УДК 621.717
И. И. Артемов, С. В. Кочкин, В. В. Кожевников СНИЖЕНИЕ НЕУРАВНОВЕШЕННОСТИ СТАЛЬНЫХ КОЛЕС ПУТЕМ ПРИМЕНЕНИЯ ПРОСТРАНСТВЕННО-ОРИЕНТИРОВАННОЙ СБОРКИ
Аннотация. Рассмотрен способ сборки стальных колес, учитывающий статическую неуравновешенность обода и диска, предложен числовой метод расчета динамической неуравновешенности ободьев и дисков с помощью трехмерного моделирования, предложена конструкция устройства для определения дисбаланса, а также приведены результаты экспериментального подтверждения эффективности предлагаемой сборки.
Ключевые слова: вектор дисбаланса, пространственно-ориентированная селективная сборка, стальное колесо, обод, диск, трехмерное твердотельное моделирование.
Abstract. The article describes a method of assembling steel wheels, which takes into account the static unbalance of a rim and a disk. The authors suggest a numerical method for calculating dynamic unbalance of rims and discs by means of threedimensional modeling and a construction of the device to determine the unbalance vector. The article also introduces experimental results proving the effectiveness of the proposed assembly.
Key words: unbalance vector, dimension-oriented selective assembly, a rim, a disk, steel wheels, three-dimensional modeling.
Введение
Существующая технология производства стальных колес предполагает изготовление комплектующих деталей (обода и диска) методом холодной листовой штамповки и их последующей сборки, сварки, окраски. Операция сборки производится без учета дисбалансов деталей. Неуравновешенность колес может быть вызвана различными причинами, в частности конструкторско-технологическими дисбалансами, погрешностями изготовления, анизотропией физико-механических свойств и разнотолщинностью листового проката. В результате в некоторых случаях величина главного вектора дисбаланса стального колеса превышает допустимое значение, установленное в конструкторской документации. Для стальных колес в зависимости от размера допустимая статическая неуравновешенность составляет 1500...2500 г • мм. Проведенные на производстве экспериментальные исследования показали, что около 0,5 % стальных колес имеют дисбаланс, превышающий допустимое значение. Для серийного производства с программой выпуска более 1 млн колес/год убытки, связанные с утилизацией такой продукции, являются значительными. Поэтому задача минимизации дисбаланса стальных колес именно на стадии их изготовления является актуальной.
1. Расчет динамической неуравновешенности ободьев и дисков стальных колес
Для расчета основных параметров динамической неуравновешенности стальных колес предлагается приближенный метод на основе трехмерного моделирования. Модель ротора разбивалась на части (элементарные роторы)
плоскостями, перпендикулярными оси вращения. Количество частей выбирается так, чтобы образованные элементарные роторы имели простую форму. Такое разделение позволило рассматривать каждую часть как отдельный ротор, обладающий только статической неуравновешенностью, выраженной в
виде векторов Бц, Dj2, D21, D22 ..D\n, D2n (рис. 1). У векторов, расположенных слева от центра масс (Бц, D12 ), первый индекс «1», у векторов справа - индекс «2». Главный вектор дисбаланса исследуемой детали определяется как векторная сумма проекций векторов Бц, D12 ... Din, D2n на плоскость XOZ, перпендикулярную оси вращения и проходящую через центр масс детали:
__ П ______ ___
D = Yj (D1i + D2/) = (Du • cos an + D12 • cos «12 +... + D1n cos «ь) +
/=1
+(D21 •cos«21 + D22 •cos«22 + ... + D2n cos«2n), (1)
где «11, «12, «1n - угол между проекцией соответствующего вектора на плоскость XOZ и осью OX.
Y У
Рис. 1. Схема для расчета динамического дисбаланса сложного ротора
Главный момент дисбаланса расположен в плоскости ХОХ и определяется как сумма произведений главного вектора каждого элементарного участка на расстояние между центрами масс элементарного участка и исследуемой детали:
____ п _____ __
Мп = 2 (ЪцЬц - ). (2)
/=1
При этом необходимо учитывать взаимное положение и направление векторов.
Методика была ранее апробирована авторами при расчете конструктивных дисбалансов коленчатых валов тепловозных дизелей средней мощности и дала хорошие результаты. В данном случае она позволила определить значения параметров неуравновешенности, которые могут получиться в результате наличия дефектов в материале или погрешностей изготовления. Основные предельные значения параметров отклонений стального колеса размером 14 дюймов, полученные экспериментально на Тольяттинском заводе стальных колес (ТЗСК), и результаты расчета главного вектора и главного момента дисбаланса диска, обода и колеса представлены в табл. 1.
В столбцах 5, 6 и 9, 10 табл. 1 представлена динамическая неуравновешенность, выраженная в виде двух уравновешивающих грузов, расположенных на бортовых закраинах обода (в плоскостях приведения). При моделировании различных отклонений обода стального колеса рассматривались два предельных варианта, при которых расположение несбалансированной массы приводило к появлению максимально возможных главного вектора или главного момента дисбалансов.
Минимизация влияния вышеназванных причин появления дисбаланса за счет применения более точного и более дорогого оборудования или предъявления более жестких требований к штампам приведет к удорожанию себестоимости производства колес. Наиболее целесообразным является применение специального способа сборки, при котором дисбалансы обода и диска компенсируют друг друга.
2. Устройство для определения статической неуравновешенности ободьев и дисков стальных колес
Традиционный процесс балансировки включает в себя разгон детали до рабочей частоты вращения, измерение величины неуравновешенности и торможение детали. Это занимает продолжительное время, что в условиях серийного производства колес не представляется возможным. Поэтому в рамках настоящего исследования решено использовать метод определения дисбаланса в режиме малых угловых колебаний [1], который обеспечивает требуемую производительность и достаточную точность.
Предлагаемое устройство для определения статической неуравновешенности представлено на рис. 2. Режим работы устройства - дорезонансный, т.е. частота угловых колебаний привода меньше собственной частоты колебательной системы. Электродвигатель 1 приводит вал 2, упругий элемент 3, а вместе с ними и балансируемую деталь 4 в колебательное движение относительно вертикальной оси с амплитудой 5° и частотой 10 Гц [2]. При наличии дисбаланса балансируемая деталь совершает вынужденные изгибные колебания относительно горизонтальной оси, проходящей через точку О (точку качания системы). Амплитуда этих колебаний измеряется с помощью двух установленных ортогонально лазерных триангуляционных датчиков 6 и определяет величину дисбаланса.
3. Расчет упругого элемента устройства для определения неуравновешенности обода и диска
Основным элементом колебательной системы любого устройства измерения параметров дисбаланса в динамическом режиме, определяющим режим работы и качество измерений, является упругий элемент, который в данном случае представляет собой кольцевую выточку на цилиндрическом валу (рис. 3).
178
Таблица 1
Результаты расчетов основных параметров динамической неуравновешенности диска, обода и стального колеса
Причина появления дисбаланса Предельные значения параметра (отклонение) Значение дисбаланса
Максимальная статическая составляющая дисбаланса Максимальная моменгная составляющая дисбаланса
Д г-мм Мв, г-мм2 ОТь г тг, г Д г-мм Мв, г-мм2 ті, г т2, г
Ободья стальных колес
Неравномерная толщина листового проката ±0,1 мм 9448 16000 28 24,5 365 438498 18,7 16,1
Утонынение стенок ободьев на радиусах скруглення, вызванное анизотропией механических свойств до 1,9 мм при толщине листового проката 2,5 мм 136 1976 0,16 0,15 0 3623 0,14 0,14
Торцевое биение обода 0,8 мм 2360 25960 7,6 5,5 20,2 53723 2,1 2,1
Суммарное воздействие всех вышеперечисленных факторов 11944 43936 34,2 30,8 385,2 495844 20,7 18,7
Диски стальных колес
Неравномерная толщина листового проката ±0,22 мм 8016 3967 19 28 - - - -
Неодинаковая толщина юбки диска, вызванная смещением пуансона относительно матрицы до 1 мм 2332 2964 5 17 - - - -
Утонынение стенок дисков на радиусах скруглення до 2,8 мм при толщине листового проката 3,2 мм 280 463 0,6 2 - - - -
Наличие радиального биения юбки диска до 0,2 мм 421 4875 1 3 - - - -
Отклонение размера вентиляционных окон в пределах допуска ±0,1 мм 848 1127 2 6 - - - -
Не параллельность юбки 0,5 336 1857 1 2, - - - -
Суммарное воздействие всех вышеперечисленных факторов 12233 37122 28,6 24,5 - - - -
Стальное колесо
Суммарное воздействие всех вышеперечисленных факторов 24177 87568 54,3 38,9 12618,2 502842 58 42,8
Известия высших учебных заведений. Поволжский регион
Рис. 2. Устройство для определения неуравновешенности у ободьев и дисков стальных колес, работающее в режиме малых угловых колебаний
а)
б)
Рис. 3. Упругий элемент: а - общий вид; б - схема нагружения при изгибе; в - схема нагружения при кручении
Упругий элемент должен иметь определенную жесткость на кручение и изгиб. На кручение требуется максимальная жесткость для минимизации отклика колебательной системы на действие тангенциальных сил инерции. Жесткость на изгиб должна иметь строго определенное значение. Она была выбрана исходя из экваториального момента инерции системы: балансируемая деталь - зажимной механизм (для обода 1Р = 0,4 кг • м2; для диска 1Р = 0,3 кг • м2) с учетом соблюдения условия дорезонансного режима работы балансировочного устройства, при котором отношение частот собственных и вынужденных колебаний = 3...4. Частота рабочих угловых колебаний устройства / была прията равной 10 Гц. В этом случае собствен-
ная частота упругого элемента с присоединенной нагрузкой должна составлять не менее 30...40 Гц. Принятый режим работы позволяет избежать применения сложных демпфирующих устройств. При разработке конструкции упругого элемента проводилось моделирование, которое заключалось в создании трехмерной твердотельной модели в программе Solid Works, приложении к ней статических нагрузок (ограничений) и последующем расчете деформаций с помощью программы COSMOS Works.
Критерием оценки выбора упругого элемента служило максимальное значение коэффициента устойчивости 2, равного отношению собственных частот крутильных и изгибных колебаний упругого элемента [3].
В результате расчета построено семейство графиков, показанных на рис. 4, который иллюстрируют зависимость коэффициента устойчивости 2 от протяженности и диаметра перемычки для колебательной системы с ободом. Как видно из графика, наибольшие значения коэффициента 2 наблюдаются при L = 16 мм. Дальнейшее увеличение протяженности перемычки нецелесообразно вследствие приближения к пределу прочности значений напряжений в упругом элементе при максимальной нагрузке.
foR \ = /от/ УоR
Гц 45 40 35 30 25 20 15 10
24 23 22 21 20 19 18 17 16 15 5, мм
Рис. 4. Результаты расчета упругого элемента колебательной системы балансировочного устройства для ободьев стальных колес:
1 - семейство зависимостей 2 = f S) при различных L; 2 - f0R = fS)
Представленный на рис. 4 график позволил выбрать основные геометрические параметры упругого элемента колебательной системы устройства для балансировки ободьев, которые составили S = 18 мм, L = 16 мм (при Уот = 40 Гц). Основные геометрические параметры упругого элемента колебательной системы для балансировки дисков определялись аналогично и составили S = 16 мм, L = 16 мм (при f0T = 36 Гц).
4. Технологический процесс пространственно-ориентированной селективной сборки стальных колес
Предлагаемый технологический процесс ориентированной селективной сборки стальных колес состоит из следующих основных этапов:
1. Укладка ободьев или дисков на стол подачи заготовок.
2. Подача одной детали в механизм определения дисбаланса. Зажим детали.
3. Определение величины и места расположения статического дисбаланса у детали.
4. Сортировка деталей на группы по значению дисбаланса. Детали первой группы автоматически помещаются в накопитель. Детали второй группы -на станцию маркировки.
Для определения границ групп сортировки необходимо исследование фактических законов распределения значений дисбалансов ободьев и дисков. Объем выборочной совокупности рассчитывался по следующей формуле [5] и составил 240 шт.:
М2о2 (3)
п =----------------2-2Г2’ (3)
NД— + г <з
X
где N = 1,4 млн шт./год - годовая программа выпуска; г = 0,945 - коэффициент доверия; о = 199 г • мм - среднее квадратическое отклонение дисбаланса
в выборке; Д х = 12 г • мм - предельная ошибка выборочной средней.
Отбор деталей в выборки осуществлялся в начале каждого месяца по 20 шт. в течение года. Исследование дисбаланса ободьев и дисков, принадлежащих таким выборкам, позволило учесть практически все возможные причины появления. На каждой детали было отмечено положение неуравновешенности. По результатам полученных экспериментальных данных построены гистограммы и кривые распределения статической неуравновешенности ободьев (рис. 5,а) и дисков (рис. 5,б), которые подчиняются нормальному закону распределения, что было доказано по критерию Пирсона (х2).
Известно, что большое число групп сортировки осложняет процесс сборки. На ТЗСК сборка ободьев с дисками осуществляется на двух параллельно работающих линиях. В связи с этим наиболее рациональным для данного предприятия является разделение ободьев и дисков на две группы. Это исключает необходимость введения в технологическую линию дополнительного места сборки (или необходимость при существующем количестве сборочных участков обеспечения сложной организации производства).
Границы значений дисбалансов групп сортировки были выбраны исходя из следующих соображений. Во-первых, в первую группу помещают детали, которые при сборке при любом взаимном положении (даже в случае однонаправленности главных векторов дисбалансов обода и диска) не приведут к появлению дисбаланса, превышающего максимально допустимое значение (Xоб + Xд < 1500).
После сортировки ободья и диски, принадлежащие первой группе, собираются без учета расположения их статической неуравновешенности, что значительно упрощает процесс сборки колес, так как в данном случае маркировка не требуется, а селективная сборка заключается в отбраковке деталей, дисбаланс которых превышает определенное значение. Во-вторых, при выборе границы групп сортировки необходимо учесть возможность образования незавершенного производства (появления деталей, для которых нет пары). Для выполнения этих условий была решена система уравнений:
Xоб + Xд < 1500,
где
.. _Xоб Xоб . и _
“об 5 ид
ооб
площадь области, ограниченной кривой распределения и вертикальной линией, соответствующей границе группы сортировки.
о
д
и г2
ц>(Х) П, шт.
796 834
а)
(р(Х) П, шт.
-2 о -о Хд- Хд- о 2а За
557 616
б)
Рис. 5. Распределение статической неуравновешенности ободьев (а) и дисков (б) стальных колес диаметром 14 дюймов
В результате были определены границы интервалов первой группы сортировки, которые составили для ободьев стальных колес диаметром 14 дюймов 834 г • мм; для дисков 616 г • мм. В этом случае к первой группе относится более 67 % объема генеральной совокупности деталей.
5. Маркировка направления главного вектора дисбаланса. Для обода стального колеса маркируется положение «тяжелого места»; для диска - положение «легкого места».
6. Перемещение деталей с маркировкой в накопитель второй группы. Перемещение накопителя на станцию запрессовки.
7. Укладка диска в обод стального колеса соответствующих групп сортировки. Причем при сборке деталей второй группы необходимо совместить метки обода и диска. Запрессовка диска в обод. Перемещение колеса в сварочную машину.
8. Автоматическая сварка колеса.
П, шт.
а)
<р(Х) п, ШТ.
300 400 500 600 700 i 800 900 1000 1100 1200 1300 ..
А ГХММ
За -2о -а Хск = 739 ° 2а За
б)
Рис. 6. Гистограммы распределения величины статической неуравновешенности стальных колес без применения ориентированной селективной сборки (а) и после внедрения (б)
Для экспериментального подтверждения основных положений настоящей работы было проведено измерение величины статической неуравновешенности двух выборок стальных колес по 240 шт. в каждой. В первую выборку вошли стальные колеса диаметром 14 дюймов, собранные с помощью традиционной технологии сборки, т.е. без учета статических неуравновешенностей ободьев и дисков (отбор деталей в выборки осуществлялся аналогично выборке ободьев или дисков). Стальные колеса второй группы были изготовлены из отобранных ободьев и дисков с помощью предлагаемой пространственно-ориентированной селективной сборки.
В результате были построены кривые нормального распределения статических неуравновешенностей стальных колес без применения ориентированной селективной сборки (рис. 6,а) и после ее внедрения (рис. 6,б). Анализ кривой распределения показал, что около 0,5 % стальных колес в первом случае имеют дисбаланс, превышающий допустимое значение, что является браком. Внедрение ориентированной селективной сборки позволило уменьшить общую неуравновешенность стальных колес (центр группирования Xск уменьшился на 173 г • мм: с 912 до 739 г • мм, а среднеквадратическое отклонение о уменьшилось на 33 г • мм), что практически исключает появление брака.
Заключение
Предложенный технологический процесс пространственно-ориентированной селективной сборки стальных колес с учетом величины и места расположения дисбалансов обода и диска позволил свести к минимуму вероятность появления брака, связанного с превышением допустимого значения статической неуравновешенности. Положительный эффект описанной сборки был подтвержден экспериментально на Тольяттинском заводе стальных колес.
Список литературы
1. Пат. 2382999 Российская Федерация, МПК7 в01М 1/16. Способ динамической балансировки ротора / Трилисский В. О., Кочкин С. В., Кожевников В. В. ; патентообладатель Пенз. гос. ун-т. - № 2008138835/28 ; заявл. 30.09.2008 ; опубл. 27.02.2010, Бюл. № 6. - 3 с.
2. Кочкин, С. В. Способ измерения динамического дисбаланса жестких роторов в режиме малых угловых колебаний / С. В. Кочкин, В. В. Кожевников // Журнал научных публикаций аспирантов и докторантов. - 2008. - № 3. - С. 202-205.
3. Кочкин, С. В. Упругие элементы колебательных систем балансировочных устройств, работающих в вибрационном режиме / С. В. Кочкин, Б. А. Малев, В. В. Кожевников // Известия высших учебных заведений. Поволжский регион. Технические науки. - 2007. - № 4. - С. 9-18.
4. ГОСТ 22061-76 Машины и технологическое оборудование. Система классов точности балансировки. Методические указания. - М. : Госстандарт, 1984. - 112 с.
5. Гмурман, В. Е. Теория вероятностей и математическая статистика : учебное пособие для вузов / В. Е. Гмурман. - 11-е изд., стер. - М. : Высш. шк., 2005. -479 с.
Артемов Игорь Иосифович доктор технических наук, профессор, проректор по научной работе, Пензенский государственный университет
E-mail: [email protected]
Кочкин Сергей Вячеславович
кандидат технических наук, начальник инновационно-аналитического отдела, Пензенский государственный университет
E-mail: [email protected]
Кожевников Вячеслав Владимирович
ассистент, кафедра металлообрабатывающие станки и комплексы, Пензенский государственный университет
E-mail: [email protected]
Artyomov Igor Iosifovich Doctor of engineering sciences, professor, vice-rector for research, Penza State University
Kochkin Sergey Vyacheslavovich Candidate of engineering sciences, head of innovation-analitical department, Penza State University
Kozhevnikov Vyacheslav Vladimirovich Assistant, sub-department of metal-working machines and complexes, Penza State University
УДК 621.717 Артемов, И. И.
Снижение неуравновешенности стальных колес путем применения пространственно-ориентированной сборки / И. И. Артемов, С. В. Кочкин, В. В. Кожевников // Известия высших учебных заведений. Поволжский регион. Технические науки. - 2011. - № 3 (19). - С. 175-185.