Научная статья на тему 'Solution to the problem of locating production with discontinuous functions at zero transportation costs'

Solution to the problem of locating production with discontinuous functions at zero transportation costs Текст научной статьи по специальности «Математика»

CC BY
44
7
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
FIXED CO-PAYMENT / RAW MATERIALS EXTRACTION ITEM / FIXED COSTS / TRANSPORT COSTS / SEQUENTIAL CALCULATIONS / ФИКСИРОВАННАЯ ДОПЛАТА / ПУНКТ ДОБЫЧИ СЫРЬЯ / ФИКСИРОВАННЫЕ ЗАТРАТЫ / ТРАНСПОРТНЫЕ РАСХОДЫ / ПОСЛЕДОВАТЕЛЬНЫЕ РАСЧЕТЫ

Аннотация научной статьи по математике, автор научной работы — Sultankul Kyzy Ajnura

IT HAS BEEN PROVED A SUFFICIENT CONDITION FOR THE APPLICATION OF THE SEQUENTIAL CALCULATIONS METHOD FOR A NONLINEAR PROBLEM OF LOCATING PRODUCTION WITH DISCONTINUOUS FUNCTIONS AT ZERO TRANSPORTATION COSTS.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Solution to the problem of locating production with discontinuous functions at zero transportation costs»

Solution to the problem of locating production with discontinuous functions at zero transportation costs Sultankul k. A.

Решение задачи размещения с разрывными в нуле функциями затрат Султанкул к. А.

Султанкул кызы Айнура /Sultankul kyzy Ajnura - старший преподаватель, кафедра кибернетики и информационных технологий, факультет математики, информатики и кибернетики,

Кыргызский национальный университет им. Ж. Баласагына, г. Бишкек, Кыргызская Республика

Abstract: it has been proved a sufficient condition for the application of the sequential calculations method for a nonlinear problem of locating production with discontinuous functions at zero transportation costs.

Аннотация: доказано достаточное условие применимости метода последовательных расчетов для нелинейной задачи размещения с разрывными в нуле функциями затрат.

Keywords: fixed co-payment, raw materials extraction item, fixed costs, transport costs, sequential calculations. Ключевые слова: фиксированная доплата, пункт добычи сырья, фиксированные затраты, транспортные расходы, последовательные расчеты.

Statement of the problem: Suppose a large company in the region has m possible stations for extraction of raw materials such that Д, i = 1,2,.. .m , with the desired production volumes of x. > 0. Produced raw material, in turn, is been delivered to n number of enterprises B., j = 1,2,..n for further processing. It is assumed that the feedstock volume y , on each B., j = 1,2,...n bounded above by the value q , i.e. 0 < у j < q, j = 1,2,..., n, as well as amount of transported raw material from possible extraction stations Д to B, in a quantity of a. i.e. 0 < x <a. , i = 1,2,...,m, j = 1,2,...,n.

J ‘J ‘J ‘J

Given

V (X ^

Bj .

the feedstock need i = 1,2,...m, j = 1,2,...n

for the region in a volume of Q and in a function

A

determining expenditures for the transportation of raw materials from i to

In addition, for each Д, i = 1,2, ..., m and B ., j = 1,2, .. n, it is known that their functions are V (x.), if j (у j ) which determine the cost of raw materials extraction and its processing.

For each enterprise it is required to determine the optimal amount of raw materials extracted x. > 0, transported

X > 0 and processed raw materials у. > 0, for which the total cost would be minimal cost.

The above stated problem can be written as the following extreme problem:

Find the minimum

m n m n

L(x) = ^Lv (xj) + z V (xi) + (У]) (1)

i=1 j=1 i=1 j=1

under the constraints

n

Xxp = x,, i = 1,2,...,m, (2)

j=1

m

Xxj = уj <qj, j = l^..^^ (3)

i=1

n

X у j = Q, (4)

j=1

0<xtj <a, i = 1,2,..,m, j = 1,2,..,n, (5)

x, > 0, i = 1,2,..., m, yj 0, j = 1,2,.., n, (6)

where x = x .

I У lm,n

It is assumed that

n m m n

Q -Eq , Ex -EEa (7)

j=1 i=1 i=l J=1

Consider the solution to the problem from (1) to (6), when

V,(X) = c,x,, i = 1,2,...,m, Wj(у) = cjyj, j =1,2,...n, а Vj(хг:/.)

i = 1,2,.., m, j = 1,2,.., n,

where a. is a fixed surcharge.

j

cjxj + aj, XJ > 0,

0, x,j = 0

The problem from (1) to (6) in this case can be written as:

Find the minimum

m n ____

L( x)=EE cvxv+ aP( xj) (8)

i=1 J =1

under conditions

n

Ex,j = xt, i = 1,2,...m, (9)

j=1

m

Exj - Vj , j = 1,2,. n (10)

i=1

m n

EExi=Q, <“>

i=1 j =1

0 - xj - Qjj, i = 1,2,...,m, j = 1,2,...,n, (12)

where cy = cy + c, + Cj, i = 1,2,...,m, j = 1,2,...,n.

To solve the problem (8)-(12) we’ll use the method of successive calculations [1]. Therefore, we’ll introduce some notations and transformations.

Consider that every possible extraction station of raw materialsД, i = 1,2,...,m, has many extraction stations A , i = 1,2,...,m, k = 1,2,...,n. Then each extraction station A corresponds to a certain volume of extraction (production) of raw materials

xik, 0 - xik - aik, i = 1,2,...,m, к = 1,2,...,n,

xikj - volume of products transported from A to B, and fixed costs

aikj=aijSkj , i = 1,2,..., m, к, j = 1,2,..., n, as well as production and transportation costs

ск = CjSj + M(1 -5j ), i = l^..^m k,j = l^..^n, where

aft = a^kj , i = 1,2,.m, k, j = 1,2,..,n, М is sufficiently large positive number (barring rate).

Let G denote the set of pairs of indices {ikJ, i = 1,2,..m, к = 1,2,..,n.

Then the problems (8)-(12) can be written as Find the minimum

__ n

L(x, G) = EE ckjxkj + E U,ksign(x,k ) (13)

ikGG j=1 ikGG

under conditions

n

E xk = xk - ak, ik gG, (14)

j=1

E xkj - Vj, j = ^^..^n (15)

ikGG

n

EExtj- = Q, (16)

ikGG j =1

xkj > 0 , ik g G, j = 1,2,...,n,

(17)

___ n

where x = |*J П* = Xai , ik e G.

h j=i

We introduce a conditional clause A0 with a volume of raw material extraction equal to the value of

n

Xqj ~Q having transport costs c00j = 0, j = 1,2,...,n,

j=i

with the fixed costs П00 = 0.

This extraction station, having the index {00}, is considered as element of any subset of indices © c G . Then each subset © c G may be determined by the function:

___ n

L( x ©) = XX + X (18)

ikea j=1 ike©

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

under conditions

X xikj = q, j = n, (19)

ike©

n

Xxk <a,k, ike© (20)

j=1

__ n

X X xk = Q, (21)

ike©\{00} j=1

Xkj ^ 0, ik e©, j = 1,2,..., n. (22)

Denote p(o), having the minimum value of L(x, ©), under the conditions (19) - (22). Then the problem can be formulated as follows:

It is needed to define a subseto c G so that p(o) reaches its lowest valuep(o*) , i. e.

p (©*) = min {p (o)}. (23)

©cG ^ *

We’ll prove a sufficient applicability of the method of successive calculations [2] to the problem, i. e., that for any subsets ф, ©2 c G there is condition

s(©, ©2) = p(o) + p(o) -p(d)-p(P) < 0, (24)

where a = ©1lu©2, 3 = ©1ni©2,

and p(o), p(©2), p(a), p(P) is minimum value of the function L(x,©) under conditions (19)-(22),

and replacement set ©respectively to sets ©, ф, a, Д

Then the condition (24) for this problem takes the following form:

s(© ,©) = min { X X cikjxik) + ХПЛ + m-in 1 X X Cikjxikj + X Пik f

x 1 ike© j =1 ike© x ike<©2 i=\ ike<©2 1 2 J (25)

- min {xX ck ixikj + X Пik - min { n XX j k + Xn, f< 0

iikea j=1 ikea j i x i ike3 j=1 ikep J

Looking at inputted a and 3 it is easy to see that Xw+Xn,k = Xn,k +Xn,k.

ike© ike©2 ikea ike3

Suppose that the problems (13) - (17) on the set©, ф , have valid plans |x© |, |x©2| that satisfy the following conditions:

x©j = xa, ik e a\©2, J = 1,2,...,n, (26)

x©j = x^, ik ea\©, j = 1,2,..., n, (27)

x©j + x© = xl + x3, ik e3, J = 1,2,...,n (28)

n

Xx© < ak, ik e©\ {°°}, (29)

j=1

Xxa —aik, ikeafi{00}, (30)

j=1

where | x^ | is optimal plan of the problems (13) - (17) on the set a , and | xfi | - on the set fi .

Then to prove the condition (25) it is sufficient to show that

_ n n n n

s(ai,a2) = X Ёcikjxikj + X X cikjxikj “X Xcikjxik “X X cikjxfkj — 0 (31)

ikea j=1 ikea2 j=1 ikea j=1 ikefi j=1

Obviously, since \x“S , x5 are not optimal solutions of the corresponding problems, then the inequality takes

place:

min

x

X Xc~x~ +

cijkxikj 1 X Пik Г — X X

[ikeal j=1 ikeal I ikea j=1

c xWi +

cikjxikj +

Xn*.

ike a

m_in <

x

XX

ciilrx.,. +

Xn. —XX

c^x2 +

'ijk^ikj 1 X ik \ — X X ikjikj

ikea j=1 ikea 1 I ikea 1=1 ike

Xn »■

Consequently, s(o ,o2) — 0, then solving the condition (25) is followed.

It is easy to establish that for feasible plans (26)-(30) the inequality (25) takes place. Obviously, from (26)-(28) it follows:

X cikjx<ikj + X

ike a

cikjxikj + X cikj X cikxikj- 1 X cikjxikj

+ X cikjxikj +X cikj (xikj' +xikj )

ike o

ikea\a

X c xa

ikea\a ikefi

+ X cikjxikj +X cikjxikj = X cikjXikj +X

ikefi ikea ikefi

j = 1,2,..., n.

Summing obtained equality for all j, j = 1,2,..., n, we get

xa + v c xa

cikjxikj ^ X cikjxikj

ikea\o2 ikea\a ikefi

X X cikjxikj + X X cikjxikj = X X c*jxikj + X X

j=1 ikefi

ikj ikj X X ikj ikj

j=1 ikea j=1 ik j=1 ikea

c xfi

cikjxikj.

Consequently, s(a ,a2 ) — 0.

Thus, the condition (25) is proved. Therefore, for the problem (23) a sufficient applicability of the method of successive calculations (24) holds under the assumption of the existence of feasible plans |x0 |, ^x^2 | , which satisfy the conditions (26)-(30).

In the end we need to determine whether there exist such feasible plans for solving this problem. Proof of the existence of these feasible plans |x0 | and jx^21 , satisfying (26) - (30) in this problem, are analogous to that given in [3].

Further, we note that the proof of sufficient applicability of the method of successive calculations (24) allows the use of the algorithm of successive calculations in the formulation of V.P. Cherenin in [2], for the tasks (13)-(17), with additional cull as follows:

Before starting to the calculation of p(a) = m_in {L(x, a)}, for each variant a, the condition X aik - Q > 0 needs to be tested. (32)

ikea\{00}

Calculation of p(a) is carried out only for variants that satisfy condition (32), however, for options a that do not satisfy the condition (32), calculation of p(a) is not carried out and is excluded from further consideration of all fi c a .

n

n

n

n

References

1. Cherenin V. P. The solution of some combinatorial problems of optimal planning using the method of successive calculations //Scientific and methodological materials from Economic and Mathematical Seminar of Laboratory of Economic and Mathematical Methods at Academy of Sciences USSR. - M., 1962.

2. Cherenin V. P., Hachaturov V. R. Solving the same type problems by method of successive calculations regarding the location of production. Economic and mathematical methods. - M.: Science, 1965. - issue 2.

3.

Zhusupbaev A. Problem about the location of production using nonlinear function from a vector space into its underlying scalar field. // Application of mathematical methods in economic research. - Frunze: Ilim, 1976. - Pp.

30-41.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.