Научная статья на тему 'ADSORPTION OF METHANYL YELLOW DYE ON FE-MODIFIED BENTONITE CLAY'

ADSORPTION OF METHANYL YELLOW DYE ON FE-MODIFIED BENTONITE CLAY Текст научной статьи по специальности «Химические науки»

CC BY
82
36
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
FE-MODIFIED BENTONITE CLAY / ADSORPTION / METANYL YELLOW DYE / DESORPTION / WASTEWATER TREATMENT

Аннотация научной статьи по химическим наукам, автор научной работы — Khankhasaeva Sesegma Ts., Badmaeva Sayana V.

Iron-containing materials were obtained by modifying bentonite clay from the Mukhortalinskoe deposit (Republic of Buryatia, Russia) with polymeric iron hydroxocations and subsequent heating at 500 °C. The materials were characterized by chemical analysis, low-temperature nitrogen adsorption, and XRD. The iron content in the samples was 14.5-15.8%. Their specific surface area was 138-143 m2/g. The adsorption properties of materials have been studied using the example of the adsorption of an acidic dye Metanyl Yellow from model aqueous solutions. The dependence of the dye adsorption on the physicochemical parameters, such as pH, sorbent loading, and the initial dye concentration has been established. The specific dye adsorption on sorbents increased with a decrease in pH and an increase in the initial concentration of the dye aqueous solutions and with a decrease in the loading of sorbents. The maximum dye adsorption was 88.5 mg/g at pH 3.5 and a sorbent loading of 1 g/l in the range of initial dye concentrations 24-491 mg/l. The dye removal efficiency was 86-95% at an initial concentration of 84 mg/L and a sorbent loading of 3-10 g/l. The sorption capacity of the obtained sorbents in relation to the dye was close to the sorption capacity of some carbon sorbents. It was shown that the adsorption isotherm of the Metanyl Yellow dye on sorbents is well described by the Freundlich adsorption model, which indicates the heterogeneity of the sorbent surface. The results of experiments on desorption and re-adsorption of the Metanyl Yellow dye indicated a high efficiency of the dye extraction and the possibility of re-using sorbents in the adsorption of azo dyes.The sorbents may be of interest for use in wastewater treatment processes from acid dyes.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «ADSORPTION OF METHANYL YELLOW DYE ON FE-MODIFIED BENTONITE CLAY»

УДК: 504.064.43

АДСОРБЦИЯ КРАСИТЕЛЯ МЕТАНИЛОВЫЙ ЖЕЛТЫЙ НА Fe-МОДИФИЦИРОВАННОЙ

БЕНТОНИТОВОЙ ГЛИНЕ

С.Ц. Ханхасаева, С.В. Бадмаева

Сэсэгма Цыреторовна Ханхасаева (ORCID 0000-0001-9294-2975)*, Саяна Васильевна Бадмаева (ORCID 0000-0002-4594-5652)

Лаборатория инженерной экологии, Байкальский институт природопользования СО РАН, ул. Сахъяновой, 6, Улан-Удэ, Российская Федерация, 670047 E-mail: shan@binm.ru*, sbadm@mail.ru

Получены железосодержащие материалы путем модификации бентонитовой глины месторождения Мухорталинское (Республика Бурятия, Россия) полимерными гид-роксокатионами железа и последующего нагрева при 500 °С. Материалы охарактеризованы методами химического анализа, низкотемпературной адсорбции азота и РФА. Содержание железа в образцах составило 14,5-15,8%, их удельная поверхность равнялась 138-143 м2/г. Изучены адсорбционные свойства материалов на примере адсорбции кислотного красителя Метаниловый Желтый из модельных водных растворов. Установлена зависимость адсорбции красителя от физико-химических параметров процесса, таких как рН, содержание сорбента, начальная концентрация красителя. Величина удельной адсорбции красителя на сорбентах возрастала при уменьшении рН и увеличении начальной концентрации водных растворов красителя и при уменьшении загрузки сорбентов. Максимальная адсорбция красителя составила 88,5 мг/г при рН 3,5 и содержании сорбента 1 г/л в интервале начальных концентраций красителя 24- 491 мг/л. Эффективность удаления красителя равнялась 86-95% при его начальной концентрации 84 мг/л и содержании сорбентов 3-10 г/л. Сорбционная емкость полученных сорбентов в отношении изучаемого красителя являлась близкой к сорбционной емкости некоторых углеродных сорбентов. Было показано, что изотерма адсорбции красителя Метаниловый Желтый на сорбентах хорошо описывается моделью адсорбции Фрейндлиха, что указывает на неоднородность поверхности сорбентов. Результаты опытов по десорбции и повторной адсорбции красителя Метаниловый Желтый свидетельствовали о высокой эффективности извлечения красителя и возможности повторного использования сорбентов в адсорбции азокрасите-лей. Ce^рбенты могут представлять интерес для применения в процессах очистки сточных вод от кислотных красителей.

Ключевые слова: Fe-модифицированная бентонитовая глина, адсорбция, краситель Метаниловый желтый, десорбция, очистка сточных вод

ADSORPTION OF METHANYL YELLOW DYE ON Fe-MODIFIED BENTONITE CLAY

S.Ts. Khankhasaeva, S.V. Badmaeva

Sesegma Ts. Khankhasaeva*, Sayana V. Badmaeva

Laboratory of Engineering of Ecology, Baikal Institute of Nature Management of SB of the RAS, Sakh'yanova st., 6, Ulan-Ude, 670047, Russia E-mail: shan@binm.ru*, sbadm@mail.ru

Iron-containing materials were obtained by modifying bentonite clay from the Mukhorta-linskoe deposit (Republic of Buryatia, Russia) with polymeric iron hydroxocations and subsequent heating at 500 °C. The materials were characterized by chemical analysis, low-temperature nitrogen adsorption, andXRD. The iron content in the samples was 14.5-15.8%. Their specific surface area was 138-143 m2/g. The adsorption properties of materials have been studied using the example

of the adsorption of an acidic dye Metanyl Yellow from model aqueous solutions. The dependence of the dye adsorption on the physicochemical parameters, such as pH, sorbent loading, and the initial dye concentration has been established. The specific dye adsorption on sorbents increased with a decrease in pH and an increase in the initial concentration of the dye aqueous solutions and with a decrease in the loading of sorbents. The maximum dye adsorption was 88.5 mg/g at pH 3.5 and a sorbent loading of 1 g/l in the range of initial dye concentrations 24-491 mg/l. The dye removal efficiency was 86-95% at an initial concentration of 84 mg/L and a sorbent loading of 3-10 g/l. The sorption capacity of the obtained sorbents in relation to the dye was close to the sorption capacity of some carbon sorbents. It was shown that the adsorption isotherm of the Metanyl Yellow dye on sorbents is well described by the Freundlich adsorption model, which indicates the heterogeneity of the sorbent surface. The results of experiments on desorption and re-adsorption of the Metanyl Yellow dye indicated a high efficiency of the dye extraction and the possibility of re-using sorbents in the adsorption of azo dyes.The sorbents may be of interest for use in wastewater treatment processes from acid dyes.

Key words: Fe-modified bentonite clay, adsorption, Metanyl yellow dye, desorption, wastewater treatment Для цитирования:

Ханхасаева С.Ц., Бадмаева С.В. Адсорбция красителя метаниловый желтый на Fe-модифицированной бентонитовой глине. Изв. вузов. Химия и хим. технология. 2022. Т. 65. Вып. 5. С. 23-29 For citation:

Khankhasaeva S.Ts., Badmaeva S.V. Adsorption of methanyl yellow dye on Fe-modified bentonite clay. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 5. P. 23-29

INTRODUCTION

Environmental problems associated with the increasing anthropogenic pollution of the environment have acquired particular importance at the present stage of human development. The total volume of untreated wastewater discharged into surface water bodies is increasing from year to year [1]. For example, the amount of dyes produced annually in the world is about 900 thousand t, of which 10-15% is discharged in the form of untreated wastewater from enterprises of textile, paper, chemical and other industries that use dyes for dyeing products [2]. Adsorption technologies have become quite widespread in the treatment of industrial wastewater due to their high efficiency, the absence of secondary pollution and the simplicity of the used equipment. Active carbon is most often used in industrial wastewater treatment [3-5]. However, the high cost of production and regeneration of this sorbent stimulates the search for alternative effective sorbents from cheap natural raw materials [6]. Bentonite clays, the main clay mineral of which is montmorillonite, have a high affinity for cations and are widely used in wastewater treatment from metal cations and cationic organic dyes [7-8]. However, they are characterized by an insignificant ability to adsorb anions [9]. To develop sorbents capable of absorbing anions, research is needed to modify clays with various compounds and to find the optimal conditions for their use in sorption

processes. These issues have not been sufficiently investigated currently. In this work, sorbents were obtained from natural montmorillonite- ontaining clay and polymeric iron hydroxocations and their adsorption properties with respect to the acid azo dye Metanyl Yellow in aqueous solutions were studied, the possibility of extracting the sorbed dye and reusing the sorbents was also studied.

MATERIALS AND METHODS

Preparation of sorbents. The initial material was a finely dispersed fraction (particle size 0.0030.005 mm) of natural clay from the Mukhortalinskoye deposit (Republic of Buryatia (Russia). The content of montmorillonite (Mt) in this fraction was about 80%. Natural clay was pretreated with 1M NaCl solution to obtain the Na-form of Mt [10]. The chemical composition of the resulting Na-Mt, determined by methods [11, 12], consisted of oxides of the following elements (wt. %): SiO2 - 65.6, Al2O3 - 14.5, Fe2O3 - 1.44, FeO - 0.04, MnO < 0.01, MgO - 0.78, CaO - 0.07, Na2O -1.57, K2O - 0.29, P2O5 < 0.03, TiO2 - 0.17, CuO -0.002, H2O - 15.4. The synthesis of sorbents was carried out by the method of ion exchange of Na+ cations for polymeric iron hydroxocations [13]. A modifying solution containing iron polyhydroxocations (PC) was prepared by alkaline hydrolysis of a 0.2M Fe(NO3)3 solution by adding a 0.2M NaOH solution to molar ratios

Z = [OH"]/[Fe3+] equal to 1.6 (sorbent S1) and 2.0 (sorbent S2) [14]. Then the modifying solution was added dropwise to the Na-Mt suspension and the resulting suspension was left to stand for 24 h at room temperature. The solid phase was separated from the solution and washed with distilled water. The resulting materials were calcined at 500 °C for 2 h. The concentration of iron ions was determined by a photometric method after treatment of solids with concentrated HCl [15]. The specific surface area of the sorbents was determined using the BET equation [16] from the isotherm of low-temperature nitrogen adsorption using a setup "Thermosorb LP".

Adsorption experiment. The adsorption properties of the materials were studied in aqueous solutions of the azo dye Metanyl Yellow (MY), which is often present in dyeing wastewaters as it is widely used in industry for dyeing wool, nylon, silk, paper, ink, aluminum, detergents, etc [17]. MY refers to acid dyes that dissociate into sodium cations and organic anions in aqueous solutions. The dye adsorption was determined from the difference between the initial concentration and the concentration of the dye solution at the moment of reaching equilibrium (24 h). The dye concentration was determined by a photometric method. Absorbance was measured on a UV-spectrophotometer UV-1800 (Zhimadzu, Japan) at 442 nm (Fig. 1).

The equilibrium dye adsorption (qe, mg/g) was calculated by the formula:

C —C

(1)

where Co and Ce - initial and equilibrium dye concentrations in solution, mg/L; V - the solution volume, L; m - the mass of the sorbent, g.

The dye removal efficiency E (%) was calculated by the formula:

C0-Ce

E =

Ce

100

(2)

RESULTS AND DISCUSSION

increase in the specific surface area (SSp) from 90 m2/g (initial Mt) to 138 m2/g (S1) and 143 m2/g (S2). The iron content in the initial Mt was 1.04%, and after modification, the iron content increased to 14.2% (S1) and 15.8% (S2).

Study of the dye adsorption. The effect of pH on the dye adsorption was studied in experiments carried out at pH 3.5, 5.7 and 7.0 with the sorbent loading of 1 g/L and MY concentration of 54.3 mg/L. The results are shown in Table 1.

Fig. 1. UV-Vis spectrum and structural formula of Metanil Yellow dye

Рис. 1. УФ-спектр красителя Метаниловый Желтый и его структурная формула

Table 1

Dependence of adsorption qe on pH

Sorbents РН qe, mg/g

S1 3.5 22.5

5.7 7.7

7.0 0.2

S2 3.5 24.1

5.7 11.3

7.0 0.5

Physicochemical properties of sorbents. The diffraction pattern of the original clay revealed reflections at 20 equal to 9.16, 19.82 34.98 and 62.19°, characteristic of montmorillonite, as well as reflections characteristic of cristobalite (21.89, 35.98°) and feldspar (27.63°) [18]. The diffractograms of the sorbents showed a shift of the first basal reflection, characteristic of Mt (9.16 A), to small angles 20 (11.48 A), which was due to the penetration of iron PC into the interlayer space of Mt and the appearance of weak reflections characteristic of hematite (33.18, 36.69 A), which was formed as a result of the dehydration and dehydroxyla-tion during the calcination at 500 °C [19]. Modification of Mt with iron complexes and its heat treatment led to an

Modification of Mt lead to an increase in the anion-exchange capacity due to an increase in the number of Fe-OH groups. The maximum of dye adsorption was observed at pH 3.5. An increase in pH led to a decrease in the adsorption as the adsorption centers on the surface of oxide sorbents are charged negatively with an increase in the pH of solutions [9].

To study the effect of the MY concentration experiments were carried out with the sorbent loading (S2) of 1 g/L and at the initial dye concentrations 23.6; 52.8; 84.1; 184.4; 278.3; 373.8; 491.0 mg/L at 25 °C and pH = 3.5 (corresponds to maximum adsorption) and pH = 5.7 (natural pH value of the dye and sorbent suspension without acid addition). The obtained dependences of the adsorption values (qe) on the equilibrium dye concentrations are shown in Fig. 2.

e

Fig. 2. Isotherms of MY dye adsorption on sorbent S2 at different pH values: 3.5 (1) and 5.7 (2) Рис. 2. Изотермы адсорбции красителя MY на сорбенте S2 при разных значениях рН: 3,5 (1) и 5,7 (2)

The experimental data were analyzed using the Langmuir and Freundlich adsorption models, which describe adsorption on a homogeneous and non-uniform surface, respectively [20].

The linear form of the Langmuir isotherm is expressed by equation (3):

(3)

1

_ Ce

Qe Qm QmKL

where qm - constant corresponding to the maximum adsorption, mg/g; Kl is a constant depending on the adsorption energy and temperature, L/g.

The linear form of the Freundlich isotherm is expressed by equation (4):

log qe = log Kp + — (log Ce)

(4)

Fig. 3. Experimental data on the dye MY adsorption in the linear

form of the Freundlich equation at: pH 3.5 (1) and pH 5.7 (2) Рис. 3. Экспериментальные данные по адсорбции MY в виде линейной формы уравнения Фрейндлиха при: рН 3,5 (1) и рН 5,7 (2)

The correlation coefficients according to the Langmuir and Freundlich models were 0.203 and 0.996 (pH 3.5); 0.902 and 0.972 (pH 5.7), respectively. The MY adsorption was satisfactorily described by the Freundlich adsorption model (5):

qe = Kf C,

(5)

where ^ was 0.535, n was 1.389 (pH 5.7) and Kf was 0.313, n was 0.961 (pH 3.5).

The influence of the sorbents loading was studied at initial dye concentration 84.1 mg/L and pH 3.5. Fig. 4 shows the qe values and the dye removal efficiency depending on the loading of sorbents.

50 n 4030-

M

Tä S

é> 20 10-

100

80

60

40

where Kf is the Freundlich adsorption constant, L/g; n is an experimental constant describing the intensity of adsorption [21].

Figure 3 shows the experimental data on the adsorption of the MY dye in the form of the linear form of the Freundlich equation.

0 2 4 6 8 10

sorbents loading , g

Fig. 4. Dependence of qe and the efficiency E on the loading of

sorbents: S1 (1) and S2 (2) Рис. 4. Зависимость qe и Е от содержания сорбентов в растворе: S1 (1) и S2 (2)

The number of surface adsorption centers increased with an increase in the of sorbents loading, which led to an increase in the total amount of the dye sorbed and the efficiency of dye removal. The efficiency of MY removal was 86.2 and 90.4% for sorbents S1 and S2, respectively, at loading of 3 g/L. The efficiency of removal increased to 92.8 (S1) and 94.7% (S2) at the loading 10 g/L. The specific dye adsorption (qe) decreased due to the fact that the number of adsorption centers involved in adsorption decreased with an increase in the ratio of the sorbent loading to the dye concentration. The sorption capacity of the obtained materials was close to the sorption capacity of some carbon materials as shown in the Table 2.

Study of MY dye desorption and re-adsorption. The primary adsorption of the dye was carried out from MY solution with an initial concentration of 85 mg/L at pH 3.5. Desorption was carried out by adding distilled water or an aqueous solution of 0.001 M NaOH to the sorbent S2 containing 23 mg/g of sorbed dye. 10, 20, 30 ml of water or 10 ml of 0.001 M NaOH were added to 0.01 g of the sorbent, the suspension was stirred and left to stand for 24 h. The desorption efficiency was 38.8, 70.5, and 93.3% at a ratio of the

0

sorbent mass to the volume of added water of 1.0, 0.5 and 0.3 g/L, respectively. When 0.001M NaOH solution was used, the desorption efficiency was 82.4% in 2 h and 97.2% in 24 h at the ratio of the sorbent mass to the added solution volume 1 g/L. After the dye desorption the sorbent was filtered from the solution, washed by distilled water, dried at 104 °C for 2 h, and reused in the adsorption. Secondary adsorption was carried out under the same experimental conditions as primary adsorption. The adsorption value was 22.1 mg/g. This value was close to the sorption capacity observed at the primary use of the sorbent. The desorption efficiency was 95 and 93% in the second and third desorption cycles, respectively. The efficiency of secondary and tertiary adsorption was equal to 95 and 90% of the primary adsorption. According to these results, the adsorption capacity of sorbent S2 was retained in three repeated cycles. The adsorption capacity decreased in the quaternary use of the sorbent to 70%.

CONCLUSIONS

Adsorption properties of iron-containing materials obtained by modifying the bentonite clay with polymeric iron hydroxocations were studied in the adsorption of Metanil Yellow dye. The dependence of the dye adsorption on the physicochemical parameters (pH, sorbent content, the initial dye concentration) has been established. The results showed that the materials are effective reusable sorbents for acid dyes removal.

This work was carried out with support from the Program of Basic Research of Baikal Institute of Nature Management SB RAS №0273-2021-0006. Research was conducted using equipment of the CCU BINMSB RAS (Ulan-Ude, Russia).

ЛИТЕРАТУРА

1. Lellis B., Fávaro-Polonio C.Z., Pamphile J.A., Polonio J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotech-nol. Res. Innovation. 2019. V. 3. N 2. P. 275-290. DOI: 10.1016/j.biori.2019.09.001.

2. Samsami Sh., Mohamadi M., Sarrafzadeh M.H., Rene E.R., Firoozbahr M. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. ProcessSaf. Environ. 2020. V. 143. P. 138-163. DOI: 10.1016/j.psep.2020.05.034.

3. Li X., Zhang L., Yang Zh., Wang P., Yan Y., Ran J. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review. Sep. Purif. Technol. 2020. V. 235. P. 116213. DOI: 10.1016/j.seppur.2019.116213.

4. £e$en F., Akta§ O. Activated Carbon for Water and Wastewater Treatment: Integration of Adsorption and Biological Treatment. Wiley-VCH Verlag GmbH & Co. 2011. 338 p. DOI: 10.1002/9783527639441.

5. Marsh H., Rodriguez-Reinoso F. Activated Carbon. Elsevier: Amsterdam. 2006. 536 p. DOI: 10.1016/B978-0-08-044463-5.X5013-4.

Работа выполнена при поддержке Программы фундаментальных исследований Байкальского института природопользования СО РАН №0273-2021-0006. Исследования проводились на оборудовании ЦКП БИП СО РАН (г. Улан-Удэ, Россия).

Table 2

Comparison of the sorption capacity of materials Таблица 2. Сравнение сорбционной емкости матери-

алов

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Sorbents Dye qmax*, mg/g References

Activated carbon

produced from saw dust MY 132 22

Activated carbon

produced from MY 99.2 22

coconut shell

Activated carbon

produced from rise husk MY 66.2 22

Amino function- MY 76.3 23

alized draphene

Sorbent S2 MY SS.5 This work

The commercial

Activated Car- Acid Red 97 52.1

bon supplied by J.T. Baker Acid Orange 61 Acid Brown 425 169.5 222.2 24

(Holland)

*qmax - maximum adsorption capacity

*qmax - максимальная адсорбционная способность

The authors declare the absence a conflict of interest warranting disclosure in this article.

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

REFERENCES

1. Lellis B., Fávaro-Polonio C.Z., Pamphile J.A., Polonio J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotech-nol. Res. Innovation. 2019. V. 3. N 2. P. 275-290. DOI: 10.1016/j.biori.2019.09.001.

2. Samsami Sh., Mohamadi M., Sarrafzadeh M.H., Rene E.R., Firoozbahr M. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Saf Environ. 2020. V. 143. P. 138-163. DOI: 10.1016/j.psep.2020.05.034.

3. Li X., Zhang L., Yang Zh., Wang P., Yan Y., Ran J. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review. Sep. Purif. Technol. 2020. V. 235. P. 116213. DOI: 10.1016/j.seppur.2019.116213.

4. £e$en F., Akta§ Ö. Activated Carbon for Water and Wastewater Treatment: Integration of Adsorption and Biological Treatment. Wiley-VCH Verlag GmbH & Co. 2011. 338 p. DOI: 10.1002/9783527639441.

5. Marsh H., Rodriguez-Reinoso F. Activated Carbon. Elsevier: Amsterdam. 2006. 536 p. DOI: 10.1016/B978-0-08-044463-5.X5013-4.

6. Ву С.М., Нгуен Т.З., Ле Т.М.Х Исследование адсорбции красителей из водного раствора с использованием красного шлама, активируемого серной кислотой. Изв. вузов. Химия и хим. технология. 2019. Т. 62. Вып. 11. С. 143-149. DOI: 10.6060/ivkkt.20196211.6011.

7. Borisover M., Davis J.A Adsorption of inorganic and organic solutes by clay minerals. Develop. Clay Sci. 2015. V. 6. P. 33-70. DOI: 10.1016/B978-0-08-100027-4.00002-4.

8. Zhang T., Wang W, ZhaoY, Bai H., Wen T. Kang Sh., Song G., Song S., Komarneni S. Removal of heavy metals and dyes by clay-based adsorbents: From natural clays to 1D and 2D nano-composites. Chem. Eng. J. 2020. P. 127574. DOI: 10.1016/j.cej.2020.127574.

9. Yin X., Gupta V., Du H., Wang X., Miller J.D. Surface charge and wetting characteristics of layered silicate minerals. Adv. Colloid Interface Sci. 2012. V. 179-182. P. 43-50. DOI: 10.1016/j.cis.2012.06.004.

10. Perelomov L., Sarkarb B, Rahman М., Goryacheva A. Naidu R. Uptake of lead by Na-exchanged and Al-pillared bentonite in the presence of organic acids with different functional groups. Appl. Clay Sci. 2015. V. 119. P. 417-423. DOI: 10.1016/j.clay.2015.11.004.

11. Ускоренные химические методы определения породообразующих элементов в горных породах и рудах. Методика НСАМ. ВИМС №138-Х. М. 2005.

12. Определение кремния, титана, алюминия, железа кальция, магния, марганца в горных породах, рудном и нерудном минеральном сырье, объектах окружающей среды пламенным атомно-абсорбционным методом. Методика НСАМ. ВИМС №172-С. М. 2010.

13. Rightor E.G. Tzou M-S., Pinnavaia T.J. Iron oxide pillared clay with large gallery height: synthesis and properties as a Fischer-Tropsch catalyst. J. Catal. 1991. V. 130. N 1. P. 29-40. DOI: 10.1016/0021-9517(91 )90089-M.

14. Пыхтеев О.Ю., Ефимов А.А., Москвин Л.Н. Влияние способов приготовления растворов на состав аквагид-роксокомплексов железа (III). Журн. неорг. химии. 1998. Т. 43. № 1. С. 67-70.

15. Количественный химический анализ вод. Методика измерений массовой концентрации общего железа в природных и сточных водах фотометрическим методом с о-фенантролином. ПНД Ф 14.1:2:3.2-95. М.: ФГБУ ФЦАО. 2017. 20 с.

16. Klobes P. Meyer K. Munro R.G. Porosity and specific surface area measurements for solid materials. Washington: U.S. Govern. Print. Office. 2006. 89 p.

17. Ghosh D., Singha P.S., Firdaus S.B., Ghosh S. Metanil yellow: The toxic food colorant. Asian Pac. J. Health Sci. 2017. V. 4. P. 65-66. DOI: 10.21276/apjhs.2017.4.4.16.

18. JCPDS PCPDFWIN: A Windows Retrieval/Display Program for Accessing the ICDD PDF-2 Database. International Centre for Diffraction Data.

19. Grygar T., Hradil D., Bezdicka P., Dousova B., Capek L., Schneeweiss O. Fe(III)-modified montmorillonite and benton-ite: Synthesis, chemical and UV-Vis spectral characterization, arsenic sorption, and catalysis of oxidative dehydrogenation of propane. Clays Clay Miner. 2007. V. 55. P. 165-176. DOI: 10.1346/CCMN.2007.0550206.

6. Vu Minh X., Nguyen Dung T., Le Huong T. M. Study on dyes adsorption from aqueous solution using red mud activated by sulfuric acid. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2019. V. 62. N 11. P. 143-149. DOI: 10.6060/ivkkt.20196211.6011.

7. Borisover M., Davis J.A. Adsorption of inorganic and organic solutes by clay minerals. Develop. Clay Sci. 2015. V. 6. P. 33-70. DOI: 10.1016/B978-0-08-100027-4.00002-4.

8. Zhang T., Wang W, ZhaoY, Bai H., Wen T. Kang Sh., Song G., Song S., Komarneni S. Removal of heavy metals and dyes by clay-based adsorbents: From natural clays to 1D and 2D nano-composites. Chem. Eng. J. 2020. P. 127574. DOI: 10.1016/j.cej.2020.127574.

9. Yin X., Gupta V., Du H., Wang X., Miller J.D. Surface charge and wetting characteristics of layered silicate minerals. Adv. Colloid Interface Sci. 2012. V. 179-182. P. 43-50. DOI: 10.1016/j.cis.2012.06.004.

10. Perelomov L., Sarkarb B, Rahman M., Goryacheva A. Naidu R. Uptake of lead by Na-exchanged and Al-pillared bentonite in the presence of organic acids with different functional groups. Appl. Clay Sci. 2015. V. 119. P. 417-423. DOI: 10.1016/j.clay.2015.11.004.

11. Accelerated chemical methods for the determination of rock-forming elements in rocks and ores. NSAM technique. VIMS N138-X. M. 2005 (in Russian).

12. Determination of silicon, titanium, aluminum, iron, calcium, magnesium, manganese in rocks, ore and non-ore mineral raw materials, environmental objects by the flame atomic absorption method. NSAM technique. VIMS N172-C. M. 2010 (in Russian).

13. Rightor E.G. Tzou M-S., Pinnavaia T.J. Iron oxide pillared clay with large gallery height: synthesis and properties as a Fischer-Tropsch catalyst. J. Catal. 1991. V. 130. N 1. P. 29-40. DOI: 10.1016/0021-9517(91)90089-M.

14. Pykhteev O.Yu., Efimov A.A., Moskvin L.N. Influence of solutions preparation methods on the composition of iron (III) aquahydroxo complexes. Zhurn. Neorg. Khim. 1998. V. 43. N 1. P. 67-70 (in Russian).

15. Quantitative chemical analysis of waters. Methods for measuring the mass concentration of total iron in natural and wastewaters by the photometric method with o-phenanthro-line. PND F 14.1: 2: 3.2-95. M.: FGBU FTSAO. 2017. 20 p. (in Russian).

16. Klobes P. Meyer K. Munro R.G. Porosity and specific surface area measurements for solid materials. Washington: U.S. Govern. Print. Office. 2006. 89 p.

17. Ghosh D., Singha P.S., Firdaus S.B., Ghosh S. Metanil yellow: The toxic food colorant. Asian Pac. J. Health Sci. 2017. V. 4. P. 65-66. DOI: 10.21276/apjhs.2017.4.4.16.

18. JCPDS PCPDFWIN: A Windows Retrieval/Display Program for Accessing the ICDD PDF-2 Database. International Centre for Diffraction Data.

19. Grygar T., Hradil D., Bezdicka P., Dousova B., Capek L., Schneeweiss O. Fe(III)-modified montmorillonite and benton-ite: Synthesis, chemical and UV-Vis spectral characterization, arsenic sorption, and catalysis of oxidative dehydrogenation of propane. Clays Clay Miner. 2007. V. 55. P. 165-176. DOI: 10.1346/CCMN.2007.0550206.

20. Ayawei N., Ebelegi A.N., Wankasi D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017. P. 3039817. DOI: 10.1155/2017/3039817.

21. Elmoubarki R., Mahjoubi F.Z., Tounsadi H., Moustadraf J., Abdennouri M., Zouhri A., El Albani A., Barka N. Adsorption of textile dyes on raw and decanted Moroccan clays: Kinetics, equilibrium and thermodynamics. Water Resour. Ind. 2015. V. 9. P. 16-29. DOI: 10.1016/j.wri.2014.11.001.

22. Santra A.K., Pal T.K., Datta S. Removal of Metanil Yellow from its Aqueous Solution by Fly Ash and Activated Carbon Produced from Different Sources. Sep. Sci. Technol. 2008. V. 43. P. 1434-1458. DOI: 10.1080/01496390701885729.

23. Guo X., Wei Q., Du B., Zhang Y., Xin X., Yan L., Yu H. Removal of Metanil Yellow from water environment by amino functionalized graphenes (NH2-G)—influence of surface chemistry of NH2-G. Appl. Surf. Sci. 2013. V. 284. P. 862-869. DOI: 10.1016/j.apsusc.2013.08.023.

24. Gomez V., Larrechi M.S., Callao M.P. Kinetic and adsorption study of acid dye removal using activated carbon. Chemosphere. 2007. V. 69. P. 1151 -1158. DOI: 10.1016/j.chemosphere.2007.03.076.

20. Ayawei N., Ebelegi A.N., Wankasi D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017. P. 3039817. DOI: 10.1155/2017/3039817.

21. Elmoubarki R., Mahjoubi F.Z., Tounsadi H., Moustadraf J., Abdennouri M., Zouhri A., El Albani A., Barka N. Adsorption of textile dyes on raw and decanted Moroccan clays: Kinetics, equilibrium and thermodynamics. Water Resour. Ind. 2015. V. 9. P. 16-29. DOI: 10.1016/j.wri.2014.11.001.

22. Santra A.K., Pal T.K., Datta S. Removal of Metanil Yellow from its Aqueous Solution by Fly Ash and Activated Carbon Produced from Different Sources. Sep. Sci. Technol. 2008. V. 43. P. 1434-1458. DOI: 10.1080/01496390701885729.

23. Guo X, Wei Q., Du B., Zhang Y., Xin X., Yan L., Yu H. Removal of Metanil Yellow from water environment by amino functionalized graphenes (NH2-G)—influence of surface chemistry of NH2-G. Appl. Surf. Sci. 2013. V. 284. P. 862-869. DOI: 10.1016/j.apsusc.2013.08.023.

24. Gomez V., Larrechi M.S., Callao M.P. Kinetic and adsorption study of acid dye removal using activated carbon. Chemosphere. 2007. V. 69. P. 1151-1158. DOI: 10.1016/j. chemosphere.2007.03.076.

Поступила в редакцию 30.04.2021 Принята к опубликованию 24.02.2022

Received 30.04.2021 Accepted 24.02.2022

i Надоели баннеры? Вы всегда можете отключить рекламу.