-beam systems of Rzhyshchiv-Kaniv dislocations are analyzed. Coefficients of tree growth tension were determined that indicate their greatest values occur in dense places where plants with the minimum diameter try to reach the maximum possible height. It is correlated with sites. At the same time, they are strongly associated with the age of the plants. At a young age, the stress of tree growth becomes greatest and over time decreases. As a result, young plants have a maximum loss. The index of sanitary condition which is in an interval Г6-П.3 is established. This allows us to state the condition of the plantations as weakened, which is confirmed by the coefficients of tension of their growth. Plants of natural regeneration due to dense placement experience increased competitive influence from other trees, which affects the intensity of their growth. This accelerates differentiation, natural selection and increases the resilience of forest ecosystems to global climate change, to avoid mass drying of Scots pine. For the first time, an attempt was made to experimentally apply the coefficient of growth tension of natural regeneration on ravine-gully systems in order to clarify the feasibility of forestry measures in plantations on fallow lands. The results of research indicate the importance of regulating the density of natural regeneration, determining the duration of intervention in ecosystem change and the feasibility of their implementation on the basis of experimental justification of the number of trees by the growth rate.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «STABILITY OF NATURAL REGENERATION AT RAVINE-GYLLY SYSTEMS»

УДК 630*234

V. M. Khryk1, I. V. Kimeichuk2, V. V. Nosnikau3,

S. U. Rabko3, A. U. Kozel3, V. M. Maliuha2, V. Y. Yukhnovskyi2

:Bila Tserkva National Agrarian University (Ukraine)

2National University of Life and Environmental Sciences of Ukraine 3Belarusian State Technological University

STABILITY OF NATURAL REGENERATION AT RAVINE-GYLLY SYSTEMS

Peculiarities of growth and current sanitary condition of natural regeneration of Scots pine on ravine-beam systems of Rzhyshchiv-Kaniv dislocations are analyzed. Coefficients of tree growth tension were determined that indicate their greatest values occur in dense places where plants with the minimum diameter try to reach the maximum possible height. It is correlated with sites. At the same time, they are strongly associated with the age of the plants. At a young age, the stress of tree growth becomes greatest and over time decreases. As a result, young plants have a maximum loss. The index of sanitary condition which is in an interval I.6-II.3 is established. This allows us to state the condition of the plantations as weakened, which is confirmed by the coefficients of tension of their growth. Plants of natural regeneration due to dense placement experience increased competitive influence from other trees, which affects the intensity of their growth. This accelerates differentiation, natural selection and increases the resilience of forest ecosystems to global climate change, to avoid mass drying of Scots pine. For the first time, an attempt was made to experimentally apply the coefficient of growth tension of natural regeneration on ravine-gully systems in order to clarify the feasibility of forestry measures in plantations on fallow lands. The results of research indicate the importance of regulating the density of natural regeneration, determining the duration of intervention in ecosystem change and the feasibility of their implementation on the basis of experimental justification of the number of trees by the growth rate.

Key words: sanitary state, growth, coefficient of tension, natural regeneration, thinning, fallow lands, self-seedling.

For citation: Khryk V. M., Kimeichuk I. V., Nosnikau V. V., Rabko S. U., Kozel A. U., Maliuha V. M., Yukhnovskyi V. Y. Stability of natural regeneration at ravine-gylly systems. Proceedings of BSTU, issue 1, Forestry. Nature Management. Processing of Renewable Resources, 2021, no. 2 (246), pp. 103-111 (In English).

В. М. Хрык1, И. В. Кимейчук2, В. В. Носников3, С. В. Ребко3, А. В. Козел3, В. М. Малюга2, В. Ю. Юхновский2

:Белоцерковский национальный аграрный университет (Украина) ^Национальный университет биоресурсов и природопользования Украины 3Белорусский государственный технологический университет

УСТОЙЧИВОСТЬ ЕСТЕСТВЕННОГО ВОЗОБНОВЛЕНИЯ НА ОВРАЖНО-БАЛОЧНЫХ СИСТЕМАХ

Проанализированы особенности произрастания и современное санитарное состояние естественного возобновления сосны обыкновенной на овражно-балочных системах Ржищевско-Канев-ских дислокаций. Определены коэффициенты напряженности роста деревьев, которые указывают на то, что их наибольшие значения встречаются в местах с высокой густотой, где растения с минимальным диаметром пытаются достичь максимально возможной высоты, что также хорошо коррелирует с условиями местопроизрастания. В то же время они тесно связаны с возрастом растений. В молодом возрасте напряжение роста деревьев становится наибольшим и со временем уменьшается. В результате в молодых насаждениях происходит максимальный отпад. Рассчитан индекс санитарного состояния насаждения, который варьирует в интервале I.6-II.3. Это позволяет констатировать состояние насаждений как ослабленное, что подтверждается коэффициентами напряженности их роста. Растения естественного возобновления за счет густой посадки испытывают повышенное конкурентное влияние со стороны других деревьев, что сказывается на интенсивности их роста. Это ускоряет дифференциацию, естественный отбор и повышает устойчивость лесных экосистем к глобальному изменению климата, что позволяет снизить степень массового усыхания сосны обыкновенной. Впервые предпринята попытка экспериментального применения коэффициента напряженности роста сосны естественного возобновления для определения возможности проведения лесохозяйственных мероприятий в насаждениях на залежных землях. Результаты исследований указывают на важность регулирования густоты естественного возобновления,

определения продолжительности вмешательства в изменение экосистемы и целесообразности их осуществления на основе экспериментального обоснования количества деревьев по скорости роста.

Ключевые слова: санитарное состояние, рост, коэффициент напряженности, естественное возобновление, изреживание, залежь, самосев.

Для цитирования: Хрык В. М., Кимейчук И. В., Носников В. В., Ребко С. В., Козел А. В., Малю-га В. М., Юхновский В. Ю. Устойчивость естественного возобновления на овражно-балочных системах // Труды БГТУ. Сер. 1, Лесное хоз-во, природопользование и перараб. возобновляемых ресурсов. 2021. № 2 (246). С. 103-111.

Introduction. Due to global climate change, natural regeneration is especially important, as it is the natural environment that forces woody plants to adapt to new conditions.

It is necessary to study the course and success of natural regeneration of Scots pine in different age plantations [1, 2]. The peculiarity of this process on eroded ravine-beam lands is different in compareson with the natural regeneration on cuttings. In ravine-gully lands, where the forest environment begins to form in uncharacteristic specific harsh conditions, when it is difficult for seeds to get into the soil and germinate there, it is important to determine the course of natural regeneration of Scots pine, especially recently when the use of natural forest biogeocenosis is widely promoted. Due to the need to preserve species and genetic biodiversity, increase the biological stability, quality and productivity of tree species, the question of studying this in different age stands is of paramount importance [3, 4].

The last decade has been marked by a sharp deterioration in the sanitary state of forests due to the negative effects of a complex of factors related to global climate change. This causes an increase in the area of drying plantations. As of January 1, 2019, their total area was over 413 thousand hectares, of which 222 thousand hectares of Scots pine plantations [5, 6].

The success of natural regeneration of tree species depends on the seed years, the adequacy of seed yield, regenerative maturity of the soil, the criterion of which is the state of forest litter, as well as the conditions for further growth and development of selfseeds [3].

Maliuha [7] studed the natural regeneration of pine on the ravine slopes of Rzhyshchiv-Kaniv dislocations and he came to conclusion that the regeneration is possible, although often pine self-seedling completely die in the third and subsequent years, especially on the slopes of the southern insulated exposures. The author does not completely rule out the possibility of natural regeneration on the slopes of ravines, but considers it problematic [8-10]. This scientist studies artificial plantings and determines the intensity of living space [11].

To date, similar research on natural regeneration in Ukraine outside the forest fund is not enough. This has become the subject of our research.

The purpose of the study is to assess the possibilities of natural regeneration of Scots pine on ravine-gully lands and to provide scientifically sound proposals for improving their biological stability in the context of global climate change.

Material and methods. The first experimental site with trial plots (TP) 20-01; 20-02; 20-03 is located on the lands of Tarashcha Agricultural College, which came out of permanent agricultural use in 1995. They were planted with pine forests with an area of 2.5 hectares, which died due to lack of timely agronomic care. However, due to coincidence, a natural regeneration was formed in this area.

A mature mother stand with a composition of 10Ps (Pinus sylvestris L.) grew next to the experimental plot, the seed years coincided, due to which this area was sown by wind by spreading forest seeds. A good role was played by good soil moisture, as well as pre-planting preparation of the forest area. The latter has reduced soil turfing and competition for pine self-seeding from grass vegetation.

The plantation formed due to natural renewal has a high degree of closure in the absence of undergrowth and understory. The thickness of the forest litter is 2.5 cm.

The natural renewal of Scots pine in the Pidkova tract at TP 20-04, 20-05; 20-06 turned out to be exceptionally peculiar to the conditions of the former eroded agricultural lands (block 44, unit 25 in Myronivka agricultural college) on the area of 3.3 hectares. The unit is located in a hollow with an angle of inclination of the north-western and south-eastern slopes up to 10°. Adjacent to the basin on two sides are the slopes of the ravine with a steepness of 17-19°, on which there are 48-49-year-old artificial plantings with a composition of 10Ps, which served as a source of seeding of the experimental site. Due to a favorable coincidence - early fruiting of pine in these plantations and the primary tillage carried out in the basin with strips for planting black mulberry pine self-seedlings survived, overcoming the competition of grass cover. The size of the trial sites was 0.1 ha.

Assessing the state of natural regeneration of pine stands on fallows, we applied the coefficient of growth tension of the middle tree in order to clarify the feasibility of forestry activities in the study area. To do this, use the formula (1):

Kn = h 100 / g, (1)

where Kn - coefficient of growth tension of middle tree; h - middle height of thickness level, m; g -basal area at breath height, cm2.

During the list of trees in the trail sites for each of them determined the category of the state by the sum of biomorphological features, which included the density and color of the crown, the presence and nature of the distribution of needles, relative growth of shoots, the age of the needles stored on the shoots, the presence of dry branches, the condition of the bark and etc. The needles are affected by infectious and non-infectious necrosis, pests and pathogens [12, 13].

The index of sanitary state of plantations was calculated by the ratio (formula 2) [14]:

n + 2n2 + 3n3 + 4n4 + 5n5 + 6n6

I = -1-2-3-4-5-(2)

n + n2 + n3 + n4 + n5 + n6

where: m, n2, ..., n6 - number of trees of relative category of sanitary state.

The state of plantings was established according to the following values of the sanitary condition index: up to 1.5 - healthy plantations; 1.6-2.5 -weakened; 2.6-3.5 - strongly weakened; 3.6-4.5 -dry; more than 4.5 - dead [14].

During the field work on the trail sites all manifestations of negative impact on the state of forest phytocenoses of other biotic and abiotic factors (pests and forest diseases, forest fires, damage by late frosts, as well as wild and domestic animals, etc.) were recorded.

To determine the sanitary state of plantations of natural origin, a reconnaissance survey of stands was performed on six trail sites with a continuous list of trees.

Mathematical and statistical processing of the results was performed using Microsoft Excel software packages [15].

Results and discussion. It is important to have objective data on the state of plantations when planning and conducting forest management activities (Tables 1, 2).

Characterizing the obtained data on the distribution of trees of natural regeneration by degrees of thickness, which were formed at different age intervals, we see that higher coefficients of growth tension occur in younger plantations (Tables 1 and 2).

The coefficient of growth tension of the middle tree shows how many centimeters of height is per

1 cm2 of its basal area. The smaller the value of height per cm2 of basal area of the middle tree, the lower the coefficient of tension of its growth, the more stable and confident it feels. There are trees of different ages in the research plantations. Consider what happens at the same age, which is represented by two options:

The first option (Table 1) is presented trail plots 20-01, 20-02, 20-03 where the age of the youngest trees in the plantation is 22 years.

The situation was as follows: for a degree of thickness of 6 centimeters of height were distributed respectively: 7.9; 7.6; 7.7 m, which in turn correspond to the highest growth rates - 28.2; 27.1; 27.5.

Table 1

Coefficient of growth tension of the middle tree of natural regeneration of Scots pine on fallow lands of Myronivka Agroforestry

Age, years Degree of thickness, cm Number of trees in the TP, pcs. Average height, m Basal area g, cm2 Coefficient of tension of middle tree h 100 / g

TP 20-01

22 6 55 7.9 28 28.2

22 8 38 8.2 50 16.4

23 10 69 10.5 79 13.3

25 12 68 12.5 113 11.1

26 14 22 12.8 154 8.3

27 16 10 13.8 201 6.9

29 18 4 14.1 255 5.6

TP 20-02

22 6 50 7.6 28 27.1

22 8 40 7.9 50 15.8

23 10 81 10.1 79 12.8

25 12 44 12.3 113 10.9

26 14 11 13.0 154 8.4

27 16 10 13.5 201 6.7

29 18 9 14.0 255 5.5

30 20 5 14.3 314 4.6

TP 20-03

22 6 60 7.7 28 27.5

22 8 62 8.0 50 16.0

23 10 84 10.3 79 13.0

25 12 34 12.1 113 10.7

26 14 8 12.9 154 8.4

27 16 10 13.7 201 6.8

29 18 11 13.9 255 5.5

30 20 8 14.2 314 4.5

With the increase in the degree of thickness at the same age to 8 cm in height were distributed, respectively, 8.2; 7.9; 8.0 m, which affected

the growth rates of 16.4; 15.8; 16.0. Increasing the age of trees in the plantation to 29-30 years with an increase in the degree of thickness of 18-20 cm contributed to a decrease in the coefficients of growth tensions to 5.6-4.5.

The second option (Table 2) is presented trail plots 20-04, 20-05, 20-06 age also 22 years, but in the oldest trees where the degrees of thickness were greater. For a degree of thickness of 16 cm of height were distributed, respectively, 12.9; 13.0; 14.0 m, which in turn correspond to the coefficients of growth intensity - 6.4; 6.5; 7.0. With the increase in the degree of thickness at the same age to 18 cm in height were distributed, respectively, 13.3; 13.7; 14.3 m, which affected the coefficients of growth intensity - 5.2; 5.4; 5.6, which have decreased significantly, but there is a trend - a higher height corresponds to a larger value of the growth rate.

Table 2

Coefficient of growth tension of the middle tree of natural regeneration of Scots pine on fallow lands of Tarashcha lands

Age, years Degree of thickness, cm Number of trees in the TP, pcs. Average height, m Basal area g, cm2 Coefficient of tension of middle tree h 100 / g

TP 20-04

15 6 58 7.5 28 26.8

17 8 53 7.8 50 15.6

19 10 51 9.8 79 12.4

20 12 42 11.8 113 10.4

21 14 31 12.4 154 8.0

22 16 11 12.9 201 6.4

22 18 9 13.3 255 5.2

TP 20-05

15 6 58 7.3 28 26.1

17 8 61 7.7 50 15.4

19 10 43 10.1 79 12.8

20 12 38 12.1 113 10.7

21 14 16 12.6 154 8.2

22 16 25 13.0 201 6.5

22 18 9 13.7 255 5.4

TP 20-06

15 6 50 7.1 28 25.4

17 8 69 8.1 50 16.2

19 10 53 10.4 79 13.2

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

20 12 34 12.3 113 10.9

21 14 22 13.3 154 8.6

22 16 14 14.0 201 7.0

22 18 10 14.3 255 5.6

In both cases, at the same age (22 years), different coefficients of tensions were found: in the first - the highest, in the second - the lowest because the age of the youngest trees is 22 years (depressed and therefore less stable), and in the second - the oldest under appropriate conditions.

That is, with increasing values of basal areas, the coefficients of growth tension of medium-sized trees in the plantation decrease, but their difference is explained by the change in height. With the same basal area, the growth rate is greater where the greater the height.

Taking into account the peculiarities of natural regeneration, when different-age plantations are formed, an attempt is made to generalize the coefficients of growth tensions of medium-sized plantations in general (Table 3). To obtain summary data on the coefficients of tree growth tension in the stands of Scots pine natural regeneration average weighted indicators of heights and diameters using the quantitative representation of trees in terms of thickness were analysed. As a result of calculations, the following consolidated coefficients of growth tension of medium-sized trees were obtained: in plantations of natural regeneration of Scots pine on the fallow lands of Tarashcha lands from 8.2 (TP 20-02) to 12.8 (TP 20-01); in plantations of natural regeneration of Scots pine on the fallow lands of Myronivka Agroforestry from 11.1 (TP 20-06) to 12.4 (TP 20-05).

Table 3

Summary data of growth tension coefficients of medium trees of natural regeneration of Scots pine in the trail plots

Code of TP Aavr^ years N, pc./ha Average Р, unit G, om2 Kn, h 100/g

h, m d, cm

20-01 24 2660 10.6 10.3 0.91 83 12.8

20-02 24 2500 8.8 11.7 0.88 107 8.2

20-03 27 2770 10.6 10.9 0.94 93 11.4

20-04 19 2550 10.0 10.6 0.88 88 12.0

20-05 19 2500 9.7 10.0 0.88 78 12.4

20-06 19 2520 10.7 11.1 0.85 97 11.1

According with the obtained data comparing the two options, it can be noted that the natural regeneration of Scots pine forms comparable results (close coefficients of growth tension).

For a better representations and practical comparison of the results of the study of the calculation of this coefficient, which characterizes natural plantations at a density of1.0 and 0.7 (data obtained from tables of growth of closed pine stands of natural origin [16] and experimental data of test plots) (Fig. 1).

ö o

o

y

'çj

Ü3

o O

16 14 12 10 8 6 4 2

density 1.0

density 0.7

experimental data

20-01 20-02 20-03 20-04

Number of plots

20-05

20-06

Fig. 1. Coefficient of growth tension of trees of natural origin according to standards [16] and experimental data

0

In plantations of natural origin trees are differentiated in a timely manner according to growth and development, which indicates optimal natural liquefaction, especially of stunted and damaged trees. According to our experimental data, the relative density varies from 0.85 to 0.94, the average age is 19 (TP 20-04, TP 20-05, TP 20-06), 24 years (TP 20-01, TP 20-02), 27 years old (TP 20-03). Therefore, according to experimental data in the trail plots, natural selection takes place without the subjective intervention ofthe human factor, according to the rules of deforestation and reforestation, it is necessary to carry out the thinning.

To determine the sanitary state of natural regeneration, we set up 6 test plots in two expe-

rimental sites of different ages and density. The distribution of Scots pine trees in natural plantations by categories of sanitary state (ISS) in fresh sites is given in Table. 4.

Graphically obtained data on the sanitary condition of temporary test areas are presented in Fig. 2.

Thus, the most represented is the first class of sanitary condition, and the least is the sixth class, which indicates a satisfactory state of natural regeneration. According to the index of sanitary condition, plantations of natural origin of Scots pine in all test areas are classified according to the "Sanitary rules in the forests of Ukraine" as weakened (I.9), due to high competition from older trees and the competition for light.

Table 4

Distribution of the number of trees by categories of sanitary state

Code of TP Number of trees in the trial area, pcs. Number of trees by sanitary state categories: numerator, pcs.; denominator, % Iss

I II III IV V VI

20-01 266 148 66 23 25 3 1 I.8

55.6 24.8 8.6 9.4 1.1 0.4

20-02 250 150 65 19 11 2 3 I.6

60.0 26.0 7.6 4.4 0.8 1.2

20-03 277 137 80 43 12 2 3 I.8

49.5 28.9 15.5 4.3 0.7 1.1

20-04 255 130 60 28 26 7 4 I.9

51.0 23.5 11.0 10.2 2.7 1.6

20-05 250 110 61 46 32 1 0 II.0

44.0 24.4 18.4 12.8 0.4 0.0

20-06 252 63 86 60 40 2 1 II.3

25.0 34.1 23.8 15.9 0.8 0.4

Weighted average sanitary state index I.9

160

o a

<D

140

120

100

80

60

40

20

??????

000000 2 2 22 2 2

I

??????

000000 2 2 2 2 2 2

II

H(Nri"t Kl \D ??????

000000 2 2 2 2 2 2

III

HMm't \D

000000 2 2 2 2 2 2

IV

000000 2 2 2 2 2 2

V

-r-r-n „

rfMmTl-in'O

000000 2 2 2 2 2 2

VI

Categories of sanitary state Fig. 2. Distribution of natural regeneration trees by categories of sanitary state

Conclusion. The determined coefficients of tree growth tension indicate that their greatest values occur in dense places where plants with the minimum diameter try to reach the maximum possible height, which correlates well with the types of forest sites. At the same time, they are strongly associated with the age of the stands. At a young age, the stress of tree growth becomes greatest and over time decreases. As a result, young plants have a maximum loss. Therefore, the coefficients of growth tension of trees are due to differences in environmental conditions and age.

For the practical application of the calculated coefficient of growth tension of the middle tree in order to provide recommendations to forestry on the proper quality of thinning of forest formation and rehabilitation, the generalization of experimental data on growth and placement of trees in plantations of natural origin on fallows.

Although no forest management measures were carried out in the natural regeneration plantations, but tree differentiation and real natural selection were successful. They were not affected by

anthropogenic factors, which were reflected in their condition, before the onset of cleanings and thinning.

The calculated index of the sanitary state of natural pine plantations, which is in the range of 1.6-2.3, indicates that the plantations belong to the weakened ones in all test plots.

It is found out that the most influential factors of significant deterioration of the sanitary condition of trees of natural regeneration of pine are the drying of trees due to the natural selection of suppressed trees.

In order to reduce the negative impact of extreme and local manifestations on the growth and state of pines of natural origin should be mainly preventive measures in cluttered areas. Timely and systematic thinning in plantations will reduce natural decline, improve sanitation, clutter and conditions for the development of pests and pathogens. In the plantation, respectively, will reduce the density, the number of trees per unit area, and this will increase the light of the territory, the growth of trees in height and diameter.

0

The question ofthe possibility of creating a natural requires more attention and creativity during a set of

way of regeneration pine plantations on ravine-beam forestry activities. However, the factor of greater

lands should be answered in the affirmative. This stability of natural plantations and fuller performance

process is significantly different from the natural of their protective functions should compensate for

restoration of tree species under the canopy and on the the complexity of the forestry process of growing such

cuttings. It is much more complex and problematic, plantations in the relevant areas.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

References

1. Maurer V. M. Kimeichuk I. V. Features of age dynamics of natural regeneration of Scots pine in the fresh pine sites of Kyiv Polissia. Ukrainian Journal of Forest and Wood Science, 2020, vol. 11, no. 1, pp. 45-54 (In Ukrainian).

2. Shevchenko M. A. Influence of different tillage techniques on slopes to reduce melt water runoff. Meteorologiya i gidrologiya [Meteorology and hydrology], 1963, no. 2, pp. 32-37 (In Russian).

3. Khryk V. M. Protyeroziyni vlastyvosti sosnovykh nasadzhen' na yaruzhno-balkovykh systemakh tsentral'noyi chastyny Prydniprovs'koho Pravoberezhnoho Lisostepu. Avtoref. dys. ... kand. s.-kh. nauk [Anti-erosion properties of pine plantations on ravine-gully systems of the central part of the Dnieper Right-Bank Forest-Steppe. Abstract of thesis PhD (Agriculture Science)]. Kiiv, 2011. 22 p. (In Ukrainian).

4. Yukhnovskyi V. Yu., Dudarets S. M. Maliuha V. M., Khryk V. M. Protyeroziyni lisovi nasadzhennya yaruzhno-balkovykh system [Anti-erosion forest plantations of ravine-gully systems]. Condor, 2013. 512 p. (In Ukrainian).

5. Bondar A. O. Mizhnarodna konferentsiya shchodo vsykhannya sosnovykh lisiv: zakonodavchi obmezhennya v Ukrayini blokuyut' borot 'bu z "biolohichnoyu pozhezheyu " [International Conference on Pine Forest Drying: Legislative Restrictions in Ukraine Block "Biological Fire Fight"]. Available at: http://dklg.kmu.gov.ua/forest/control/uk/publish/article?art_id=202061&cat_id=32888 (accessed 05.11.2020).

6. Kimeichuk I. V. Sanitary condition of pine plantations on sites with different methods of preparation of fellings. Materialy Mizhnarodnoyi naukovo-praktychnoyi konferentsiyi, prysvyachenoyi 100-richchyu kafedry vidtvorennya lisiv ta lisovykh melioratsiy "Vidtvorennya lisiv ta lisova melioratsiya v Ukrayini: vytoky, suchasnyy stan, vyklyky s 'ohodennya ta perspektyvy v umovakh antropotsenu " [Materials of the international scientific-practical conference dedicated to the 100th anniversary of the Department of Forest Reproduction and Forest Reclamation "Forest reproduction and forest reclamation in Ukraine: origins, current state, current challenges and prospects in the Anthropocene"]. Kiev, 2019, pp. 43-44 (In Ukrainian).

7. Maliuha V. M. Plantings for different categories of land reclamation fund. Naukovyy visnyk Natsional'noho ahrarnoho universytetu [Scientific Bulletin National Agrarian University], 1999, no. 20, pp. 177-187 (In Ukrainian).

8. Maliuha V. M., Maurer V. M., Khryk V. M. Natural regeneration of Scots pine on the ravine-gully lands of the Dnieper. Naukovyy visnyk Natsional 'noho universytetu bioresursiv i pryrodokorystuvannya Ukrayiny [Scientific Bulletin of the National University of Life and Environmental Sciences of Ukraine], 2018, no. 288, pp. 80-87 (In Ukrainian).

9. Khryk V. M., Kimeichuk I. V. Natural regeneration of European spruce on ravine-gully systems of Ovruch region. Materialy Mizhnarodnoyi naukovo-praktychnoyi konferentsiyi "Innovatsiyni tekhnolohiyi v ahronomiyi, zemleustroyi, lisovomu ta sadovo-parkovomu hospodarstvi" [Materials of the International scientific-practical conference "Innovative technologies in agronomy, land management, forestry and horticulture"]. Bila Tserkva NAU, pp. 28-30 (In Ukrainian).

10. Khryk V. M., Maliuha V. M., Kimeichuk I. V., Khakhula V. S., Yukhnovskyi V. Yu. Natural regeneration of ravine-gally systems and former arable lands in Ovruch region. Suchasni naukovi doslidzhennya [Modern scientific researches], issue 13, part 3, 2020, pp. 28-37 (In English).

11. Maliuha V. M., Minder V. V. Indicator of the tension of the living space of protective forest plantations. Ukrayins 'kyy zhurnal lisivnytstva ta derevynoznavstva [Ukrainian Journal of Forest and Wood Sciences], 2020, vol. 11, no. 4, pp. 47-59 (In Ukrainian).

12. Mozolevskaia E. H. Methods for assess in gand forecasting the dynamics of plantations. Lesnoye khozyaystvo [Forestry], 1998, no. 8, pp. 43-45 (In Russian).

13. Mozolevskaya E. G., Katayev O. A., Sokolova E. S. Metody lesopatologicheskogo issledovaniya ochagov stvolovykh vrediteley i bolezney lesa [Methods of forest pathological examination of foci of stem pests and forest diseases]. Moscow, Lesnoye khozyaystvo Publ., 1984, 152 р.

14. Sanitary rules in Ukrainian Forests. Sanitarni pravyla v lisakh Ukrayiny. Postanova Kabinetu Ministriv Ukrayiny vid 27.07.1995 [Decret of Cabinet of Ministry of Ukraine of 27.07.1995. № 555]. Harvest, 1995. 16 p.

15. Hrom M. M. Lisova taksatsiya [Forest assessment]. L'viv, RVV NLTU Ukrainy Publ., 2007. 416 p.

16. Kashpor S. M., Strochynskyi A. A. Lisotaksatsiynyy dovidnyk [Forest measurement handbook]. Korsun'-Sheuchenskivs'kiy, Maydachenko Publ., 2013. 496 p.

Список литературы

1. Маурер В. М., Юмейчук I. В. Динамша чисельносп та стан природного поновлення сосни зви-чайно1 на зрубах в умовах свiжоi судiброви Кшвського Полiсся. Ukrainian Journal of Forest and Wood Science. Кшв, 2020. Т. 11. № 1. С. 45-54.

2. Шевченко М. А. Влияние различных приемов обработки почвы на склонах для уменьшения стока талых вод // Метеорология и гидрология. 1963. № 2. С. 32-37.

3. Хрик В. М. Протиерозшш властивосп соснових насаджень на яружно-балкових системах цен-тральноi частини Придшпровського Правобережного Люостепу: автореф. дис. ... канд. с.-г. наук: 06.03.01. Нац. ун-т бюресурав i природокористування Украши. Киiв, 2011. 22 с.

4. Юхновський В. Ю., Дударець С. М., Малюга В. М., Хрик В. М. Протиерозшш лiсовi наса-дження яружно-балкових систем. Кшв: Кондор, 2013. 512 с.

5. Бондар А. О. Мiжнародна конференщя щодо всихання соснових люв: законодавчi обмеження в Украш блокують боротьбу з «бiологiчною пожежею» [Электронный ресурс] // Офiцiйнiй веб-сайт державного агенства люових ресурсiв Украши. URL: http://dklg.kmu.gov.ua/forest/control/uk/ publish/article?art_id=202061&cat_id=32888 (дата обращения: 05.11.2020).

6. Юмейчук I. В. Саштарний стан соснових насаджень на дшянках з рiзними способами шдго-товки зрубiв. Вiдтворення лiсiв та люова мелiорацiя в Украiнi: витоки, сучасний стан, виклики сьогодення та перспективи в умовах антропоцену: матерiали Мiжнародноi науково-практично].' конференцii, присвяченоi 100^ччю кафедри вiдтворення лiсiв та люових мелюрацш (м. Кшв, 6-8 листопада 2019 р.). Кшв, 2019. С. 43-44.

7. Малюга В. М. Насадження для рiзних категорш земель мелюративного фонду // Науковий вюник НАУ. Кшв, 1999. Вип. 20. С. 177-187.

8. Малюга В. М., Маурер В. М., Хрик В. М. Природне поновлення сосни звичайноi на яружно-балкових землях Придншров'я // Науковий вiсник Нащонального унiверситету бiоресурсiв i природокористування Украши. Серiя: Лiсiвництво та декоративне садiвництво. 2018. Вип. 288. С. 80-87.

9. Хрик В. М., Юмейчук I. В. Природне поновлення ялини eвропейськоi на яружно-балкових системах Овруччини. «1нновацшш технологii в агрономи, землеустроi, лiсовому та садово-парковому господарствЬ»: матерiали Мiжнародноi науково-практичноi конференцii, 30 жовтня 2020 року. Бшо-церювський НАУ. С. 28-30.

10. Khryk V. M., Maliuha V. M., Kimeichuk I. V., Khakhula V. S., Yukhnovskyi V. Yu. Natural regeneration of ravine-gally systems and former arable lands in Ovruch region // Modern scientific researches. 2020, issue 13, part 3. P. 28-37.

11. Малюга В. М., Мiндер В. В. Показник напруженосп життевого простору захисних люових насаджень. Ukrainian Journal of Forest and Wood Science. Кшв, 2020. Т. 11. № 4. С. 47-59.

12. Мозолевская Е. Г. Методы оценки и прогнозирования динамики насаждений // Лесное хозяйство. 1998. № 8. С. 43-45.

13. Мозолевская Е. Г., Катаев О. А., Соколова Е. С. Методы лесопатологического исследования очагов стволовых вредителей и болезней леса. М.: Лесная пром-сть, 1984. 152 с.

14. Саштарш правила в люах Украши. Постанова Кабшету Мшю^в Украши вщ 27.07.1995. № 555. К. Урожай, 1995. 16 с.

15. Гром М. М. Люова таксащя. Львiв: РВВ НЛТУ Украши, 2007. 416 с.

16. Кашпор С. М., Строчинський А. А. Люотаксацшний довщник. Корсунь-Шевченювський: Майдаченко, 2013. 496 с.

Information about the authors

Khryk Vasyl Mykhailovych - PhD (Agriculture), Associate Professor, Head of the Department of Forestry. Bila Tserkva National Agrarian University (8/1, Sobornaya Ave., 09117, Bila Tserkva, Ukraine). E-mail: hvm2020@ukr.net

Kimeichuk Ivan Vasyliovych - PhD student, the Department of Forests Restorations and Meliorations. National University of Life and Environmental Sciences of Ukraine (15, Geroiv Oborony str., Kyiv, 03041, Ukraine). E-mail: i_kimeichuk@nubip.edu.ua

Nosnikau Vadzim Valeravich - PhD (Agriculture), Associate Professor, Head of the Department of Forest Plantations and Soil Science. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: nosnikov@belstu.by

Rabko Siarhei Uladzimiravich - PhD (Agriculture), Associate Professor, Assistant Professor, the Department of Forest Plantations and Soil Science. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: rebko@belstu.by

Kozel Aliaksandr Uladzimiravich - PhD (Agriculture), Assistant Professor, the Department of Forest Protection and Wood Science. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: kozel@belstu.by

Maliuga Volodymyr Mykolaiovych - DSc (Agriculture), Assistant Professor, the Department of Forests Restorations and Meliorations. National University of Life and Environmental Sciences of Ukraine (15, Geroiv Oborony str., Kyiv, 03041, Ukraine). E-mail: malugavolodimir1953@gmail.com

Yukhnovskyi Vasyl Yuriiovych - DSc (Agriculture), Professor, the Department of Forests Restorations and Meliorations. National University of Life and Environmental Sciences of Ukraine (15, Geroiv Oborony str., Kyiv, 03041, Ukraine). E-mail: yukhnov@ukr.net

Информация об авторах

Хрык Василь Михайлович - кандидат сельскохозяйственных наук, доцент, заведующий кафедрой лесного хозяйства. Белоцерковский национальный аграрный университет (09117, г. Белая Церковь, пл. Соборная, 8/1, Украина). E-mail: hvm2020@ukr.net

Кимейчук Иван Васильевич - аспирант кафедры лесовосстановления и лесных мелиораций. Национальный университет биоресурсов и природопользования Украины (03041, г. Киев, ул. Героев Обороны, 15, Украина). E-mail: i_kimeichuk@nubip.edu.ua

Носников Вадим Валерьевич - кандидат сельскохозяйственных наук, доцент, заведующий кафедрой лесных культур и почвоведения. Белорусский государственный технологический университет (220006, г. Минск, ул. Свердлова, 13а, Республика Беларусь). E-mail: nosnikov@belstu.by

Ребко Сергей Владимирович - кандидат сельскохозяйственных наук, доцент, доцент кафедры лесных культур и почвоведения. Белорусский государственный технологический университет (220006, г. Минск, ул. Свердлова, 13а, Республика Беларусь). E-mail: rebko@belstu.by

Козел Александр Владимирович - кандидат сельскохозяйственных наук, доцент кафедры лесозащиты и древесиноведения. Белорусский государственный технологический университет (220006, г. Минск, ул. Свердлова, 13а, Республика Беларусь). E-mail: kozel@belstu.by

Малюга Володимир Николаевич - доктор сельскохозяйственных наук, доцент кафедры лесовос-становления и лесных мелиораций. Национальный университет биоресурсов и природопользования Украины (03041, г. Киев, ул. Героев Обороны, 15, Украина). E-mail: malugavolodimir1953@gmail.com

Юхновский Василь Юрьевич - доктор сельскохозяйственных наук, профессор кафедры лесо-восстановления и лесных мелиораций. Национальный университет биоресурсов и природопользования Украины (03041, г. Киев, ул. Героев Обороны, 15, Украина). E-mail: yukhnov@ukr.net

Поступила 01.03.2021

i Надоели баннеры? Вы всегда можете отключить рекламу.