Фундаментальные проблемы теоретической и прикладной механики Вестник Нижегородского университета им. Н.И. Лобачевского, 2011, № 4 (5), с. 2077-2078
2077
УДК 532.517.4
СНИЖЕНИЕ ТУРБУЛЕНТНОГО ТРЕНИЯ БОКОВЫМИ ОСЦИЛЛЯЦИЯМИ ОРЕБРЕННОЙ СТЕНКИ
© 2011 г. И. С. Водопьянов
НИИ механики Московского госуниверситета им. М.В. Ломоносова
Поступила в редакцию 24.08.2011
Проведены прямые численные расчеты течения в плоском канале с осциллирующей оребренной стенкой . Рассматривается модель открытого канала с течением постоянного расхода. Результаты вычислений показывают, что оребренная осциллирующая стенка приводит к более значительному уменьшению энергозатрат по сравнению со случаями с осциллирующей гладкой или с неподвижной оребренной стенкой. Выдвигается предположение, что причиной этого может быть более эффективное влияние осциллирующей оребренной стенки на механизмы генерации турбулентности в пристеночной зоне.
Ключевые слова: турбулентное течение в плоском канале, снижение турбулентного трения, ребра, боковые осцилляции стенки, прямой численный расчет.
Введение
Методы снижения турбулентного трения в пристенных течениях, на которых сконцентрировано исследование, имеют своей целью разрушение цикла производства турбулентности. Расположение на поверхности ребер с оптимальными высотой и интервалом между ними ограничивает боковые флуктуации в пристенном слое и приводит к снижению сопротивления до 6-8%. Поперечные колебания обтекаемой поверхности могут уменьшать сопротивление до 50%, разрушая пространственную согласованность между пристенными структурами. Однако из-за потерь на преодоление бокового трения общий энергетический выигрыш не превышает нескольких процентов. Оснащение осциллирующей стенки ребрами, передающими колебания от стенки в поток, может быть энергетически выгодным.
Постановка задачи
Рассматривается течение вязкой несжимаемой жидкости в плоском канале (рис. 1). Течение описывается уравнениями Навье-Стокса и неразрывности и вызывается приложенным градиентом давления, который выбирается в каждый момент времени таким образом, чтобы обеспечить постоянство расхода жидкости.
Рассматривается модель так называемого «открытого» канала. Эта модель заменяет рассмотрение полного канала рассмотрением только его половины. Таким образом, одна из стенок «откры-
того» канала не является твердой поверхностью. На ней устанавливаются специальные граничные условия: условие отсутствия касательных напряжений и условие непротекания. На боковых и торцевых стенках канала установлены условия периодичности, а на нижней - условие прилипания. Ребра располагаются на нижней стенке канала и являются узкими прямоугольными вертикальными стенками. Симуляция ребер произведена с использованием метода виртуальных границ [1].
Используется следующий вычислительный алгоритм: конечно-разностная схема 2-го порядка точности по пространственным переменным и полунеявный метод Рунге-Кутты 3-го порядка точности по времени [2].
Результаты расчетов
При описании пристенных турбулентных течений удобно нормировать величины с использованием в пристенных течениях масштабов скорости иТ = (%„ /р)1/2 и длины 1Т = у/ит. В определение иТ входит среднее напряжение вязкого трения на стенке , поэтому иТ, 1Т еще называют вязки-
ми масштабами. Величина Т№ в каждой точке на стенке может быть определена только по результатам проведенного расчета, как среднее от Ур(Эм/Эу). Сводка геометрических и сеточных параметров приведена в табл. 1. Все линейные размеры нормируются на величину И, за исключением величин с верхним индексом «+», которые нормированы с использованием вязких масштабов. Сетка в нормальном направлении сгущена в сторону стенки. Сетка в боковом направлении сгущена к каждому ребру. Символ й означает размер шага сетки.
Таблица 1
Размеры расчетной области C^max, ^max, Zmax) 1Q.Q, 1.Q, 2.4889
Число узлов (NtxNvxNz) 128x96x256
d+ 14
d X , min, d + , max Q.36, 3.59
d + , min, d+ , max 1.22, 2.5Q
W+ •• w 4.5
w+ Q.3876
Re, = 2hu,N b b 42QQ
Re = 2h u /v T T 18Q
Интегрирование по времени продолжается до установления средних характеристик. Получаемые результаты считаются удовлетворительными, они меняются в пределах 1%. В табл. 2 приведе-
ны результаты расчетов. Величина Р характеризует баланс мощности сил давления, необходимых для поддержания постоянного расхода, и мощности сил трения. В некоторой степени Р может характеризовать величину снижения турбулентного трения.
Таблица 2
Условие течения P1Q3
Гладкая стенка 1.2472
Оребренная стенка 1.1681 (-6.3%)
Осциллирующая гладкая стенка 1.1338 (-9.1%)
Осциллирующая оребренная стенка 1.Q976 (-12.Q%)
Расчеты с различными комбинациями внешних параметров продолжаются с целью установления причин снижения турбулентного трения.
Работа выполнена под научным руководством д.ф.-м.н. Н.В. Никитина. Расчеты проводились с использованием суперкомпьютерного комплекса МГУ « Чебышев».
Работа выполнена при финансовой поддержке РФФИ (грант № 08-01-00489-а.).
Список литературы
1. Fadlun E.A. et al. // J. Comput. Phys. 2000. V. 161. P. 35-66.
2. Nikitin N. // J. Comput. Phys. 2006. V. 217. P. 759-781.
REDUCTION OF TURBULENT FRICTION BY SPAN-WISE OSCILLATIONS OF A RIBBED WALL
I.S. Vodopyanov
Direct numerical simulations are employed to study turbulent friction reduction mechanisms in a turbulent channel flow induced by lateral sinusoidal oscillations of a ribbed wall. An open-channel model with constant flow rate is considered. The results show that the net energy saving is higher than the same quantity in the case of lateral sinusoidal oscillations of a flat wall or in the case of a quiescent ribbed wall. It is assumed to happen due to more effective influence of the ribs on the turbulent generation mechanisms in the near-wall zone.
Keywords: turbulent channel flow, turbulent drag reduction, ribs, spa-wise wall oscillations, direct numerical simulation.