Научная статья на тему 'Stability of coordination compounds of some d-metal ions with succinic acid anion in aqueous-ethanol solvents'

Stability of coordination compounds of some d-metal ions with succinic acid anion in aqueous-ethanol solvents Текст научной статьи по специальности «Химические науки»

CC BY
111
29
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
COMPLEX FORMATION REACTIONS / COMPLEX STABILITY / D-METAL IONS / MIXED SOLVENTS / SUCCINIC ACID

Аннотация научной статьи по химическим наукам, автор научной работы — Tukumova Natalia V., Usacheva Tatiana R., Tran Thi Dieu Thuan, Sharnin Valentin A., Giancola Concetta

The paper provides an overview of own data on complexation of nickel (II), cobalt (II) and cooper (II) ions with succinic acid anion in water-organic mixed solvents. Proper data are compared with data reported in literature for d-metal complexes with anions of maleic and succinic acids. The effect of aqueous ethanol solvent compositions on the stability of coordination compounds of M2+ with succinic acid anion as well as on рК values of stepwise succinic acid dissociation was carried out by a potentiometric titration at ionic strength of 0.1 maintained with sodium perchlorate at 298.15 ± 0.10 K. Mono ligand complexes of Ni2+, Co2+ and Cu2+ ions with succinic acid anion become stronger when ethanol content rises. In aqueous solutions Cu2+ ion forms stronger complexes with succinic and maleic acid anions than Ni2+ and Co2+ ions. In the studied water - ethanol solution this ratio is maintained for complexes with succinic acid anion, but a water-isopropanol solvent exerts leveling effect on the stability of complexes of nickel (II) and cobalt (II). An increase in the stability of complexes of d-metal with anions of maleic and succinic acids is due to the destabilization of the ligand with increasing ethanol concentration. The principal contribution of the changes in the solvation state of ligand is a typical for the stability changes of d-metal complexes with amine, glycinate, and acetate type ligands in water-organic mixed solvents.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Stability of coordination compounds of some d-metal ions with succinic acid anion in aqueous-ethanol solvents»

УДК: 547.461.4-386: 54 - 162.37

УСТОЙЧИВОСТЬ КООРДИНАЦИОННЫХ СОЕДИНЕНИЙ ИОНОВ НЕКОТОРЫХ d-МЕТАЛЛОВ С АНИОНОМ ЯНТАРНОЙ КИСЛОТЫ В ВОДНО-ЭТАНОЛЬНЫХ

РАСТВОРИТЕЛЯХ

Н.В. Тукумова, Т.Р. Усачева, Tran Thi Dieu Thuan, В.А. Шарнин, C. Giancola

Наталия Владимировна Тукумова, Татьяна Рудольфовна Усачева*, Валентин Аркадьевич Шарнин Кафедра общей химической технологии, Ивановский государственный химико-технологический университет, Шереметевский просп., 7, Иваново, Россия, 153000 E-mail: [email protected] *, [email protected]

Tran Thi Dieu Thuan

Хошиминский промышленный университет, 12 Нуенг Ван Бао,4, Го Вап, Вьетнам E-mail: [email protected]

Concetta Giancola

Неаполитанский университет им. Фридриха II, ул. Д. Монтезано, 49, 80131 Неаполь, Италия E-mail: [email protected]

В статье проведен обзор данных по комплексообразованию ионов никеля (II), кобальта (II) и меди (II) с анионом янтарной кислоты в водно-органических растворителях. Собственные данные сопоставлены с результатами, приведенными в литературе для комплексов d-металлов с анионами малеиновой и янтарной кислот. Состав и устойчивость координационных соединений в водно-этанольных растворителях были исследованы методом потенциометрического титрования. Исследование влияния состава водно-этанольного растворителя на устойчивость координационных соединений M2 + с анионом янтарной кислоты, а также на значения рК ступенчатой диссоциации янтарной кислоты проводили при ионной силе 0,1, которая создавалась перхлоратом натрия при температуре 298,15 ± 0,10 K. Установлено, что устойчивость моно-лигандных комплексов ионов Ni2+, Co2+ и Cu2+ с анионом янтарной кислоты увеличивается с ростом содержания этанола в растворителе. В водных растворах ион Cu2+ образует более устойчивые комплексы с анионами янтарной и малеиновой кислот, чем ионы Ni2+ и Co2+. В растворителе вода-этанол такое соотношение сохраняется для комплексов этих ионов с янтарной кислотой, однако в растворителе вода-изопропанол устойчивость комплексов никеля (II) и кобальта (II) с янтарной кислотой примерно одинакова. Увеличение устойчивости комплексов d-металлов с анионами малеиновой и янтарной кислот обусловлено дестабилизацией лиганда при переходе от воды к водно-этанольным растворителям. Изменение в сольватном состоянии лиганда является основным вкладом в изменение устойчивости комплексов d-металлов с лигандами аминного, глици-натного и ацетатного типа в водно-органических растворителях.

Ключевые слова: реакции комплексообразования, устойчивость комплексов, ионы d-металлов, смешанные растворители, янтарная кислота

STABILITY OF COORDINATION COMPOUNDS OF SOME d-METAL IONS WITH SUCCINIC ACID ANION IN AQUEOUS-ETHANOL SOLVENTS

N.V. Tukumova, T.R. Usacheva, Tran Thi Dieu Thuan, V.A. Sharnin, C. Giancola

Natalia V. Tukumova, Tatiana R. Usacheva, Valentin A. Sharnin

Department of General Chemical Technology of Ivanovo State University of Chemistry and Technology. Sheremetev av., 7, 153000, Ivanovo, Russia E-mail: [email protected], [email protected]

Tran Thi Dieu Thuan

Faculty of Technology Chemistry, Ho Chi Minh University of Industry, Ho Chi Minh City, Vietnam. E-mail: [email protected]

Concetta Giancola

Department of Pharmacy, School of Medicine and Surgery of University of Naples Federico II. Via D. Mon-tesano, 49, 80131 Naples, Italy E-mail: [email protected]

The paper provides an overview of own data on complexation of nickel (II), cobalt (II) and cooper (II) ions with succinic acid anion in water-organic mixed solvents. Proper data are compared with data reported in literature for d-metal complexes with anions of maleic and succinic acids. The effect of aqueous ethanol solvent compositions on the stability of coordination compounds of M2+ with succinic acid anion as well as on рК values of stepwise succinic acid dissociation was carried out by a potentiometric titration at ionic strength of 0.1 maintained with sodium perchlorate at 298.15 ± 0.10 K. Mono ligand complexes of Ni2+, Co2+ and Cu2+ ions with succinic acid anion become stronger when ethanol content rises. In aqueous solutions Cu2+ ion forms stronger complexes with succinic and maleic acid anions than Ni2+ and Co2+ ions. In the studied water - ethanol solution this ratio is maintained for complexes with succinic acid anion, but a water-isopropanol solvent exerts leveling effect on the stability of complexes of nickel (II) and cobalt (II). An increase in the stability of complexes of d-metal with anions of maleic and succinic acids is due to the destabilization of the ligand with increasing ethanol concentration. The principal contribution of the changes in the solvation state of ligand is a typical for the stability changes of d-metal complexes with amine, glycinate, and acetate type ligands in water-organic mixed solvents.

Key words: complex formation reactions, complex stability, d-metal ions, mixed solvents, succinic acid Для цитирования:

Тукумова Н.В., Усачева Т.Р., Thuan Tran Thi Dieu, Шарнин В.А., Giancola C. Устойчивость координационных соединений ионов некоторых d-металлов с анионом янтарной кислоты в водно-этанольных растворителях. Изв. вузов. Химия и хим. технология. 2018. Т. 61. Вып. 9-10. С. 15-22 For citation:

Tukumova N.V., Usacheva T.R., Thuan Tran Thi Dieu, Sharnin V.A., Giancola C. Stability of coordination compounds of some d-metal ions with succinic acid anion in aqueous-ethanol solvents. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 9-10. P. 15-22

INTRODUCTION

Quantitative account of the solvent composition influence on the complex formation reactions is the scientific basis of the selection of the solvent to obtain new complexes with prescribed thermodynamic properties. The estimation of the influence of mixed solvent composition on the thermodynamic

solvation parameters of reagents and products (AG, AH, AS), and the derivation of proper relationships between their solvation parameters and those of reaction, allow to devise predictive models for complex formation reactions. Studies of the complex formation reaction of d-metal ions with amine, carboxylate and crown-ethers [1-8] as well as molecular complexes of crown-ether with amino acids and peptides [9, 10]

have revealed several general rules governing thermodynamics of reactions and solvation of the reagents in aqueous-organic solvents. These rules have shown the possibility of predicting the thermodynamic parameters of complex formations in different media according to a change in the solvation state of ligands.

The study of complex formations between d-metal and bioligand in solvents is important to understand an impact of different media on the interactions in living systems. In particularly a wide practical application of succinic acid (fig.1) requires comprehensive study of its interactions in solutions [11].

Fig. 1 Structural formula of succinic acid Рис. 1. Структурная формула янтарной кислоты

Succinic acid anions are capable to forming coordination compounds with ions of microelements, which play an important role in the biological processes. For this purpose, this paper provides an overview of own data on complex formation of Ni2+, Co2+ and Cu2+ ions (M2+) with succinic acid anions in water-organic mixed solvents [12-16]. Proper data are compared with data reported in literature for akin compounds [3, 4, 7, 8, 17-22].

DISCUSSION

The effect of aqueous ethanol solvent compositions on the stability of coordination compounds of M2+ with succinic acid anion as well as on рК values of stepwise succinic acid dissociation was carried out by a potentiometric titration at ionic strength of 0.1 maintained with sodium perchlorate at 298.15 ± 0.10 K. [12-16]. The content of ethanol in mixed solvent was 0.0, 0.1, 0.3, 0.5 and 0.7 mole fractions. Succinic acid did not dissolve at larger ethanol concentrations. The stability of coordination compounds was studied at the ratio М2+ : H2L = 1:1. Mathematical treatment of experimental data was performed using PHMETR universal software destined to calculate equilibria with arbitrary number of chemical processes in solution [23].

The following reactions for a system containing succinic acid (H2L), M(ClO4)2 and NaClO4 are supposed: acid-base equilibria of H2L (1, 2), reaction of M2+ with the products of dissociation of succinic acid (3-5) and with hydroxide ion (6), as well as water dissociation (7).

H2L » H+ + HL- (1)

HL- » H+ + L2- (2)

M2+ + HL- » [MHL]+ (3)

M2+ + L2- » [ML] (4)

M2+ + 2L2- » [ML2]2 (5)

M2+ + ОН- » МОН+ (6)

Н2О » Н+ + ОН- (7)

The рК values of stepwise succinic acid dissociation reports the Table 1. The рК values for both steps increase monotonically with the increase of EtOH content in solution.

Table 1

Values of pK for succinic acid dissociation at Т = 298.15К

and I =0.1 (NaClO4) in aqueous - ethanol solutions [16] Таблица 1. Значения pK диссоциации янтарной кислоты при Т = 298,15К и ионной силе I =0,1 (NaClO4)

в водно-этанольных растворителях [16]

mol.fr. рК рК2

0.0 4.04 ± 0.02 5.48 ± 0.04

0.1 4.22 ± 0.05 5.96 ± 0.04

0.3 4.73 ± 0.04 6.02 ± 0.04

0.4 5.05 ± 0.06 6.44 ± 0.02

0.5 5.17 ± 0.06 6.57 ± 0.04

0.7 5.63 ± 0.06 7.00 ± 0.02

There are no literature data on the values of hydrolysis constants for M2+ (pKmoh+) in aqueous-ethanol solutions (eq.6). The yield of MOH+ particles in water did not exceed 1%. Therefore the literature data pKNiOH+ = 9.86, pKcoOH+ = 8.96 and pKcuOH+ = 9.86 [24] obtained in aqueous solutions were used in PHMETR calculation in H2O-EtOH solvents. We recalculated the equilibrium constant for the reaction (7) at zero ionic strength [25] by equation with one individual parameter for ionic strength 0.1 and taking into account the process of water ionization in aqueous - ethanol solvents [26]. The mathematical treatment of experimental data showed that the process (4) prevails at all range of ethanol concentrations. Increasing of pH lead to an increase the [ML] species yield. The maximal yields of [MHL]+ and [ML2]2" species were not exceed 3%, which no provides a possibility to obtain reliable of lgP[MHL]+ and lgP[ML2]2-values under these conditions.

Values of lgP[№L], lgP[coL] and lgP[ouL] at different content of ethanol are given in the Table 2. The literature data on lgP[NiL] and lgP[coL] in water are rather contradictory. The experimental conditions are completely consistent with ours only in the paper [17], but the lgP[NiL] value is given without an error and it is significantly different from our result. In the papers [18-22] a nitrate background electrolyte is used.

Table 2

Stability of mono-ligand complexes of Ni2+, Co2+ and Cu2+ ions with succinic acid anion in aqueous - ethanol

solutions at Т = 298.15К and I =0.1 Таблица 2. Устойчивость моно-лигандных комплексов ионов Ni2+, Co2+ и Cu2+ с анионом янтарной кислоты в водно-этанольных растворителях при

XEtOH, mol.fr. lgP[NiL] lgP[CoL] lgP[CuL]

0.0 1.96 ± 0.06 (NaClO4) [15] 1.60 (NaClO4) [17] 3.17 ± 0.02 (NaNO3) [18] 3.12 ± 0.09 (NaNO3) [19] 1.71 ± 0.03 (KNO3) [20] 1.64± 0.02 (NaClO4) [15] 1.62 ± 0.03 (KNO3) [20] 1.50 ± 0.02 (KNO3) [21] 2.97 ± 0.02 (NaNO3) [18] 1.80 ± 0.06 (NaNO3) [22] 2.98±0.02 (NaClO4) [16] 2.61 [33] 2.59 [34] 3.02 ± 0.01 (KNO3) [20] 3.20 (NaNO3) [19]

0.1 2.53±0.04 [15] 1.87 ± 0.04 [15] 3.78 ± 0.02[16]

0.3 3.02±0.04 [15] 2.67 ± 0.04 [15] 5.20 ± 0.04[16]

0.4 3.33±0.04 [15] 3.20 ± 0.04 [15] 6.01 ± 0.06[16]

0.5 [15] 3.65±0.04 3.41 ± 0.06 -

0.7 [15] 4.23±0.06 3.60 ± 0.02 -

In aqueous solutions Cu2+ ion forms stronger complexes with succinic and maleic acid anions than Ni2+ and Co2+ ions. This fact is in the agreement with the Irving-Williams series (Zn2+ < Cu2+ > Ni2+ > Co2+). In the studied water - ethanol solution this ratio is maintained for complexes with succinic acid anion, but a water-isopropanol solvent exerts leveling effect on the stability of complexes of nickel (II) and cobalt (II) [14] (Fig. 2).

Fig. 2. Dependenses of the logarithm of the stability constants of coordination compounds of cooper (1), nickel (2), and cobalt (3) ions with maleic acids anions [12,13] and cooper (4), nickel (5),

and cobalt (6) ions with succinic acids anions [15,16] Рис. 2. Зависимость логарифма константы устойчивости координационных соединений ионов меди (1), никеля (2) и кобальта (3) с анионами малеиновой кислоты [12,13], ионов меди (4), никеля (5) и кобальта (6) с анионами янтарной кислоты [15,16]

Increase in the content of ethanol in solution leads to the growth of [ML] complexes stability (Table 2.). Aqueous-ethanol solvent has similar effect on the stability of mono ligand Cu2+, Co2+, Ni2+ complexes with ethylenediamine [7], as well as with anions of maleic acid [13], aminoacetic acid [6, 3], acetic acid [4, 27], and with ammonium ion [8, 5].

That solvent influences solvation and complex formation equilibria of ions and individual molecules is a well known fact. In this way, the reactivity of each participant strongly depends on the chemical nature and the composition of mixed solvents. When the solution medium is a mixture of two or more solvents, the phenomenon of preferential solvation may take place, in which the solvation shell of the solute has a composition different from that of the bulk solvent mixture, and models for its calculation have been proposed [28, 29].

It is noticed, that solvatecomplex of metals make a basis of coordination chemistry as they are present at all stages of transformation of complexes of metals at solutions. The effects of mixed solvent composition and of the preferential solvation on the change in the solvation state of metal ions have been studied in [29 - 32].

Universal interpretation of the coordination compound stability changes in mixed solvents is the application of a solvation approach which takes into account all changes in reagent's solvation states [28]. Thereby, the influence of the solvent composition changes on the thermodynamic reaction parameters and the reagent's solvation (Z) can be quantitatively described by the equations:

AtrYr = ArY(s) - Ar7№0) (8)

AtrY (Z) = Y(Z) (s) - Y(Z) Y(Z)(H2O) (9)

where ArY(s) and AVY(^0) are the thermodynamic parameters (AG, AH, TAS) of a complex formation reaction, and Y(s) and Y(h2o) are the thermodynamic parameters of reagents solvation in mixed solvent and in H2O, respectively.

The solvent influence on the reaction thermo-dynamic parameters changes can be also expressed in terms of the solvation contributions (AtrY) of all participants by the equation:

AtrYr = AtrY([ML])-AtrY(L2")-AtrY(M2+) (10) To apply eq. (10), the solvation thermodynamic parameters of reagents (AfrY(M2+), AtrY(L2-)) and complex AtrY([ML]) must be known.

The equation (9) and the data of the Table 2 were used to calculate the Gibbs energy transfer val-

ues form water into water-ethanol mixtures (AtrG0r) for the [CuL], [CoL] and [NiL] complex formation reactions. A complete analysis of the reagents solva-tion contributions into the AtrG0r by the equation (10) is not possible now due to the absence of AtrG0 values for succinic acid anion (AtrG0(L2-)), and also those for Co2+ (AtrG° (Co2+)). The ArG0r([NiL]) and AtrG0r([CoL]) values are close each other form 0.0 up to 0.5 mole fractions of ethanol (Fig. 3). The value of AtrG0r([NiL]) is more exothermic than AfrG°r([CoL]) at the 0.7 ethanol mole fraction.

s

â о

4L

о о

-2 -4 -6 -8 -10 -12 -14

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

xEtOH5 moL fr

4

Fig. 3. Dependence of Gibbs energy changes for the transfer of formation reactions of coordination compounds of Ni2+ (1, 4) and Co2+ (2, 3) ions with maleic acid anion (1 [13], 2 [12]) and with succinic acid anion (3, 4) [15] from water into aqueous ethanol solutions

Fig. 3. Зависимость изменения энергии Гиббса при переносе реакции образования координационных соединений ионов Ni2+ (1, 4) и Co2+ (2, 3) с анионом малеиновой кислоты (1 [13], 2 [12]) и с анионом янтарной кислоты (3, 4) [15] из воды в водно-этанольные растворители

The Gibbs energy changes for the [NiL] and [CuL] complex formation reaction and for the Ni2+ and Cu2+ ions solvation in H2O-EtOH mixtures are presented in Fig. 4 and Fig.5. The solvation-thermodynamic analysis of the cooper acetate (II) complex formation reaction in aqueous ethanol showed that the contribution from the acetate ion desolvation AtrG°(Acet") into AtrG°r is about 10 kJ/mol at the transfer from water to H2O-EtOH solvent with 0.3 mole fraction of EtOH [27].

In accordance with an additive method it can be estimate a solvation contribution of the succinic acid anion as a double contribution from acetate ion solvation (2AtrG0 (Acet-)). The contributions from the Ni2+ and Cu2+ solvation state are not favor to increasing the stability of their complexes with maleic and succinic acid anions.

0,0 0,1 0,2 0,3 0,4 0,5

0,6 0,7

0,8

X , mol.fr.

EtOH'

Fig. 4. Thermodynamic characteristics of Cu2+ complexation with succinic (L2-) and maleic (Y2-) acid anions in water-ethanol sol-vents:1 - AtrG0 (Cu2+) [29]; 2 - double contribution from acetate

ion solvation (2AtrG0 (Acet-)) assumed as succinic acid anion contribution^ - AtrG°r for [CuY] complex formation [16]; 4 -

AtrG°r for [CuL] complex formation [16] Рис. 4. Термодинамические характеристики комплексообра-зования Cu2+ с анионами янтарной (L2-) и малеиновой (Y2-) кислот в водно-этанольных растворителях: 1 - AtrG0 (Cu2+) [29]; 2 - удвоенный сольватационный вклад ацетат-иона (2AtrG° (Acet-)), принятый равным сольватационному вкладу аниона янтарной кислоты; 3 - AtrG0r для реакции образования комплекса [CuY] [16]; 4 - AtrG°r для реакции образования комплекса [CuL] [16]

20

-S 3

а 10 £

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

5-

-10

-15-1

/1

^EiOH?11101-^

0,4 o:s ' o,'s ' о;?

3

Fig. 5. Thermodynamic characteristics of Ni2+ complexation with succinic (L2-) and maleic (Y2-) acid anions in water-ethanol sol-vents:1 - double contribution from acetate ion solvation (2AtiG0 (Acet)) assumed as succinic acid anion contribution; 2 - AtrG0r for [NiY] complex formation [13]; 3 - AtrG0 (Ni2+) [29]; 4 - AtrGr for [NiL] complex formation [15] Рис. 5. Термодинамические характеристики комлексообразо-вания Ni2+ с анионами янтарной (L2-) и малеиновой (Y2-) кислот в водно-этанольных растворителях: 1 - удвоенный сольвата-ционный вклад ацетат-иона (2AtrG0 (Acet-)) принятый равным сольватационному вкладу аниона янтарной кислоты; 2 - AtrG0r для реакции образования комплекса [NiY] [13]; 3 - AtrG0 (Ni2+) [29]; 4 - AtrG0r для реакции образования комплекса [NiL] [15]

CONCLUSIONS

It can be assumed that an increase in the stability of complexes of cooper, cobalt and nickel with anions of maleic and succinic acids with increasing ethanol concentration is due to the destabilization of

1

2

3

the ligand. The principal contribution of the changes in the solvation state of ligand is a typical for the stability changes of d-metal complexes with amine [7], glycinate [3], and acetate [4] type ligands in water-organic mixed solvents.

This study was performed at the Research Institute of Thermodynamics and Kinetics of Chemical Processes of the Ivanovo State University of Chemistry and Technology.

ЛИТЕРАТУРА

1. Шарнин В.А. Термодинамика комплексообразования в смешанных растворителях. Изв. вузов. Химия и хим. технология. 2005. Т. 48. Вып. 7. С. 44-53.

2. Курышева А.С., Леденков С.Ф., Шарнин В.А. Энтальпии комплексообразования меди (II) с никотинамидом в водном этаноле и ДМСО. Журн. физ. химии. 2006. Т. 80. Вып. 8. С. 1417-1421. DOI: 10.1134/S0036024406080127.

3. Исаева В.А., Шарнин В.А., Шорманов В.А. Влияние водно-этанольного и водно-ацетонового растворителей на устойчивость глицинатных комплексов никеля (II). Коорд. химия. 1999. Т. 25. № 12. С. 912-914.

4. Исаева В.А., Шарнин В.А., Шорманов В.А., Щербина И.В. Устойчивость ацетатных комплексов меди (II) в водно-органических растворителях. Коорд. химия. 1998. Т. 24. № 2. С. 149-151.

5. Михеев С.В., Шарнин В.А., Шорманов В.А. Влияние составов водно-ацетонового и водно-диметилсульфо-ксидного растворителей на устойчивость аммиачных комплексов меди (II). Журн. неорг. химии. 1999. Т. 44. № 8. С. 1330-1333.

6. Фадеев Ю.Ю., Шарнин В.А., Шорманов В.А. Устойчивость пиридиновых комплексов меди (II) в водных растворах ацетона и этанола. Журн. неорг. химии. 1997. Т. 42. № 7. С. 1224-1226.

7. Невский А.В., Шорманов В.А., Крестов Г.А. Термодинамика реакций комплексообразования иона никеля (II) с эти-лендиамином в водно-этанольных растворителях. Коорд. химия. 1989. Т. 15. № 11. С. 1576-1580.

8. Крестов Г.А., Шорманов В.А., Афанасьев В.Н. Устойчивость моноаммиаката никеля (II) в водных растворах метилового, этилового и изопропилового спиртов. Журн. неорг. химии. 1976. Т. 21. № 3. С. 738-741.

9. Usacheva T.R., Sharnin V.A., Chernov I.V., Matteoli E., Terekhova I.V., Kumeev R.S. The influence of water-ethanol mixture on the thermodynamics of complex formation between 18-crown-6 ether and L-phenylalanine. Chem. Phys. Letters. 2012. V. 543. P.155-158. DOI: 10.1016/j.cplett.2012.06.054.

10. Усачева Т.Р., Фам Тхи Лан, Шарнин В.А. Калориметрическое исследование реакции образования молекулярного комплекса глицил- глицил-глицина с эфиром 18-краун-6 в водно-органических растворителях. Росс. хим. журн. (Журн. Росс. хим. общ. им. Д.И. Менделеева). 2015. Т. LIX. № 1-2. С. 19-28.

11. Hong Y.K., Hong W.H., Han D.H. Application of reactive extraction to recovery of carboxylic acids. Biotechnol. Bio-process. Eng. 2001. V. 6. P. 386-394.

12. Тукумова Н.В., Усачева Т.Р., Чан Тхи Зьеу Тхуан, Шарнин В.А. Образование координационных соединений ионов кобальта (II) с анионом малеиновой кислоты в водно-этанольных растворах. Изв. вузов. Химия и хим. технология. 2012. Т. 55. Вып. 9. С. 16-19.

ACKNOWLEDGMENT

Dr. T.R. Usacheva and prof. C. Giancola thank the University of Naples Federico II for the financial support of their collaboration contributed to the preparation of this paper.

REFERENCES

1. Sharnin V.A. Thermodynamics of complex formation in mixed solvents. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2005. V. 48. N 7. P. 44-53 (in Russian).

2. Kurycheva A.S., Ledenkov S.F., Sharnin V.A. Enthalpies of complex formation of cooper (II) with nicotinamide in aqueous ethanol and DMSO. Russ. J. Phys. Chem. A. 2006. V. 80. N 8. P. 1244-1248. DOI: 10.1134/S0036024406080127

3. Isaeva V.A., Sharnin V.A., Shormanov V.A. Influence of water-ethanol and water-acetone solvents on the stability of glycinate complexes of nickel (II). Koord. Khim. 1999. V. 25. N 12. P. 912-914 (in Russian).

4. Isaeva V.A., Sharnin V.A., Shormanov V.A., Sherbina I.V. Stability of acetate complexes of copper (II) in water-organic solvents. Koord. Khim. 1998. V. 24. N 2. P. 149-151 (in Russian).

5. Mikheev S.V., Sharnin V.A., Shormanov V.A. The effect of the composition of water-acetone and water-dimethyl sulfoxide solvents on the stability of the copper(II) ammine complex. Russ. J. Inorganic Chem. 1999. V. 44. N 8. P. 1256-1259.

6. Fadeev Yu. Yu., Sharnin V.A., Shormanov V.A. Stability of copper(II) pyridine complexes in aqueous acetone and etha-nol. Russ. J. Inorg. Chem. 1997. V. 42. N 7. P. 1108-1110.

7. Nevsky A.V., Shormanov V.A., Krestov G.A. Thermodynamics of complexation reactions of nickel (II) ion with ethylenediamine in water-ethanol solvents. Koord. Khim. 1989. V. 15. N 11. P. 1576-1580 (in Russian).

8. Krestov G.A., Shormanov V.A., Afanasyev V.N. Stability of nickel mono ammiacate (II) in aqueous solutions of methyl, ethyl and isopropyl alcohols. Zhurn. Neorg. Khim. 1976. V. 21. N 3. P. 738-741 (in Russian).

9. Usacheva T.R., Sharnin V.A., Chernov I.V., Matteoli E., Terekhova I.V., Kumeev R.S. The influence of water-ethanol mixture on the thermodynamics of complex formation between 18-crown-6 ether and L-phenylalanine. Chem. Phys. Letters. 2012. V. 543. P.155-158. DOI: 10.1016j.cplett.2012.06.054.

10. Usacheva T.R., Pham Thi L., Sharnin V.A. Calorimetric study of the molecular complex formation of glycyl-glycyl-glycine with 18-crown-6 in aqueous organic solvents. Russ. J. General Chem. 2017. V. 87. N 3. P. 591-599. DOI: 10.1134/S1070363217030355.

11. Hong Y.K., Hong W.H., Han D.H. Application of reactive extraction to recovery of carboxylic acids. Biotechnol. Bio-process. Eng. 2001. V. 6. P. 386-394.

12. Tukumova N.V., Usacheva T.R., Chan Tkhi Z'eu Thuan, Sharnin V.A. Formation of coordination compounds of cobalt (II) ions with an anion of maleic acid in aqueous ethanol solutions. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2012. V. 55. N 9. P. 16-19 (in Russian).

13. Тукумова Н.В., Усачева Т.Р. , Тхуан Чан, Шарнин В.А.

Влияние состава водно-этанольного растворителя на устойчивость комплексов малеиновой кислоты с ионами никеля (II). Изв. вузов. Химия и хим. технология. 2011. Т. 54. Вып. 4. С. 34-37.

14. Тукумова Н.В., Усачева Т.Р., Чан Тхи Зъеу Тхуан, Шарнин В.А. Устойчивость координационных соединений ионов Co2+ и Ni2+ с анионом малеиновой кислоты в водно-изопропанольных растворах. Журн. неорг. химии. 2014. Т. 59. № 2. С. 281-285. DOI: 10.1134/S003602361402020X.

15. Тукумова Н.В., Чан Тхи Зьеу Тхуан, Усачева Т.Р., Ко-рышев Н.Е., Шарнин В.А. Устойчивость координационных соединений ионов Ni2+ и Co2+ с анионом янтарной кислоты в водно - этанольных растворителях. Журн. физ. химии. 2017. Т. 91. № 4. С. 639-643. DOI: 10.1134/S003602 441704029X.

16. Тукумова Н.В., Усачева Т.Р., Чан Тхи Зъеу Тхуан, Шар-

нин В.А. Состав и устойчивость комплексов малеиновой и янтарной кислот с ионами Cu2+ в растворах вода-этанол. Журн. физ. химии. 2014. Т. 88. № 10. С. 1510-1514. DOI: 10.1134/S0036024414100343.

17. Yasada M., Yamasaki K., Ohtaki H. Stability of complexes of several carboxylic acids formed with bivalent metals. Bull. Chem. Soc. 1960. V. 33. N 8. P. 1067-1070.

18. Radalla A.M. Studies on complexation of resorcinol with some divalent trasition metal ions and aliphatic dicarboxylic acids in aqueous media. J. Solution. Chem. 2010. V. 39. N 9. P. 1394-1407. DOI: 10.1007/s10953-010-9589-7.

19. Khalil M.M., Radalla A.M. Binary and ternary complexes of inosine. Talanta. 1998. V. 46. N 1. P. 53-61. DOI: 10.1016/S0039-9140(97)00255-5.

20. Васильев В.П., Зайцева Г.А., Тукумова Н.В., Высоцкая Т.Ю. Взаимодействие ионов Co2+ и Ni2+ с янтарной кислотой. Журн. неорг. хим. 1998. Т. 43. № 11. С. 1859-1863.

21. Chernova S.P., Rylkina M.V., Reshetnikov S.M., Chika-nova A.Yu., Ivanova E.Kh. The effect of dicarboxylates on the anodic dissolution of cobalt. Protection of Metals. 2000. V. 36. N 5. P. 483-489. DOI: 10.1007/BF02764097

22. El-Sherif A.A. Synthesis, Solution Equilibria and Antibacterial Activity of Co (II) with 2-(Aminomethyl)-Benzimidazole and Dicarboxylic Acids. J. Solution Chem. 2010. V. 39. P. 1562-1581. DOI: 10.1007/s10953-010-9593-y.

23. Бородин В.А., Козловский Е.В., Васильев В.П Обработка результатов потенциометрического исследования комплексообразования в растворах на ЭВМ. Журн. неорг. химии. 1986. Т. 31. № 1. С. 10-16.

24. Назаренко В.А., Антонович В.П. Невская Е.М. Гидролиз ионов металлов в разбавленных растворах. M.: Атомиздат. 1979. 120 с.

25. Лурье Ю.Ю. Справочник по аналитической химии. M.: Химия. 1989. 480 с.

26. Woolley E.M., Hurkot D.G., Hepler L.G. Ionization constants for water in aqueous organic mixtures. J. Phys. Chem. 1970. V. 74. N 22. P. 3908-3913. DOI: 10.1021/j100716a011.

27. Sigel Н., Malini-Balakrishnan R., Haering U.K. Ternary complexes in solution. Influence of organic solvents on intramolecular aromatic-ring stacks in aqueous mixed-ligand metal ion complexes. Opposing solvent effects. J. Am. Chem. Soc. 1985. V. 107. P. 5137-5148. DOI: 10.1021/ja00304a018.

28. Krestov G.A. Ionic Solvation. New-York-London- Toronto-Sydney-Tokyo-Singapore: Ellis Horwood, Ed. 1994. 347 p.

13. Tukumova N.V., Usacheva T.R., Chan Tkhi Z'eu Thuan, Sharnin V.A. The effect of the composition of the wa-ter-ethanol solvent on the stability of maleic acid complexes with nickel (II). Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2011. V. 54. N 4. P. 34-37 (in Russian).

14. Tukumova N.V., Usacheva T.R., Tran Thi Dieu Thuan, Sharnin V.A. Stability of coordination compounds of Co2+ and Ni2+ ions with maleic acid anion in aqueous isopropanol solutions. Russ. J. Inorg. Chem. 2014. V. 59. N 2. P. 148-151. DOI: 10.1134/S003602361402020X.

15. Tukumova N.V., Tran Thi Dieu Thuan, Usacheva T.R., Koryshev N.E., Sharnin V.A. Stability of coordination compounds of Ni2+ and Co2+ ions with succinic acid anion in water-ethanol solvents. Russ. J. Phys. Chem. A. 2017. V. 91. N 4. P. 662-666. DOI: 10.1134/S003602441704029X.

16. Tukumova N.V., Usacheva T.R., Tran Thi Dieu Thuan, Sharnin V.A. Composition and stability of complexes of maleic and succinic acids with Cu2+ ions in water-ethanol solutions at 298 K. Russ. J. Phys. Chem. A. 2014. V. 88. N 10. P. 1695-1699. DOI: 10.1134/S0036024414100343.

17. Yasada M., Yamasaki K., Ohtaki H. Stability of complexes of several carboxylic acids formed with bivalent metals. Bull. Chem. Soc. 1960. V. 33. N 8. P. 1067-1070.

18. Radalla A.M. Studies on complexation of resorcinol with some divalent trasition metal ions and aliphatic dicarboxylic acids in aqueous media. J. Solution. Chem. 2010. V. 39. N 9. P. 1394-1407. DOI: 10.1007/s10953-010-9589-7.

19. Khalil M.M., Radalla A.M. Binary and ternary complexes of inosine. Talanta. 1998. V. 46. N 1. P. 53-61. DOI: 10.1016/S0039-9140(97)00255-5.

20. Vasil'ev V.P., Zaiseva G.A., Tukumova N.V., Vysotskaya T.Yu. Interaction of Co2+ and Ni2+ ions with succinic acid. Zurn Neorg. Khim. 1998. V. 43. N 11. P. 1859-1863 (in Russian).

21. Chernova S.P., Rylkina M.V., Reshetnikov S.M., Chikanova A.Yu., Ivanova E.Kh. The effect of dicarboxylates on the anodic dissolution of cobalt. Protection of Metals. 2000. V. 36. N 5. P. 483-489. DOI: 10.1007/BF02764097

22. El-Sherif A.A. Synthesis, Solution Equilibria and Antibacterial Activity of Co (II) with 2-(Aminomethyl)-Benzimidazole and Dicarboxylic Acids. J. Solution Chem. 2010. V. 39. P. 1562-1581. DOI: 10.1007/s10953-010-9593-y.

23. Borodin V.A., Kozlovskii E.V., Vasil'ev V.P. Processing of the results of potentiometric investigation of complexation in solutions on computer. Zhurn. Neorg. Khim. 1986. V. 31. N 1. P. 10-16 (in Russian).

24. Nazarenko V.A., Antonovich V.P., Nevskaya E.M. The hydrolysis of metal ions in diluted solutions. M.: Atomizdat. 1979. 120 p. (in Russian).

25. Lur'e Yu.Yu. Handbook of Analytical Chemistry. M.: Khimiya. 1989. 480 p. (in Russian).

26. Woolley E.M., Hurkot D.G., Hepler L.G. Ionization constants for water in aqueous organic mixtures. J. Phys. Chem. 1970. V. 74. N 22. P. 3908-3913. DOI: 10.1021/j100716a011.

27. Sigel H, Malini-Balakrishnan R., Haering U.K. Ternary complexes in solution. Influence of organic solvents on intramolecular aromatic-ring stacks in aqueous mixed-ligand metal ion complexes. Opposing solvent effects. J. Am. Chem. Soc. 1985. V. 107. P. 5137-5148. DOI: 10.1021/ja00304a018.

29. Kalidas С., Hefter G., Marcus Y. Gibbs energies of transfer of cations from water to mixed aqueous organic solvents. Chem. Rev. 2000. V. 100. N 3. P. 819- 839. DOI: 10.1021/cr980144k.

30. Marcus Y. Preferential solvation in mixed solvents. 10. Completely miscible aqueous cosolvent binary mixtures at 298.15 K. Monatsh. Chem. 2001. V. 132. P. 1387-1411.

31. Hefter G., Marcus Y., Waghorne W.E. Enthalpies and entropies of transfer of electrolytes and ions from water to mixed aqueous organic solvents. Chem. Rev. 2002. V. 102. P. 2773-2836. DOI: 10.1021/cr010031s.

32. Березин Б.Д., Голубчиков О.А. Координационная химия сольватосолей переходных металлов. М.: Наука. 1992. 234 с.

33. Arena G., Cali R., Rizzarelli E., Sammartano S., Barbucci R., Michel J., Campbell M. Thermodynamic and spectroscopic properties of mixed complexes in aqueous solution. Copper (II) complexes of 2,2'-bipyridyl and dicarboxylic acids. J. Chem. Soc., Dal-ton Trans. 1978. P. 1090-1094. DOI: 10.1039/DT9780001090.

34. Morphy J.R., Parker D., Kataky R., Eaton M.A.W., Millican A.T., Alexander R., Harrison A., Walker C. Towards tumour targeting with copper - radiolabelled mac-rocycle-antibody conjugates: synthesis, antibody linkage, and complexation behaviour. J. Chem. Soc. Perkin Trans. 1990. 2. P. 573-585. DOI: 10.1039/P29900000573.

28. Krestov G.A. Ionic Solvation. New-York-London- Toronto-Sydney-Tokyo-Singapore: Ellis Horwood, Ed. 1994. 347 p.

29. Kalidas С., Hefter G., Marcus Y. Gibbs energies of transfer of cations from water to mixed aqueous organic solvents. Chem. Rev. 2000. V. 100. N 3. P. 819- 839. DOI: 10.1021/cr980144k.

30. Marcus Y. Preferential solvation in mixed solvents. 10. Completely miscible aqueous cosolvent binary mixtures at 298.15 K. Monatsh. Chem. 2001. V. 132. P. 1387-1411.

31. Hefter G., Marcus Y., Waghorne W.E. Enthalpies and entropies of transfer of electrolytes and ions from water to mixed aqueous organic solvents. Chem. Rev. 2002. V. 102. P. 2773-2836. DOI: 10.1021/cr010031s.

32. Berezin D.B., Golubchikov O.A. Coordination chemistry of solvatosales of transitive metals. M.: Nauka. 1992. 234p. (in Russian).

33. Arena G., Cali R., Rizzarelli E., Sammartano S., Barbucci R., Michel J., Campbell M. Thermodynamic and spectroscopic properties of mixed complexes in aqueous solution. Copper (II) complexes of 2,2'-bipyridyl and dicarboxylic acids. J. Chem. Soc., Dal-ton Trans. 1978. P. 1090-1094. DOI: 10.1039/DT9780001090.

34. Morphy J.R., Parker D., Kataky R., Eaton M.A.W., Millican A.T., Alexander R., Harrison A., Walker C. Towards tumour targeting with copper - radiolabelled mac-rocycle-antibody conjugates: synthesis, antibody linkage, and complexation behaviour. J. Chem. Soc. Perkin Trans. 1990. 2. P. 573-585. DOI: 10.1039/P29900000573.

Поступила в редакцию 17.04.2018 Принята к опубликованию 15.05.2018

Received 17.04.2018 Accepted 15.05.2018

i Надоели баннеры? Вы всегда можете отключить рекламу.