ISSN 2310-5607
Г
ppublishing.org
PREMIER
Publishing
DOI:10.29013/AJT-23-9.10-21-26
solubility of components in the
nh4h2po4-nh2c2h4oh-h2o system
Saidolim Mardanov1, Shokhida Khamdamova 2
1 PhD Student, Fergana Polytechnic Institute, Fergana, Uzbekistan
2 Doctor of Sciences (DSc), Professor, International Institute of Food Technology and Engineering, Fergana, Uzbekistan
Cite: Mardanov S, Khamdamova Sh. (2023). Solubility of Components in the NH4H2PO4-NH2C2H4OH-H2O System. Austrian Journal of Technical and Natural Sciences 2023, No 9-10. https://doi.org/10.29013/AJT-23-9.10-21-26
Abstract
The solubility of components in the NH4H2PO4-NH2C2H4OH-H2O system was studied from the temperature of complete freezing (-53.0 °C) to 68.0 °C. A polythermal solubility diagram has been constructed, on which the regions of crystallization of ice, monoammonium phosphate, NH4H2PO4-NH2C2H4OH, 2NH4H2PO4-3NH2C2H4OH compounds, two-, one-, and anhydrous monoethanolamine are demarcated.
Keywords: solubility, temperature, polytherm, diagram, crystallization, ice, mono ammonium phosphate, monoethanolamine
Introduction
Currently, to increase the productivity of agricultural crops, the use of chemical regulators of plant growth and development is expanding simultaneously with increasing doses of mineral fertilizers. World practice has accumulated experience in growing plants with desired properties using individual chemicals with stimulating activity (Nes-bit, J. C., 1860).
It has been established that ethanolamine has high biological activity. Its active participation in redox processes, in enhancing the synthesis of organophosphorus compounds, stimulating protein metabolism and enhancing the activity of enzymatic systems has been revealed.
When explaining the growth activity of ethanolamines, it should be taken into account that in the presence of carbon dioxide and oxygen, ethanolamines can form glycerol, glycol, oxalic, formic, naphthenic and acetic acids, which belong to the group of growth substances (Леопольд, А., 1968; Сухова С. И., Симочатова Е. П., Бесков С. Д., 1967; Гусейнов, Д. М., 1966; Нурахметов, Н. Н., & Беремжанов, Б. А., 1978).
Increased interest in the interaction of ethanolamines with fertilizer components, as well as chlorate-containing defoliants, is due to the fact that when used together, the effectiveness of the synthesized drugs increases. Consequently, physicochemical studies of the interaction of ethanolamines with macro-
and microcomponents of fertilizers are of significant theoretical and practical interest.
Methodology
This system at 25 °C was previously studied using isothermal methods (Набиев, М.Н., Исабаев, З., & Саибова, М. Т., 1976). We studied the solubility of the components in the NH4H2PO4-NH2C2H4OH-H2O system using the visual-polythermal method (Трунин, А. С., & Петрова, Д. Г., 1978) from the temperature of complete freezing (-53.0 °C) to 68.0 °C. For quantitative chemical analysis of liquid and solid phases, elemental analysis for carbon, nitrogen, and hydrogen was used (Климова, В. А., 1975); the Р2О5 content was determined using a spectrophotometer using the colourimetric method (Мойжес, И. Б., 1973).
The content of elemental carbon and hydrogen was carried out according to the method (Климова, В. А., 1975).
Solid phases were identified by chemical and various methods of physicochemical analysis. Thermal analysis of the new phases
under study was carried out on a derivato-graph of the Paulik-Paulik-Erdey system.
X-ray phase analysis was carried out on a Dron-3.0 diffractometer. The values of inter-planar distances were found from the reference book (Диллер, Я. Л., 1966; Недома, И., 1975), according to the angle of reflection, and the intensity of diffraction lines was assessed on a 100-point scale.
Results and discussion
We studied the solubility of the (NH4)2H-PO4-NH(C2H4OH)2-H2O system (Erga-shev D. A., Xamdamova Sh. Sh., 2022; Adil-jonovich, E. D., & Sherzodovna, K. S., 2021; Adiljanovich, E. D., 2020; Эргашев Д. А., Асцарова М. К., Тухтаев С., 2015; Эргашев Д. А., Асцарова М. К., Тухтаев С., 2015; Ergashev Dilmurod Adiljonovich, Askarova Mamura Kamilovna, Tukhtaev Saidahral, 2016) using ten internal cuts. Of these, sections IV were studied from the side NH2C2H4OH-H2O to the top of NH4H2PO4, section s VI-IX from the side NH4H2PO4-H2O to the top of NH2C2H4OH.
Figure 1. Solubility diagram for the system NH4H2PO4-NH2C2H4OH-H2O
Based on the results of studying binary solubility diagram of a ternary system was systems and internal sections, a polythermal constructed, on which the fields of crystalli-
zation of ice, mono ammonium phosphate, compounds of the compositions NH4H2PO4 • • NH2C2H4OH, 2NH4H2PO4 3NH2C2H4OH, two aqueous, one aqueous and anhydrous monoethanolamine are delimited (Fig. 1, Table. 1).
These fields converge at four triple nodal points of the system, for which the chemical compositions of equilibrium solutions and the corresponding crystallization temperatures are determined (Table 1).
Table 1. Double and triple points of the NH H PO -NH C2H OH-H2O system
Composition of the liquid phase, wt.% Crystal tem- Solid phase
NH4H2PO4 nh2c2h4oh H2O perature, °C
18.0 - 82.0 -45.0 Ice + NH4H2PO4
20.0 8.0 72.0 -46.0 Same
23.4 15.5 61.1 -48.0 —
24.6 18.3 57.1 -48.6 —
26.0 23.1 50.9 -49.5 Ice + + NH4H2PO4 + NH4H2PO4-N- h2c2h4oh
71.0 17.8 11.2 68.0 NH H PO. + HH PO N 4 2 4 4 2 4 -H2C2H4OH
55.4 18.0 26.6 32.0 Same
40.2 19.2 40.6 -2.0 —
31.6 20.5 47.9 -22.1 —
25.5 22.6 51.9 -47.9 Ice + NH4H2PO4-NH2C2H4OH
23.9 25.9 50.2 -43.0 Ice + NH4H2P O4-NH2C2H4O H + +2NH4H2PO4-3NH2C2H4OH
25.3 29.0 45.7 -17.0 NH4H2PO4 • NH2C2H2OH + 2NH4H2PO4-3NH2C2H4OH
26.2 33.8 40.0 -12.0 Same
29.5 41.2 29.3 -2.3 —
30.0 42.1 27.9 3.8 —
42.0 58.0 - 27.0 —
21.7 31.5 46.8 -39.2 Ice + 2NH4H2PO4 • 3NH2C2H4OH
19.8 48.3 31.9 -45.6 Same
20.0 50.0 30.0 -47.0 —
22.3 55.5 22.2 -49.0 —
23.9 58.5 17.6 -53.0 Ice + 2NH4H2PO4 • 3NH2C2H4OH + +NH2C2H4OH • 2H20
31.0 69.0 - -47.7 2NH4H2PO4 • 3 nh2c2h4oh + + NH2C2H40№2H20
21.5 57.5 21.0 -52.6 Ice + NH2C2H4OH • 2H20
17.8 56.0 26.2 -51.3 Same
13.9 54.6 31.5 -50.4 —
11.0 53.5 35.5 -49.0 —
9.4 53.0 37.6 -48.8 —
5.0 52.3 42.7 -47.2 —
— 52.0 48.0 -46.4 —
Composition of the liquid phase, wt.% Crystal tem- Solid phase
NH4H2PO4 nh2c2h4oh H2O perature, °C
26.2 73.8 - -38.0 NH2C2H4OH • 2H20 + + nh2c2h4oh • h20
15.7 69.5 14.8 -41.0 Same
12.7 68.7 18.6 -42.0 —
9.9 67.8 22.3 -42.8 —
7.0 66.5 26.5 -43.2 —
5.8 65.8 28.4 -44.2 —
- 65.0 35.0 -44.9 —
16.0 84.0 - -20.8 NH2C2H4OH • H20 + nh2c2h4oh
9.7 81.8 8.5 -22.0 Same
7.9 81.0 11.1 -22.8 —
6.0 80.8 13.2 -23.0 —
4.2 80.3 15.5 -23.6 —
2.2 79.8 18 -24.0 —
- 79 21 -24.2 —
The polythermal diagram plots solubility isotherms every 10 °C. To clarify the nodal triple points, projections of polythermal solubility curves onto the corresponding lateral water sides of the concentration triangle were constructed.
Analysis of the solubility diagram of the studied system shows that the formation of the compound 2NH4H2PO4-3NH2C2H4OH occurs in the temperature range -53.0 ^ ^ 27.0 °C. The minimum concentration of ammonium phosphate causing crystallization of 2NH4H2PO4 • 3NH2C2H4OH into the bottom phase is 19.8%, and monoethanolamine is 24.0%. The formation of a compound with the composition NH4H2PO4 • NH2C2H4OH is observed at a higher temperature range -49.5 ^ 68.0 °C and at higher concentrations of ammonium phosphate 24.1 ^ 70.8 %
From the data presented, it is clear that in the system under study, two chemical compounds are formed based on the initial components, i.e. NH4H2PO4 • NH2C2H4OH, 2NH4H2PO4 • 3NH2C2H4OH, which cire isolated from the expected areas and identified by chemical, thermogravimetric and X-ray phase analysis methods.
Chemical analysis of the isolated compounds gave the following results: for 2NH4H2PO4 • 3NH2C2H4OH;
found,%: N= 15.01; H= 6.98; C = 16.87;
P205= 35.02;
calculated,%: N= 16.95; 17.43; P205= 34.38; for NH4H2PO4
H= 7.51; C =
NH2C2H4OH;
found,%: N= 15.13; H= 6.79; C= 13.07; P205= 40.51;
calculated,%: N= 15.9; N= 7.38; C =
= 13.64; P205= 40.33;
A comparison of the data from X-ray diffraction and thermogravimetric analyses of the starting substances and 2NH4H2PO4 •
3NH2C2H4OH,
NH4H2PO4
NH2C2H4OH
showed that the isolated compounds have their own inherent crystal lattices and are characterized by specific transformations. The values of interplanar distances and intensities are given in Table 2.
According to thermal analysis data, in the range of 20-600 °C, five endothermic effects are observed on the heating curve of the compound 2NH4H2PO4 • 3NH2C2H4OH, corresponding to the melting and decomposition of the compound. The total mass loss at 600 °C is 68.7%. On the heating curve of the compound NH4H2PO4-NH2C2H4OH, four endothermic and one exothermic effect are observed. That is, the thermal analysis data are identical to the literature data [6].
Table 2. Values of interplanar distances NH4H2PO4 2NH4H2PO4
• 3nh2c2h4oh и nh4h2po4-nh2c2h4oh
NH4H2PO4 2NH4H2PO4 •3NH2C2H4OH NH4H2PO4 nh2c2h4oh
d, Â J/J1,% d, Â J/J1,% d, Â J/J1,%
5.32 100 8.35 77 8.99 100
3.75 64 5.00 72 5.40 63
3.07 89 4.51 63 4.71 93
3.06 75 4.00 95 4.18 66
2.66 18 3.65 100 3.86 73
2.65 15 2.82 45 2.91 26
2.37 8 2.59 36 2.63 23
2,009 29 2.31 18 2.40 20
2,004 22 2.27 22
1.77 5
In addition, in the studied system, the salting effect of the components on each other is observed. With increasing concentration and temperature, the salting-in effect of monoethanolamine on ammonium phosphate increases. So, with a 10% content of monoethanolamine in solution, the solubility of monoammonium phosphate at temperatures is 0.0; 10.0; 20.0; and 30.0 °C increases by 11.2 accordingly; 14.0; 18.0 and 20.9% compared to its solubility in wa-
ter. Monoammonium phosphate has a lesser ability to increase the solubility of monoeth-anolamine than the latter does to the solubility of ammonium phosphate.
Conclusions
The results of the studied system indicate the technological possibility of obtaining compounds with physiologically active properties by joint dissolution of the initial components at their optimal ratios, also identified from the data of agrochemical tests.
References
Nesbit, J. C. (1860). On Agricultural Chemistry. Longman & Company.
Леопольд, А. (1968). Рост и развитие растений. - М.: Мир. - 494 с.
Сухова С. И., Симочатова Е. П., Бесков С. Д. (1967). О физиологической активности мочевины, борной и корбоновых кислот. «Агрохимия»,- № 2.- С. 96-99.
Гусейнов, Д. М. (1966). Изучение и применение нефтяного ростового вещества (НРВ) в сельском хозяйстве культур. Нефтяные удобрения и стимуляторы в сельском хозяйстве.- Баку: Изд-во АН АзССР,- C. 7-11.
Нурахметов, Н. Н., & Беремжанов, Б. А. (1978). О взаимодействии неорганических кислот с амидами. Журн. неорг. химии,- 23(2).- C. 504-514.
Набиев, М. Н., Исабаев, З., & Саибова, М. Т. (1976). Система моноаммонийфосфат-моно-этаноламин-вода при 25 C. Журн. неорганич. химии,- 21(12).- C. 3355-3358.
Трунин, А. С., & Петрова, Д. Г. (1978). Визуально-политермический метод.- Куйбышев: Куйбышевский политехнический институт, 1977.- 94 с. Рук. Деп. В ВИНИТИ,- 6.-C. 584-78.
Климова, В. А. (1975). Основные микрометоды анализа органических соединений. Химия.
Мойжес, И. Б. (1973). Руководство по анализу в производстве фосфора, фосфорной кислоты и удобрений.
Климова, В. А. (1975). Основные микрометоды анализа органических соединений. Химия.- 224 с.
Диллер, Я. Л. (1966). Таблицы межплоскостных расстояний.- Т. 2. - М. Недра,- 362 с.
Недома, И. (1975). Расшифровка рентгенограмм порошков. М.: Металлургия,- 197.423 с.
Ergashev D. A., Xamdamova Sh. Sh. (2022). Studying the Interaction of Components in Aqueous Systems with Calcium Chlorate, Ethanolamines, Di- and Triethanolamine. Neuro-Quantology.- 20(5).- P. 1453-1466.
Adiljonovich, E. D., & Sherzodovna, K. S. (2021). Obtaining a New Defolating Composition with Physiological Activity. International Journal of Human Computing Studies,- 3(4).-P. 20-26.
Adiljanovich, E. D. (2020). Interaction of components in aquatic systems with the chlorates and chlorides calcium, magnesium and acetate monoethanolammonium. European Journal of Molecular and Clinical Medicine,- 7(7).- P. 868-874.
Эргашев Д. А., Асцарова М. К., Тухтаев С. (2015). Изотерма растворимости системы Ca(-Cl03)2-ClCH2CH2P0(0H)2-2NH2CH2CH20H-H20 при 25°С. Узбекский химический журнал.- Ташкент, № 1.- С. 26-29.
Эргашев Д. А., Асцарова М. К., Тухтаев С. (2015). Изучение взаимного влияния компонентов в системе хлорат кальция - ацетат моноэтаноламина- вода. Узбекский химический журнал.- Ташкент,- № 3.- С. 30-34.
Ergashev Dilmurod Adiljonovich, Askarova Mamura Kamilovna, Tukhtaev Saidahral. (2016). Physico-chemical studies of novel chlorate containing defoliant. Austrian Journal of Technical and Natural Sciences,- № 5-6.- P. 58-63.
submitted 22.08.2023; accepted for publication 20.09.2023; published 8.10.2023 © Mardanov S., Khamdamova Sh. Contact: s.mardonov82@yandex.ru