Научная статья на тему 'Сравнение эволюционных алгоритмов SPEA и SPEA2 на множестве задач многокритериальной оптимизации'

Сравнение эволюционных алгоритмов SPEA и SPEA2 на множестве задач многокритериальной оптимизации Текст научной статьи по специальности «Физика»

CC BY
103
19
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук

Аннотация научной статьи по физике, автор научной работы — Федотов Д. В., Семенкин Е. С.

Проведен сравнительный анализ эффективности эволюционного алгоритма SPEA и его модификации SPEA2 на множестве задач безусловной многокритериальной оптимизации различных размерностей.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

COMPARISON OF EVOLUTIONARY ALGORITHMS SPEA AND SPEA2 AT THE SET OF MULTIOBJECTIVE OPTIMIZATION PROBLEMS

Comparative analysis of efficiency of evolutionary algorithms such as SPEA and SPEA2 at set of unconstrained multiobjective optimization problems with various dimensionalities is carried out.

Текст научной работы на тему «Сравнение эволюционных алгоритмов SPEA и SPEA2 на множестве задач многокритериальной оптимизации»

Решетневскце чтения

УКД 519.68

Д. В. Федотов, Е. С. Семенкин

Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева, Россия, Красноярск

СРАВНЕНИЕ ЭВОЛЮЦИОННЫХ АЛГОРИТМОВ 8РЕЛ И 8РЕЛ2 НА МНОЖЕСТВЕ ЗАДАЧ МНОГОКРИТЕРИАЛЬНОЙ ОПТИМИЗАЦИИ

Проведен сравнительный анализ эффективности эволюционного алгоритма БРЕЛ и его модификации БРЕЛ2 на множестве задач безусловной многокритериальной оптимизации различных размерностей.

В современном мире постоянно возникают задачи выбора, предполагающие принятие решения. Только в ряде случаев человек осуществляет выбор интуитивно, опираясь на собственный опыт и здравый смысл, а решение более сложных задач требует особого подхода, так как в данном случае задача принятия решения представляет собой, по сути, уже оптимизационную задачу.

Таким образом, выбор решения в сложных ситуациях требует научной поддержки. Особые сложности с выбором возникают в ситуации, когда необходимо оптимизировать задачу одновременно по нескольким противоречивым критериям. Здесь, кроме вычислительных трудностей, появляются трудности концептуального характера, связанные с определением понятий «компромисс», «равновесие», «справедливое решение».

Многокритериальная оптимизация, также известная как векторная оптимизация, может быть определена как задача нахождения вектора переменных-решений, которые удовлетворяют ограничениям и доставляют оптимум вектор-функции, чьи элементы представляют собой целевые функции. Эти функции формируют математическое описание представления критериев, которые обычно находятся в конфликте друг с другом. Поэтому термин «оптимизировать» означает нахождение такого рода решения, которое бы давало значения всех целевых функций, приемлемых для ЛПР.

В работе был проведен сравнительный анализ алгоритма SPEA с его модификацией SPEA2. В алгоритмах используется концепция Парето-доминирования.

Выбор алгоритмов обусловлен тем, что SPEA имеет ряд преимуществ над другими алгоритмами многокритериальной оптимизации, такими как: VEGA, NPGA, FFGA. Преимущества заключаются в следующем:

1. Он сочетает вышеперечисленные подходы в одном алгоритме.

2. Для назначения индивидам скалярного значения пригодности используется концепция Парето-доминирования.

3. Индивиды, недоминируемые относительно других членов популяции, хранятся внешне в специальном внешнем множестве.

4. Для уменьшения количества индивидов, хранящихся во внешнем множестве, выполняется кластеризация, что в свою очередь никак не влияет на приобретенные в процессе поиска свойства индивидов.

5. Пригодность каждого индивида популяции в данном методе определяется только относительно индивидов внешнего множества, независимо от того, доминируют ли индивиды популяции друг друга.

6. Несмотря на то, что «лучшие» индивиды, полученные в предыдущих поколениях, хранятся отдельно -во внешнем множестве, все они принимают участие в селекции.

7. Для предотвращения преждевременной сходимости, в методе 8РБА используется особый механизм образования ниш, где деление общей пригодности осуществляется не в смысле расстояния между индивидами, а на основе Парето-доминирования.

В свою очередь, 8РБА2 исправляет недостатки 8РБА следующим образом:

1. Использует усовершенствованную схему назначения пригодности, при которой учитывается, сколько членов популяции доминируется каждым индивидом и сколькими он доминируем.

2. Усовершенствованный механизм кластеризации обеспечивает лучшее распределение индивидов в пространстве поиска.

Алгоритмы тестировались при различных наборах параметров (размер популяции, число поколений, точность, тип селекции, скрещивания и мутации) на задачах с различной размерностью. Эффективность работы алгоритмов сравнивалась с использованием трех метрик: Б, Б, ОБ, которые рассчитываются по следующим выражениям:

S =

i n

< Л Е (d -

\n -1 i=1

dt )2

M d d

D=лЕ (max fm- min fm )2

V i '=1

К m=1

i=1

Е d2

i=1

ОБ =

п

Поскольку данные метрики оценивают различные параметры: равномерность распределения полученного недоминируемого фронта, разброс полученных векторов и близость полученного фронта к известному фронту Парето, тоони позволяют дать объектив -ную оценку работы алгоритма.

Математические методы моделирования, управления и анализа данных

D. V. Fedotov, E. S. Semenkin Siberian State Aerospace University named after academician M. F. Reshetnev, Russia, Krasnoyarsk

COMPARISON OF EVOLUTIONARY ALGORITHMS SPEA AND SPEA2 AT THE SET OF MULTIOBJECTIVE OPTIMIZATION PROBLEMS

Comparative analysis of efficiency of evolutionary algorithms such as SPEA and SPEA2 at set of unconstrained multiobjective optimization problems with various dimensionalities is carried out.

© Федотов Д. В., Семенкин Е. С., 2012

УДК 537.613

В. А. Фельк

Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева, Россия, Красноярск

МАГНИТНОЕ ПОЛЕ КАТУШЕК РАЗЛИЧНОЙ ГЕОМЕТРИИ В БЛИЖНЕЙ ЗОНЕ

Предложена аппроксимация пространственного распределения магнитного поля катушек различной геометрии в окрестности их осевых и радиальных линий. Численно исследованы изменения радиальной и осевой составляющих магнитной индукции без учета взаимодействия между витками. Развита методика учета межвиткового взаимодействия в рамках теории возмущений.

Магнитные поля коротких цилиндрических и дисковых катушек с током используют в качестве магнитных линз просвечивающих электронных микроскопов и в ионно-плазменных устройствах, таких как источники вакуумно-эрозионной плазмы и лазер но-плазменные источники ионов [1]. Применительно к этим устройствам топография осесесимметричных стабилизирующих и фокусирующих магнитных полей существенно влияет, в частности, на эффективность процессов генерации, ускорения и фокусирования плазмы [2]. Эта проблема также является актуальной при расчете систем фокусирования плазмы в ионно-плазменных двигателях космических аппаратов.

В работе предложена возможная схема замещения катушек эквивалентными намагничивающими контурами, что позволяет свести точные выражения для полей, содержащих эллиптические интегралы 1-го и 2-го рода к системе линейных уравнений. Этот подход с некоторыми модификациями возможно применить для расчета магнитных полей катушек различной геометрии [3]. Произведен учет взаимодействия вит-

ков катушкек в нескольких последовательных приближениях по параметру связи. Численным моделированием показано, что из-за резонансных эффектов распределение поля в ближней зоне существенно модифицируется. В ряде геометрий эффектами взаимодействия нельзя пренебрегать уже в первом приближении теории возмущений.

Библиографические ссылки

1. Цыбин А. С. Физические основы плазменной и лазерной технологий. М. : МИФИ, 2002.

2. Особенности формирования потоков углеродной плазмы вакуумно-дуговыми источниками / М. С. Аксенов, В. В. Васильев, А. А. Лучанинов и др. / Тр. Харьковской нанотехн. Ассамблеи. 2006. С. 132-144.

3. Фельк В. А., Фомин А. Н. Аппроксимация пространственного распределения магнитного поля катушек различной геометрии / Решетневские чтения : материалы XIII Междунар. науч. конф. : в 2 ч. 2010. Ч. 2. С. 391.

V. A. Fel'k

Siberian State Aerospace University named after academician M. F. Reshetnev, Russia, Krasnoyarsk MAGNETIC FIELD OF COILS OF DIFFERENT GEOMETRY IN NEAR ZONE

Approximation spatial distribution magnetic field of coils of different geometry about a point their axle and radial lines is suggested. Exchanges of radial and axle components of magnetic induction without calculation interaction between coils are numerically investigated. Advanced methodology for calculation of interaction between coils within the framework of the perturbation theory is developed.

© OejitK B. A., 2012

i Надоели баннеры? Вы всегда можете отключить рекламу.