Научная статья на тему 'SOME PROPERTIES UNIFORM SPACE AND ITS HYPERSPACE'

SOME PROPERTIES UNIFORM SPACE AND ITS HYPERSPACE Текст научной статьи по специальности «Математика»

CC BY
6
1
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
Hyperspace / uniformity / uniform space / uniformly connected / uniformly pseudocompact / precompact. / гиперпространство / равномерное пространство / равномерность / равномерное связное пространство / равномерное псевдокомпактное пространство / прекомпактное пространство.

Аннотация научной статьи по математике, автор научной работы — Бешимов Рузиназар Бебутович, Сафарова Дилнора Тешабоевна

In this paper, we will study the connection between a uniformly connected, uniformly pseudocompact, precompact and its hyperspace. It is proved that if a uniform space is uniformly pseudocompact iff is uniformly pseudocompact. It is also shown that if a uniform space is precompact, then a uniform space is precompact.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

В этой статье мы изучим связь между равномерно связным, равномерно псевдокомпактным, предкомпактом и его гиперпространством. Доказано, что если равномерное пространство равномерно псевдокомпактно тогда и только тогда, когда равномерно псевдокомпактно. Также показано, что если равномерное пространство предкомпактно, то равномерное пространство предкомпактно.

Текст научной работы на тему «SOME PROPERTIES UNIFORM SPACE AND ITS HYPERSPACE»

ВЕСТНИК ОШСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА МАТЕМАТИКА, ФИЗИКА, ТЕХНИКА. 2023, №1

УДК 515.12

https://doi.org/10.52754/16948645 2023 1 281

SOME PROPERTIES UNIFORM SPACE AND ITS HYPERSPACE

Beshimov Ruzinazar Bebutovich, Dr Sc, professor,

rbeshimov@mail.ru Safarova Dilnora Teshaboevna, teacher, safarova.dilnora87@mail.ru National University of Uzbekistan Tashkent, Uzbekistan

Abstract. In this paper, we will study the connection between a uniformly connected, uniformly pseudocompact, P — precompact and its hyperspace. It is proved that if a uniform space {X,U) is uniformly

pseudocompact iff (expc X,expc U) isuniformly pseudocompact. It is also shown that if a uniform space (X,U)

is P — precompact, then a uniform space (expc X,expcU) is P — precompact.

Key words: Hyperspace, uniformity, uniform space, uniformly connected, uniformly pseudocompact, P — precompact.

НЕКОТОРОЕ СВОЙСТВА РАВНОМЕРНОЕ ПРОСТРАНСТВО И ЕГО ГИПЕРПРОСТРАНСТВО

Бешимов Рузиназар Бебутович, д.ф.-м.н., профессор,

rbeshimov@mail.ru Сафарова Дилнора Тешабоевна, преподаватель, safarova.dilnora87@mail.ru Национальный университет Узбекистана Ташкент, Узбекистан

Аннотация. В этой статье мы изучим связь между равномерно связным, равномерно псевдокомпактным, P — предкомпактом и его гиперпространством. Доказано, что если равномерное пространство (X, U) равномерно псевдокомпактно тогда и только тогда, когда (expc X,expc U)

равномерно псевдокомпактно. Также показано, что если равномерное пространство {X, U) P —

предкомпактно, то равномерное пространство (expc X,expc U) P — предкомпактно.

Ключевые слова: гиперпространство, равномерное пространство, равномерность, равномерное связное пространство, равномерное псевдокомпактное пространство, P — прекомпактное пространство.

Introduction (Введение)

In [1], the connection between a finally compact, pseudocompact, extremely disconnected, К -space and its hyperspace is studied. It is proved: if the uniform space (X,U) is uniformly

paracompact, then (exp^X,exp си) is uniformly paracompact, if the uniform space (X,U) is uniformly R -paracompact, then uniform space (exp^ X,expc U) isuniformly R -paracompact. In

[2] the properties of space of the G -permutation degree, like: weight, uniform connectedness and index boundedness are studied. It was proved the G -permutation degree proserves the uniformly connected and index bounded. In the work [3] are established that the functor of idempotent probability measures with a compact support transforms open maps into open maps and preserves the weight and the completeness index of uniform spaces.

Definition 1 [4]. Let X be a nonempty set. A family u of coverings of a set X is called uniformity on X if the following conditions are satisfied:

(Р1) If aeU and « is inscribed in some cover ¡3 of the set X, then ^eU. (Р2) For any a1 e U, a2 e U there exists a<=u, which is inscribed in a1 and «2. (Р3) For any aeU, there exists ^eU strongly star inscribed in a .

(P4) For any x, ^ of a pair of different points of X, there exists a e U such that no element of a contains both x and y .

A family u consisting of a set X satisfying conditions (P1) - (P3) is called a pseudo-uniformity on X; and the pair (X,U) is a pseudo-uniform space.

A family u consisting of a set X satisfying conditions (P1) - (P4) is called a uniformity on X; and the pair (X, U) is a uniform space.

Proposition 1 [4]. For any uniformity of u on X, the family rU = {O c X: for each x e O exists a<=u such that a(x)cO} is a topology on X and the topological space (X,rU) is a 71-space.

The topology of tv is called the topology generated or induced by the uniformity of U.

Let (X,U) be a uniform space and expX the set of all nonempty closed subsets of the space (X,rU). For each aeU, put p(«) = {(«'): a'ca], where (a') = {F e expX: F c ^a'andFn A ^ 0for each Aea'J.

Proposition 2 [8]. If b is the base of a uniform space (X,U), then p(m~) = {p(a): a e rn1} forms a base of some uniformity expU on expX.

A uniform space (expX, expU) iscalled a hyperspace of closed subsets of a uniform space (X,U) ,and uniformity expU is called Hausdorff uniformity on expX.

Remark 1 [8]. Let expc X be the set of all nonempty compact subsets of the uniform space (X,U) .For each a<=U, put k (a) = {(a') : a' c a anda'- finit^.

Note that K(a) is the cover of the set expc X.

Corollary 1 [5]. Let (X,U) be a uniform space. Then w(U) = w(expU).

Corollary 2 [5]. If the uniform space (X,U) is metrizable, then its hyperspace (expX,expU) isalso metrizable.

Theorem 1. If (X,U) is a uniform space and aeU is a cover of (X,U).Then the following equality is true [(«')] , where (a') e P(a) and P(a) e expc U.

A uniform space (X,U) is called uniformly connected, and uniformity u is connected if any uniformly continuous mapping f:(X,U(D,U) of the uniform space (X,U) into any discrete uniform space (D,UD) is constant.

A finite sequence {A1, A2,..., Axj of subsets of a set x is called linked if A n, AI+1 of each i =1,2,..., n-1.

Definition 2 [4]. A uniform space (X,U) is called uniformly linked if for any cover a e U there exists a natural number n, such that to any points x,y e X one can choose a linked sequence {A,A2,..., a, such that k < n , x e Ax, y e Ak.

Proposition 3 [4]. For a uniform space (X ,U) ,the following conditions are equivalent:

(1) The uniform space (X,U) is uniformly connected.

(2) The uniformity of u does not contain disjoint covers consisting of at most one element.

(3) For any ae 7/ and for any point xeX, [Jan(x) = X.

И-1

(4) For any aeU and for any points of x,yeX there exists a finite linked sequence {4,4,..., Asuch that x e 4, y e Ak .

Теорема 2. A uniform space (X,U) is uniformly linked if and only if the uniform space (expc X,expc U) isuniformly linked.

It follows from Proposition 3 that every uniformly linked uniform space (X,U) is uniformly connected.

Corollary 3. A uniform space (X,U) is uniformly connected if and only if a uniform space (exp^, X,expc U) is uniformly connected.

Definition 3 [4]. A uniform space (X,U) is called uniformly pseudocompact if every uniformly continuous real-valued function defined on (X,U) is bounded.

Every Tychonoff pseudocompact space X with universal uniformity U* is uniformly pseudocompact. Conversely, if a universal space (X,U) is uniformly pseudocompact, then its topological space is pseudocompact.

A uniform space (X, U) is uniformly pseudocompact if for every countable centered open

oo

cover a = {Vj : i eM} of the uniform space (X, <v/) the intersection Q ] non-empty.

7 = 1

Theorem 3. A uniform space (X,U) is uniformly pseudocompact if and only if a uniform space (exp^. X,expc U) is uniformly pseudocompact.

A cover у of a uniform space (X,U) is said to be uniformly star-finite if there exists a uniform cover aeU such that y(B) intersects only a finite number of elements of у for any Bea [6].

A cover у of a uniform space (X,U) is called uniformly point-finite if for each x e X the set {a e M: x e Aa ey} isfinite.

Let us give examples of the property P of uniform covers of uniform spaces:

(1) covers of brevity < n ;

(2) star-finite covers;

(3) point-finite covers;

(4) finite covers;

(5) covers of power < г, т > K0.

A uniform space (X,U) is called P - precompact if the uniformity U has a base B

consisting of covers with property P .

Theorem 4. A uniform space (X,U) is P - precompact if and only if a uniform space

(expсX,expc U) is P - precompact, where properties P is a uniformly point-finite cover of

uniform space.

Теорема 5. A uniform space (X,U) is P - precompact if and only if a uniform space (expcX,expc U) is P - precompact, where properties P is a uniformly star-finite cover of uniform space.

Reference

1. Beshimov, R.B. Some Topological Properties of a Functor of Finite Degree[Теxt]/ Beshimov R.B., Safarova D.T., // Lobachevskii Journal of Mathematics, 2021, 42(12), стр. 27442753.

2. Beshimov, R.B. Index boundedness and uniform connectedness of space of the G-permutation degree^xt]/ Beshimov R.B., Georgiou D.N., Zhuraev R.M. // Applied General Topology, 2021, 22(2), стр. 447-459.

3. Borubaev, A.A. The functor of idempotent probability measures and maps with uniformity properties of uniform spaces^xt]/ Borubaev A.A., Eshkobilova D.T. // Eurasian Mathematical Journal, 2021, 12 (3), 29-41.

4. Борубаев, А.А., Равномерная топология. [Текст]/ Борубаев А.А.// Бишкек. Илим, 2013.-338 с.

5. Michael, E. Topologies on spaces of supsets^xt]/ Michael. E. // Trans. Amer. Math. Soc. - 1951. - № 1 (71). - P. 152-172.

6. Борубаев, А.А. Равномерные пространства и равномерно непрерывные отображения. [Текст]/ Борубаев А.А. // - Фрунзе: Илим, 1990.-172 с.

i Надоели баннеры? Вы всегда можете отключить рекламу.