Chemical Journal of Kazakhstan
Volume 1, Number 81(2023), 75-82 https://doi.org/10.51580/2023-1.2710-1185.08
УДК 543.4.5.8
SORPTION PURIFICATION OF WATER FROM HEAVY METAL IONS
USING SULFOUGL
N.S. Murzakassymova1*, M.A Gavrilenko 2, N.A Bektenov3, R.M. Kudaibergenova1,
E.A. Baybazarova1
1M.H. Dulati Taraz Regional University, Taraz, Kazakhstan 2Tomsky Polytechnic University, Tomsk, Russia 3Abai Kazakh National Pedagogical University, Almaty, Kazakhstan E-mail: naz1282@mail. ru
Abstract: Introduction. The sorption capacity of modified carbon has been investigated; the possibility of creating a sorbent for iron (II, III) in water bodies with a purified water yield of up to 0.01 mg/l has been shown. The purpose of the work. To create a new cheap sorbent based on sulfougl, to study its sorption characteristics by the method of solid-phase photometric determination of Fe (II, III) with a low detection limit. Methodology. The sorption capacity with respect to iron ions (II, III) modified with sulfougl has been studied. The sulfogroup used as a modifier has been used in the photometric determination of Fe (II, III) and has been used in the analysis of waters for the total iron content. Results and discussion. Today, thousands of sorbents are produced with various matrix materials, functional groupings, methods of their fixation, containers, mechanical properties, grain and other characteristics. The choice of the optimal sorbent depends on the task assigned to the researcher. Conclusion. When choosing a sorbent, it is necessary to take into account the concentration mode. Thus, after the sorption extraction under the static conditions, the sorbent concentrate should be easily separated from the mother liquor; when used in the dynamic mode, it is undesirable to use strongly swelling sorbents, as well as too small fractions of sorbents. The development of simple methods of water purification from heavy metals, in particular, from the widespread iron (II, III) cation in natural and drinking waters is an important task of analytical chemistry.
Key words: sorption, adsorption, sorbent, complexing, modification
Murzakassymova Nazgul PhD student, E-mail: [email protected]
Sattarkulovna
Gavrilenko Mikhail Alekseyevich Doctor of Chemical Sciences, Professor;
E-mail: [email protected]
Bektenov Nesiphan Abzhaparovich Doctor of Chemical Sciences, Professor;
E-mail: bekten [email protected]
Kudaibergenova Rabiga PhD .student; E-mail: rabi [email protected]
Mussaparovna
Baybazarova Elvira Adilbekovna Master of Chemistry; E-mail: [email protected]
Citation: Murzakassymova N.S., Gavrilenko M.A., Bektenov N.A., Kudaibergenova R.M., Baybazarova E.A. Sorption purification of water from heavy metal ions using sulfougl. Chem. J. Kaz., 2023, 1(81), 7582. DOI: https://doi.org/10.51580/2023-1.2710-1185.08
1. Introduction
Sorption methods are based on complexing reactions on the solid phase of metal ions with a reagent [1, 2]; the well-known, well-proven sorbents based on coal are usually used for their implementation [3]. The known modifications of coal sorbents are presented in [4]. Currently, modified coal (sulfougl) ave been specially developed due to their possible subsequent use in small-sized household filters for the sorption water purification. Sulfougl is porous adsorbents, and is used in several industrial processes. These carbons have often been used to adsorb pollutants present in the gas or liquid phases in order to control environmental pollution, remove organic compounds, or remove toxic metal particles [5]. The whole variety of the obtained carbon sorbents can be classified according to various criteria: the nature of the feedstock (solid, liquid, gaseous), production methods, structural and textural (porosity, surface, pore size and distribution) characteristics and applications. For industries such as leather, textile, metalworking, battery, pigment and metallurgy, toxic metal ions are widely used, which can have an impact on the environment. Moreover, toxic metal ions can accumulate in microorganisms, flora and aquatic fauna, thereby introducing these metals into the food chain and increasing the risk of health problems in humans [6]. The removal of metal ions can be achieved using various techniques, including precipitation, adsorption, ion exchange, membrane processes, electrodialysis and reverse osmosis [7]. Among them, sulfocarbon adsorption is a very effective method due to the large available surface area and the characteristics of modified coal. In addition, modified coal can be obtained from several natural carbonaceous materials at a relatively low cost [8].
2. The experimental part
The initial solutions, containing iron (ii), iron (iii) 0.1 mg/ml were prepared by dissolving precise attachments of Mora salt (bda.) and iron-ammonium alum (ch.d.a.), respectively, in sulfuric acid solutions. The solutions with lower concentrations were obtained by dilution on the day of using. For the preparation of buffer solutions, ammonium acetate, acetic acid (all h.d.a.) were used [9]. Modified coal was obtained by the method, described earlier [10].
The sorption of iron ions with sulfocarbon was studied in a static mode. To do this, the studied solutions and modified coal plates were placed in vessels with lapped stoppers. Then the vessels were shaken on an electromechanical vibration mixer until sorption equilibrium was established. The sorption value (a, mg/g) was calculated by the formula:
(Co -[C]) • V
a =-^^- ,
m
where C - the concentration of the detected compound in the aqueous solution before sorption (mg/ml), [c ] - the concentration in the solution after
sorption (mg/ml), V - the volume of the analyzed solution (ml), m - the mass of activated carbon (g).
The equilibrium concentration of iron ions was determined photometrically according to GOST [11]. The determination of the sulfogroup was carried out using a developed photometric technique, based on the absorption of the dipyridyl complex of iron (II). The Baer's law is fulfilled with an excess of iron (II) metal ion under the conditions of complete ligand binding into the complex (A=540 nm, CFe2+ = 0.1 mg/ml, Cdip= 0.016^0.16 mg/ml, pH=4).
The optical density of the solutions was measured, using a photo colorimeter.
3. Results and their discussion
To obtain information about the nature of the interaction between coal and sulfuric acid, an isotherm (figure 1) and the kinetic reaction curve (figure 2) of the sulfogroups from an aqueous solution have been obtained. The sorption isotherms have two ascending sections and a plateau between them. The first growth site on the isotherms corresponds to the ionic coordination of the sulfogroup, and the second to the formation of a covalent bond between the sulfogroup and the coal surface [12]. It can be seen from the kinetic migration curve of the sulfogroup that structural changes occur in the first few minutes, as evidenced by the extremum in this area. This is due to the incorporation of the reagent into the matrix and the formation of a new structure [13]. The samples of natural coal after immobilization of the sulfogroup retain their sorption capacity.
* '"'¿- 'l. a: mg,'g
Figure 1 - Isotherm of migration of the sulfogroups to the Figure 2 - Kinetic curve of the formation of coal surface (opm=0.6 g, V=30 ml). the covalent bonds of a sulfogroup on the
surface.
The sorption properties of sulfougl with respect to iron ions (II, III) have also been presented in the form of a kinetic curve (figure 3).
The kinetic curve of the sorption of iron ions by the modified sulfougl has a classical appearance, which indicates the absence of structural changes in the process of iron extraction (II, III). Probably, the main interactions observed during the sorption are due to the formation of bonds between iron ions and
oxygen of the sulfogroup. The time to establish equilibrium with a volume of 50 ml of test water is approximately 10 min.
The quantitative extraction has been achieved at the concentrations from 0.5 mmol/g at a pH of 6.0-7.0 and with an increase in the surface concentration to 4 mmol/g, little changes, which is due to the ratio of the number of the surface sulfogroups and the content of cations in water (figure 4).
Figure 3 - Kinetic curve of iron (II, III) sorption Figure 4 - Dependences of the degree of
by sulfocarbon. extraction of Fe(II,III) on pH at the surface
concentration of the sulfogroups, mmol/g: 0.1 (1);
0.5 (2); 1 (3); 4 (4).
At the surface concentration of the sulfogroups of at least 0.1 mmol/g, the sorbent quantitatively extracts iron in the pH range of 5.5 - 8.0, which corresponds to the acidity of most surface waters of Kazakhstan. Under optimal concentration conditions, the distribution coefficient is 5-103 - 1-104 cm3/g.
With an increase in the concentration of surface groups, the pH range of quantitative iron extraction (II, III) shifts to the acidic region due to the intrinsic acidity of the sulfogroups. The confirmation of iron sorption (II, III) due to the interaction with the surface sulfogroups, the minimum sorption value is less than 10% in the entire studied pH range on the unmodified coal. A significant sorption is observed at pH greater than 9, which corresponds to the formation of iron hydroxocomplexes and their deposition on the developed surface of the unmodified coal.
The range of concentrations of iron (II, III) 20 - 500 mg/l has been chosen so as to cover the concentrations in the natural surface waters of Kazakhstan. It has been found that with the help of the proposed matrix, iron (II, III) sorption is possible with a decrease in its concentration to 0.01 mg/l (the sample volume 50 ml), which is 1/30 MPC for drinking water (0.3 mg/l) [14]. The technique has been tested in the analysis of mineral water from a natural source. The results of the determination of iron (II, III) ions by photometric method with 1,10 -phenanthroline in mineral water are presented in Table 1, and indicates the
correctness of the obtained results and the possibility of using modified sulfocarbon for the sorption purification of water from iron (II, III) ions.
Table 1- Results of the determination of iron ions (II, III) (n=3, P=0.95)
Test Iron content, mg/l Found by photometric method after sorption, mg/ml
Before sorption Sr Fe (II, III) Sr
Mineral spring water 70±5 0.03 0.04±0.01 0.10
Lake water 8±3 0.15 0.07±0.02 0.12
Swamp water 52±3 0.02 0.05±0.02 0.16
The results of the study have shown a possibility of the sorption concentration of iron ions from an aqueous solution in the form of a complex with the sulfogroups on the surface of activated carbon. It has been shown that semiquantitative determination of iron ions is possible, the relative standard deviation in the region of small iron contents (II, III) does not exceed 0.16.
The most important indicators of the feasibility of using sorbents for analytical purposes are the quantitative extraction of elements, the speed of establishing sorption equilibrium when they come into contact with a metal solution, as well as the ease of its subsequent desorption. The pH range of quantitative extraction (> 99%) in static mode is for Fe (III) - pH 3.0-8.5. The sorbed iron cations in the static mode are quantitatively desorbed with 1 M nitric acid solution.
Figure 5 - The degree of extraction of iron ions from the surface of the sorbent into the solution
depending from the pH.
4. Conclusion
The obtained results will serve as the basis for the creation of a sorption system for the adsorption of heavy metals from water of natural and technical origin, including chemical enterprises, pharmaceutical, metallurgical,
underground parking, as well as for the treatment of waste waters of chemical, pharmaceutical and other enterprises. Since there is no sorption of iron ions at pH < 1.0, therefore diluted 0.1-2M solutions of nitric acid have been considered as desorbing solutions. The quantitative desorption of Fe (III) in the static mode does not depend on the nature of the acid and is achieved by using 10 ml of 1M HNO3. The sorption-desorption cycles of iron ions have been carried out to determine the sorption properties of the synthesized modified coal. The sorbent retains its sorption properties for at least 5 sorption-desorption cycles.
Conflict of Interests: No conflict of interest.
сульфок0м1р к0мегшен ауыр металл иондарынан суды сорбцияльщ тазарту
Н. С. Мурзакасымова '*, М.А. Гавриленко 2, Н.А. Бектеное 3, Р.М. Кудайбергенова 1, Э.А. Байбазарова 1
1М.Х. Дулати атындагы Тараз ещрлк ynrnepcumemi, Тараз, Цазацстан 2Томск политехникалыц ynueepcumemi, Томск, Россия 3Абай атындагы Цазац ¥лттыц ynueepcumemi, Алматы, Казахстан E-mail: nazl282@mail. ru
Тушндеме. Кркпе. Модификацияланган кeмipдщ сорбцияльщ кабшеп зерттелдц тазартылган судьщ шыгымы 0,01 мг/л дешн болатын су объектшершде TeMipre (II, III) сорбцияльщ тазалау керсетшген. Ж^мыстыц мацсаты. Жаца экономикалык тиiмдi табиги залалсыз, кол жeтiмдi сорбент жасау, жэне оныц сорбциялык кабшетттгшщ аныктау шег Fe (II, III) катты фазалы фотометриялык аныктау эдгамен зерттеу. Эдктеме. Жумыста модифицирленген кeмip (сульфокeмip) тeмip (II, III) иондарына катысты сорбциялык кабiлeттiлiк бойынша зерттеулер ЖYpгiзiлдi. Модификатор peтiндe сульфокeмipмeн Fe (II, III) ионын фотометриялык аныктауда колданылады жэне суды жалпы тeмip курамына талдау кeзiндe колданылады. Нэтижелер жэне талцылау. Бупнп тацда эpтYpлi матрицалык материалдары, функционалды топтамалары, оларды беюту эдiстepi, контeйнepлepi, механикалык касиeттepi, дэндepi жэне баска сипаттамалары бар мыцдаган сорбенттер шыгарылады. Оцтайлы соpбeнттi тавдау зерттеушшщ алдына койылган мiндeткe байланысты. Соpбeнттi тацдау кeбiнeсe микрокомпоненттщ табигатымен аныкталады -бул компоненттщ ертндще болу формасы, ионныц немесе молекуланыц мeлшepi мен заряды, бул форманыц функционалды топтармен немесе тiкeлeй сорбенттщ бeтiмeн эрекеттесу кабiлeтi. Тужырым. Сорбента тацдаганда концентрация peжимiн ескеру кажет. Сонымен, статикалык жагдайда сорбциялык экстракциядан кeйiн сорбент концентраты epiтiндiдeн оцай бeлiнуi керек; динамикалык режимде колданган кезде катты iсiнeтiн соpбeнттepдi, сондай-ак тым юшкентай сорбент фракцияларын колдану кажет емес. Бipiншi кадам концентрация, ал eкiншi кадам тазартылган судыц сапасын бакылау спектрофотометрия, атомдык абсорбциялык спектроскопия (ААС), индуктивтi байланыскан плазмалык атомдык эмиссиялык спектроскопия (АЭС-ИСП), индуктивт байланыскан плазмалык массспектрометрия (МС-ИСП) сиякты спектроскопиялык эдiстep болуы MYMкiн аралас эдютерде жылдам жэне жогары жылдамдыкты колдану MYMкiндiгi eскepiлeдi. Суды ауыр металдардан, атап айтканда табиги жэне ауыз сулардагы жалпы тeмip (II, III) катионынан тазартудыц жедел жэне карапайым эдiстepiн жасау аналитикалык химияныц мацызды мiндeтi болып отыр.
ТYЙiвдi сездер: сорбция, адсорбция, сорбент, комплекс TYзушi, модификация
Мурзакасымоеа Назгуль Саттаркулоена PhD докторанты
Гаериленко Михаил Алексеевич Химия гылымдарыныц докторы
Бектеное Несипхан Апжапароеич Химия гылымдарыныц докторы
Кудайбергеноеа Рабига Мусапароена PhD докторанты
Байбазароеа Эльеира Адилбекоена Химия магистрi
СОРБЦИОННАЯ ОЧИСТКА ВОДЫ ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ С ПОМОЩЬЮ СУЛЬФОУГЛЯ
Н. С. Мурзакасымоеа1', М.А.Гаериленко2, Н-А-Бектеное3, Р.М.Кудайбергеноеа1, Э.АБайбазарова1
1Таразский региональный университет имени М.Х. Дулати, Тараз, Казахстан 2Томский политехнический университет, Томск, Россия
3Казахский национальный педагогический университет имени Абая, Алматы, Казахстан E-mail: naz1282@mail. ru
Резюме. Введение. Исследована сорбционная способность модифицированного угля; показана возможность создания сорбента для железа (II, III) в водных объектах с выходом очищенной воды до 0,01 мг/л. Цель работы. Создать новый дешевый сорбент на основе модифицированного угля (сульфоуголь), изучить его сорбционные характеристики методом твердофазного фотометрического определения Fe (II, III) с низким пределом обнаружения. Методология. В работе проведены исследования сорбционной способности по отношению к ионам железа (II, III) модифицированным углем. Используемый в качестве модификатора сульфогруппа используется при фотометрическом определении Fe (II, III) и применяется при анализе вод на общее содержание железа. Результаты и обсуждение. На сегодняшний день выпускают тысячи сорбентов с различными материалами матриц, функциональными группировками, способами их закрепления, емкостями, механическими свойствами. Выбор оптимального сорбента зависит от задачи, поставленной перед исследователем. В немалой степени выбор сорбента определяется природой микрокомпонента - формой существования этого компонента в растворе, размером и зарядом иона или молекулы, способностью этой формы вступать в реакции с функциональными группами или непосредственно с поверхностью сорбента. Заключение: Так, после сорбционного извлечения в статических условиях сорбент-концентрат должен легко отделяться от маточного раствора; при использовании в динамическом режиме - нежелательно использовать сильно набухающие сорбенты, а также слишком мелкие фракции сорбентов. В комбинированных методиках, где первым шагом является концентрирование, а вторым контроль качества очищенной воды могут выступать спектроскопические методы, такие как спектрофотомерия, атомно-абсорбционная спектроскопия (ААС), атомно эмиссионная спектроскопия с индуктивно связанной плазмой (АЭС-ИСП), масс-спектрометрия с индуктивно связанной плазмой (МС-ИСП), учитывается возможность быстрого и количественного элюирования элементов. Разработка экспрессных и простых методов очистки воды от тяжелых металлов, в частности, от распространенного катиона железа (II, III) в природных и питьевых водах является важной задачей аналитической химии.
Ключевые слова: сорбция, адсорбция, сорбент, комплексообразующие, модификация
Мурзакасымоеа Назгуль Саттаркулоена PhD докторант
Гаериленко Михаил Алексеееич Доктор химических наук, профессор
Бектеное Несипхан Апжапароеич Доктор химических наук
Кудайбергеноеа Рабига Мусапароена PhD докторант
Байбазароеа Эльеира Адилбекоена Магистр химии
References
1. Bektenov N.A., Murzakassymova N.C., Gavrilenko M.A., Nurlybayeva A.N. //Production of sulfocationite by modification of natural coal with concentrated sulfuric acid. News of the Acad. of Sci. of the Rep. of Kazakhstan. Seri. of Chem. and Technol. 2020, 3, 104-109. DOI: https://doi.org/10.32014/2020.2518-1491.50
2. Gavrilenko N.A., Mokrousov G.M., Gavrilenko RA. //Sorbtsionnaya modifikatsiya polimetakrilatnoy matritsy i sozdaniye indikatora dlya ekspress-opredeleniya zheleza (II, III)/ [Sorption modification of polymethacrylate matrix and creation of an indicator for express determination of iron (II, III)]. Analytics and control. 2003. v-7, No. 1. pp.50-53. (In Russ.). bitstream/10995/57082003-01-11.pdf
3. Malyshkina E.S., Vyalkova E.I., Osipova E.Yu. // Ochistka vody prirodnymi sorbentami/ [Water purification with natural sorbents]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. J. of Construction and Architecture. 2019; (1):188-200. (In Russ.) https://doi.org/10.31675/1607-1859-2019-21-1-188-200
4. Obuzdina M. V. et al. A method for obtaining a sorbent for extracting heavy metal compounds from wastewater. - 2017. (In Russ.).
5. Phenolov V.B. // Poristyy uglerod/ Novosibirsk: IK SB RAS, 1995. p.513. (In Russ.) https://www.studmed.ru/fenelonov-v-b-poristyy-uglerod_ad2e11f754d.html
6. Bagaeva T.V., Ionova N.E., Nadeeva G.V. //Mikrobiologicheskaya reabilitatsiya prirodnykh sistemy iz tyazhelykh metallov/ [Microbiological remediation of natural systems from heavy metals: textbook. - method. Manual]. - Kazan: Kazan University, 2013 p. 56 (In Russ.).
7. Synthetic Polymeric Membranes for Advanced Water Treatment, Gas Separation, and Energy Sustainability. 2020, pp. 71-101 https://doi.org/10.1016/B978-0-12-818485-1.00005-8
8. Mukhin V.M., Klushin V.N. [Production and application of carbon adsorbents. - Moscow: D.I. Mendeleev Russian Technical University, 2012. - 308 p. (In Russ.).
9. Geraskevich A.V. Express method based on solid-phase spectrophotometry for the control of iron (III) ions in natural waters. - 2020. (In Russ.). http://earchive.tpu.ru/handle/11683/60614
10. Patent RU2213693. Methods of obtaining sulfocarl. Application. 22.11.2002; publ. 10.10.2003. Byul. No. 2. - 4s. (In Russ.). patents/doc/RU2213693C1 20031010
11. GOST 4011-72. Drinking water. Methods for determining the total iron content. M.: Publishing House of Standards, 1981. 240 c. (In Russ.). upload/iblock/140/4294850722.pdf
12. Galishev V.A., Klyuchinsky S.A., Krivchun M.N. Electrophilic substitution reactions in the aromatic series. Rules of substitution Textbook SPbGTI (TU) - SPb, 2000, 39 p. (In Russ.). orgchem/referat/SE_aromat.pdf
13. Amelin V.G. Chemical test methods for determining components of liquid media. Journal. analyte. chemistry. 2000 v.55, No.9. pp. 902-932. (In Russ.). assets/files/books/analytical/0064.pdf
14. Poleshchuk I.N., Pinigina I.A., Sozykina E.S. Extraction of iron (III) ions from aqueous solutions by natural sorbents. Modern high-tech technologies. - 2019. - No. 3 (part 1) - pp. 65-69. (In Russ.). article/view?id=37443