(JT, СибАК
www.sibac.info
Журнал «Инновации в науке» _№ 2 (63), 2017 г.
СПЕЦИФИЧЕСКИЕ «УСКОРЯЮЩИЕ» ПРЕОБРАЗОВАНИЯ КИНЕМАТИЧЕСКИХ
ПРОСТРАНСТВ
Жораев Адахамжан Хамитжанович
канд. физ.-мат. наук, доц. Кыргызско-Узбекского университета,
Кыргызская Республика, г. Ош E-mail: _ [email protected]
SPECIFIC «ACCELERATING» TRANSFORMATIONS OF KINEMATICAL SPACES
Adahаmjan Joraev
Candidate of Science, assistant professor Kyrgyz-Uzbek University,
Republic of Kyrgyzstan, Osh
АННОТАЦИЯ
В статье показано, что преобразования, соответствующие реальным операциям улучшения транспортного сообщения, сохраняют кинематические свойства пространства. Полученные результаты подтверждают естественность определения кинематического пространства.
ABSTRACT
It is demonstrated in the paper that transformations corresponding actual operations to improve transport communication preserve kinematical properties of a space. The obtained results substitute naturalness of the definition of a kine-matical space.
Ключевые слова: кинематическое пространство; преобразование пространства; сохранение свойств.
Keywords: kinematical space; transformation of space; preservation of properties.
Введение
Для целей интерактивного компьютерного представления топологических пространств в книге [1] было введено определение кинематического пространства и осуществлена реализация некоторых известных пространств: листа Мёбиуса, римановых поверхностей квадратных корней и логарифма, проективной плоскости.
Нами [3] было осуществлено построение рима-новых поверхностей по заданным алгебраическим или дифференциальным уравнениям.
В [2] было введено определение локальной неоднородности в классе топологических пространств, откуда также следуют определения в подклассах этого класса. Нами [4], [5] найдены некоторые достаточные условия наличия неоднородности.
Известны различные преобразования для получения новых топологических пространств - склейка, разрезание, прямое произведение. В настоящей статье предлагаются специфические для кинематических пространств преобразования, вытекающие из их определения. Они соответствуют реальным операциям улучшения транспортного сообщения. Показано, что они сохраняют кинематические свойства пространства, и тем самым подтверждают естественность определения кинематического пространства.
1. Основные определения
Приведем (с другим разделением на аксиомы)
ОПРЕДЕЛЕНИЕ 1 [1]. Кинематическим пространством называется множество О точек и множество К маршрутов. Каждый маршрут М состоит
из числа Тм >0 (время маршрута) и функции мм-' [0, Тм] — О (траектория маршрута). При этом:
(К1) Для любых различных г0 и г1 существует такое МеК, что мм(0) = 20 и мм(Тм) =21 (передвижение между любыми точками возможно);
(О) Для любых различных 20 и 21, мм(0) = 20 и мм(Тм) =г1, множество значений Тм ограничено снизу положительным числом (сколь угодно быстрое передвижение невозможно).
(К3) Если м={Тм, мм(0}е К, то {Тм, мм(Тм-ЩеК (возможно движение в обратном направлении).
(К4) Если м={Тм, мм(г)}е К и Т*е (0, Тм), то пара: Т* и функция м*ф=ммф(0 < t < Т*) также принадлежит К(т.е. можно остановиться в любой момент). Маршруты, существующие в силу этой аксиомы, будем называть под маршрутами маршрута м.
(К5) Если {Ти м()}е К, {Т2, М2^)}е К и М1(Тг)=М2(0), то пара: числоТ* = Т1 + Т2 и функция м*(0 = м() ( 0 <t < Т); м*(0 = М2^-Т0 ( Т1<t < Т1+Т2)
также принадлежит К (транзитивность).
Для любой функции - траектории маршрута мм-' [0, Тм] - О множество ее значений будем называть линией.
Кинематическое пространство является линейно связным (без изолированных точек) метрическим топологическим пространством с метрикой рК (г0,21) = т/{Тм ме К, мм(0) = 20 и мм(Тм) =21}.
Иногда удобнее строить не весь набор маршрутов, а только их «базис», из которого можно составить весь набор. Поэтому мы предлагаем
(JT, СибАК
www.sibac.info
Журнал «Инновации в науке» _№ 2 (63), 2017 г.
ОПРЕДЕЛЕНИЕ 2. Базисом В множества К маршрутов называется такой набор маршрутов, что
(К1) заменяется на (К1'): Для любых различных 20 и 2г существуют такие22,...,2и, что в В существуют пути 20-22,..., 2и-2г.
(К2), (К3), (К4) для В сохраняются; (К5) не требуется.
Множество М всех маршрутов строится из базиса В операцией, соответствующей (К5).
ОПРЕДЕЛЕНИЕ 3[2]. Если две точки топологического пространства имеют гомеоморфные окрестности, то они называются локально однородными.
Из него следует
ОПРЕДЕЛЕНИЕ 4. Если хотя бы две точки хг еХ, х2еХне являются локально однородными, то пространство X в целом называется локально неоднородным.
Мы предлагаем
ОПРЕДЕЛЕНИЕ 5. Пусть имеются два кинематических пространства Хг, Х2 с метриками рг(20,21), р2(20 ,2г), соответственно, и непрерывная инъектив-ная функция 3:Хг^Х2. Если для всех х1?х2еХ1 будет р2^(х1),3(х2))<р1(х1,х2) и для некоторых Х1^Х2еХг будет р2^(х1),3(х2))<р1(х1,х2), то такое преобразование будем называть ускоряющим.
2. Примеры ускоряющих преобразований
2.1. Введение дополнительного пути.
Выберем две точки хг ^х2еХг, положительное числор<ё:=рг(хг ,х2),и соединим, дополнительно к множеству Хг, эти две точки изометрическим образом отрезка [0,р]. Полученное множество Х2 будет содержать точки Хги(0,р). Точки из этого отрезка будем обозначать через у.
В качестве базиса маршрутов в Х2 возьмем объединение множества маршрутов в Х1 и набора путей - под отрезков из образа отрезка [0,р], с временами, равными длинам соответствующих прообразов этих под отрезков.
Проверим выполнение аксиомы К1'). Если обе точки лежат в Хг, то маршрут между ними существует в силу кинематичности Хг. Если обе точки лежат в образе отрезка [0,р], то маршрут между ними является образом пути между соответствующими точками на отрезке. Если одна точка х лежит в Хг, а другая точка у- на образе отрезка, то маршрут между
ними составляется из двух маршрутов из базиса у - хг ихг-х.
Тогда р2(хг ,х2)=р<рг(хг х)=й.
2.2. Улучшение путей. Выберем две точки х1?х2еХ1 и найдем такой маршрут М между ними, что его время Тменьше 2рг(хг ,х2). Множество Х2 возьмем совпадающим с множеством Хг.
В качестве базиса маршрутов в Х2 возьмем объединение множества маршрутов в Х1 и маршрут М и множество его подмаршрутов, с временами, уменьшенными вдвое (обозначим соответствующий маршрут через М' с временем Т).
Тогда для точек хг ,х2 по маршруту М':
р2(хг ,х2)<Т'=Т/2 <2рг(хг ,х2)/2=рг(хг х).
3. Компьютерная реализация
Рассматривается случай движения по плоскости (множества Хг сЯ2).
Для удобства пользователя и возможности точного возврата в уже пройденную точку будем рассматривать движение только по направлениям, параллельным осям координат. Пусть И- малое положительное (машинное) число.
Индексы будем записывать в квадратных скобках.
Для каждой из точек на плоскости пользователь выбирает одно из четырех направлений движения у[1] = {1,0}, V [2]={0,1}, у[3] ={ -1,0}, у[4] = ={0, -1}.
Кроме того, проверяется выход на границу области Х1 и возможность дальнейшего движения.
Определяется сеть 2[р, д]= 20+иИ+пИ, и, V- целые числа.
На каждом звене сети длиной И задается положительное число - время прохождения этого звена.
На этой сети определяются сеточные функции: общее время прохождения задаваемого пользователем маршрута, отметки уже пройденных узлов сетки и т.д.
Случай 2.1 представляется следующим образом. Точки х1 и х2 отмечаются отдельно от других. При приходе в одну из этих точек компьютер задает вопрос «ХОТИТЕ ЛИ ВЫ ДВИНУТЬСЯ ПО ПРЯМОМУ ПУТИ К ТОЧКЕ х2/х1?» и при положительном ответе переходит к точке, являющейся образом точки И/(р-И) отрезка [0,р].
В случае 2.2 отмечается траектория, соединяющая точки х1 и х2, и движение по ней производится более быстро.
Список литературы:
1. Борубаев А.А., Панков П.С. Компьютерное представление кинематических топологических пространств. -Бишкек: Кыргызский государственный национальный университет, 1999. - 131 с.
2. Борубаев А.А., Панков П.С. Распознаваемость размеченных топологических пространств // Вестник Кыргызского национального университета. - 2007. - Серия 3, выпуск 4. - С. 5-8.
3. Жораев А.Х. Кинематическое построение и исследование топологических пространств. - Автореферат дисс....канд. физико-матем. наук. - Бишкек, 2012. - 16 с.
4. Жораев А.Х. Условия существования локально неоднородных связных топологических пространств // Инновации в науке / Сборник статей по материалам LVII междунар. научно-практ. конф. №5 (54). Часть I. Новосибирск: Изд. АНС "СибАК", 2016. 190 с. - С. 145-149.
5. Жораев А.Х. Существование неоднородных подпространств без изолированных точек в кинематических пространствах // Естественные и математические науки в современном мире / Сборник статей по материалам XL междунар. научно-практ. конф. № 3 (38). - Новосибирск: Изд. АНС "СибАК", 2016. - С.70-75.