Доклады БГУИР
Doklady BGUIR
2018, № 3 (113) 2018, No. 3 (113)
УДК 53.084
СКАЛЯРНЫЕ АНАЛИЗАТОРЫ ЦЕПЕЙ МИЛЛИМЕТРОВОГО ДИАПАЗОНА ДЛИН ВОЛН И СПОСОБЫ ПОВЫШЕНИЯ ТОЧНОСТИ ИЗМЕРЕНИЯ МОДУЛЕЙ КОЭФФИЦИЕНТОВ ОТРАЖЕНИЯ И ПЕРЕДАЧИ
А.В. ГУСИНСКИЙ
Белорусский государственный университет информатики и радиоэлектроники, Республика Беларусь
Поступила в редакцию 16 февраля 2018
Аннотация. Приведены типовая структура скалярных анализаторов цепей миллиметрового диапазона длин волн и структурная схема блока обработки информации. Приведена методика калибровки и непосредственного измерения с использованием дополнительно мер фазового сдвига, позволяющая повысить точность измерения модулей коэффициентов отражения и передачи.
Ключевые слова: скалярный анализатор цепей, типовая структурная схема, меры фазового сдвига, повышение точности измерений.
Abstract. Type structure of scalar network analyzers of millimeter wavelength range and block diagram of information processing unit are shown. The method of calibration and direct measurement using an additional phase shift measures allowing to increase the measurement accuracy of reflection and transmission coefficients modules is given.
Keywords: scalar network analyzer, typical block diagram, phase shift measures, increasing of measurement accuracy.
Doklady BGUIR. 2018, Vol. 113, ]Чо. 3, pp. 80-87
Scalar analyzers of millimeter wavelength range and methods of increasing the accuracy of reflection and transfer coefficients modules measurement A.V. Gusinsky
Синтез типовой структуры скалярных анализаторов цепей миллиметрового диапазона длин волн
При синтезе типовой структуры скалярных анализаторов цепей миллиметрового диапазона длин волн (САЦ МДДВ) учтены особенности МДДВ и требования к САЦ в связи с этими особенностями [1].
Конструктивная простота и минимизация количества фланцевых соединений обеспечивается выбором структурной схемы СВЧ измерительного тракта (ИТ) на основе рефлектометра, которая включает в себя три направленных ответвителя (НО). Жесткость СВЧ ИТ и возможность измерения параметров объекта измерений (ОИ) с любыми геометрическими размерами обусловлена отказом от внешнего СВЧ ИТ и двухблочной структурой анализатора, при которой составные части СВЧ ИТ крепятся к стенкам отдельных блоков и имеют по одному присоединительному прецизионному фланцу для подключения ОИ [2, 3].
С учетом остальных требований, предъявляемых к современным автоматизированным системам измерений (СИ), типовая структура автоматизированного САЦ МДДВ имеет вид, приведенный на рис. 1.
САЦ состоит из главного и выносного измерительных блоков. Главный измерительный блок включает в себя ферритовые вентили В1-В3, служащие для развязки СВЧ ИТ; НО1, ориентированный на падающую волну; НО2, ориентированный на отраженную от ОИ волну;
два детектора Д1 и Д2 с малошумящими усилителями МШУ1 и МШУ 2 для падающего и отраженного СВЧ сигналов; блок обработки информации БОИ; персональный компьютер ПК типа IBM PC с контроллером протокола КОП (IEEE-488).
Главный измерительный блок Рис. 1. Типовая структура автоматизированного скалярного анализатора цепей миллиметрового диапазона длин волн
Выносной измерительный блок включает в себя ферритовый вентиль В4, служащий для развязки СВЧ ИТ; НО3, ориентированный на прошедшую через ОИ волну; детектор Д3 с малошумящим усилителем МШ3 для прошедшего СВЧ сигнала.
ИТ САЦ представляет собой рефлектометр, собранный из трех направленных ответвителей НО1, НО2 и НО3. Сигнал на выходе детектора Д1 канала В, при условии квадратичного детектирования, пропорционален квадрату падающего на ОИ СВЧ сигнала, а сигналы на выходах детекторов Д2, Д3 каналов А, В пропорциональны квадратам модулей
коэффициента отражения |^11х| и коэффициента передачи |£21х| ОИ. Работа детекторов
в квадратичном режиме обеспечивается низким уровнем мощности СВЧ сигналов во вторичных каналах НО.
Мощность СВЧ сигнала, поступающего на ОИ (двухполюсник или четырехполюсник), зависит от характеристик ОИ, и тем самым может быть нарушена калибровка всей ИС. Для устранения этого недостатка в САЦ используется БОИ, который позволяет определять отношения результатов измерения каналов А или В к результату измерения канала R. Динамический диапазон измерения ослаблений в САЦ определяется размерами квадратичного участка характеристик детекторов. Для расширения динамического диапазона измерения ослаблений в САЦ используется программно-алгоритмический способ коррекции отклонения квадратической характеристики детекторов.
Управление работой САЦ, выбор режимов калибровки и измерения, а также выбор формы индикации и регистрации результатов измерения осуществляются в диалоговом режиме. Программное обеспечение САЦ, реализующее алгоритм функционирования САЦ и различные сервисные функции, хранится в памяти ПК. Интерфейсы КОП и USB, входящие в состав САЦ, обеспечивают возможность его работы в составе различных автоматизированных систем.
Структурная схема БОИ приведена на рис. 2. Обработка сигналов, поступающих с входов R, A или B осуществляется по одноканальной схеме. В зависимости от режима работы САЦ (вида измеряемого параметра или операции калибровки) по сигналам от ПК микропроцессорное устройство вырабатывает управляющий сигнал и подает его
на коммутатор каналов, который подключает ко входу полосового фильтра сигналы, поступающие со входов Я, А и В.
Полосовой фильтр осуществляет избирательное усиление входных сигналов. Он настроен на частоту модуляции ^ =100 кГц и осуществляет выделение сигнала, несущего
измерительную информацию. Применение полосового фильтра позволяет подавить помеховые и шумовые составляющие выходных сигналов малошумящих усилителей и повысить соотношение сигнал/шум.
АЦП преобразует в цифровой код выходное напряжение логарифмического усилителя, при этом за каждый период перестройки частоты генератора качающейся частоты (ГКЧ) формируются цифровые коды в 256 точках. Микропроцессорное устройство преобразует информацию с АЦП в стандартные сигналы и передает эту информацию через интерфейс в память ПК, а также управляет работой АЦП и коммутатора каналов. Интерфейс типа канал общего пользования (КОП) преобразует управляющие сигналы ПК в стандартные сигналы КОП.
При помощи кабеля КОП осуществляется программное управление ГКЧ от ПК. Синхроимпульсы от ГКЧ в БОИ подаются по кабелю «Индикатор».
к ПК
Рис. 2. Структурная схема блока обработки информации
Меры фазового сдвига
При измерении с помощью САЦ ограниченная направленность НО, ориентированного на отраженную волну, ухудшает параметры системы при измерении малых отражений. В свою очередь рассогласование измерительного выхода системы ухудшает точность измерения коэффициента отражения, близкого к единице. Кроме того, при измерениях параметров передачи СВЧ модулей (СВЧ микросборок), когда к входным фланцам ОИ приходится подключать дополнительные переходные устройства (зонды, пробники и т. п.), связывающие входы ОИ с измерительными входами САЦ, могут возникать большие погрешности из-за паразитных утечек [1].
С учетом вышеприведенных факторов автором было предложено использовать при калибровке САЦ не только стандартный набор эталонных нагрузок (короткозамыкатель; согласованная нагрузка; нагрузка с фиксированными значениями КСТи, равными 1,4 и 2,0;
отрезок волновода на проход [4]), но и набор мер фазового сдвига [5]. Поэтому дополнительно к упрощенной калибровке предусмотрена более сложная калибровка, в которой используется этот набор мер фазового сдвига.
В качестве мер фазовых сдвигов целесообразно использовать отрезки волноводов с различной длиной. Эти же отрезки (в двойном количестве) можно использовать при воспроизведении фазовых сдвигов коэффициентов передачи.
При этом на первом и втором этапах (или только на втором этапе) воспроизведения фазовых сдвигов в волноводный тракт включаются меры, обеспечивающие разность фазовых набегов приблизительно 90о и 180о на средней частоте диапазона.
Метрологическая аттестация и калибровка мер осуществляется при использовании косвенного метода измерения: проводятся прямые измерения ширины канала мер а, длины /, высоты неровностей поверхности фланцев мер по десяти точкам Яг, а значения воспроизводимых фазовых сдвигов и неопределенность воспроизведения определяются расчетным путем.
Учитывая малые потери в мерах, фазовые сдвиги коэффициентов отражения и передачи рассчитываются по формуле (1):
Ф =
720 • (А/) _ I _ (Х^)2
X 0
2а
(1)
где X 0 - длина волны в свободном пространстве; А/ - разность между длинами ИТ на первом и втором этапах воспроизведения фазовых сдвигов.
Как видно из выражения (1), суммарная стандартная неопределенность ис
воспроизведения фазовых сдвигов может быть определена с учетом неопределенностей, обусловленных различными факторами:
стандартных
и (А/) =
дф и 360 I Xо) и
--и А1 =--ч 1 _ (—) • и А1 _ стандартная неопределенность воспроизведения
д(А/) Х0 V 2а
фазовых сдвигов, обусловленная неточностью измерения разности между длинами ИТ на первом и втором этапах воспроизведения фазовых сдвигов (стандартная неопределенность при измерении А/ _ и (А/));
и (/) = ^/=
д/ 5/ х0
1+-
х0
4а2
1 _ Ф
и5/ _ стандартная
неопределенность
воспроизведения фазовых сдвигов, обусловленная неточностью установки рабочей частоты генератора (стандартная неопределенность при установке рабочей частоты / _ и^ );
и (а) = дф-.и. =
да
90 • А/• Х0
а
1 _ (^ )2 2а
• иа _ стандартная неопределенность воспроизведения фазовых
сдвигов, обусловленная неточностью воспроизведения ширины канала (стандартная неопределенность при измерении а _ иа );
и (Яг ) =
дФ
дЯ7
•ив =
360
Л,
\1 _ (—) _ стандартная неопределенность воспроизведения
дRZ 2 Х0 V 2а 2
фазовых сдвигов из-за шероховатости поверхности фланцев (стандартная неопределенность
измерения высоты неровностей поверхности фланцев по десяти точкам - ^ ).
Результаты метрологических исследований показали, что при воспроизведении геометрических размеров мер с допуском ±0,005 мм или ±0,01 мм, при высоте неровностей поверхности фланцев по десяти точкам не более 0,002 мм и допустимых относительных погрешностях установки частоты 0,002 или 0,005, неопределенности воспроизведения фазовых сдвигов не превышают ±(2-5)°. Отмечен большой вклад, который вносит неопределенность, обусловленная неточностью установки рабочей частоты генератора. В случае использования синтезаторов частоты расширенная неопределенность может быть уменьшена до ±1,0о.
Повышение точности измерения модулей коэффициентов отражения и передачи при использовании мер фазового сдвига
Методика процесса стандартной калибровки и непосредственного измерения с использованием традиционных рабочих эталонов и мер фазового сдвига, позволяющая повысить точность измерений, основана на ряде исходных положений.
1. Так как САЦ служат для измерения только амплитудных параметров, то для уменьшений значений систематических погрешностей возможны только упрощенные математические модели, в которых используются не более двух параметров восьмиполюсника погрешностей [1] (один параметр характеризует частотный ход коэффициента передачи,
а второй - погрешность, оказывающую наиболее существенное влияние на результаты измерений). Такому условию удовлетворяют измерения малых значений модулей коэффициентов отражения (самое существенное влияние оказывает параметр Ев,
характеризующий погрешность из-за ограниченной направленности), больших значений модулей коэффициентов отражений (самое существенное влияние оказывает параметр Ее, характеризующий погрешность рассогласования со стороны источника СВЧ сигнала), малых значений модулей коэффициентов передачи (самое существенное влияние оказывает параметр Ем, характеризующий погрешность развязки).
2. Применение мер фазового сдвига позволяет изменять фазовые сдвиги между векторными величинами, которые характеризуют измеряемые параметры и параметры, влияющие на погрешности, благодаря чему удается перейти от векторного представления измерительной информации к скалярному.
3. Компенсация погрешностей является не полной, а частичной, хотя она распространяется на значительную часть погрешностей. Неполность компенсации объясняется, во-первых, упрощением математических моделей, и, во-вторых, частотным ходом фазовых мер при воспроизведении номинальных значений фазовых сдвигов (0; —л). Так как меры фазового сдвига используются для компенсации погрешностей, то неидеальность их характеристик из-за отличий фазовых сдвигов от —л обуславливает погрешности второго порядка малости, которыми можно пренебречь.
4. С учетом ограниченной чувствительности САЦ необходимо, чтобы при калибровке воспроизводимые с помощью рабочих эталонов измеряемые параметры должны быть сравнимы или, по крайней мере, не более, чем на порядок больше значений параметров, характеризующих погрешности.
При измерении малых значений модулей коэффициентов отражений самое существенное влияние оказывает погрешность направленности Ев, и связь между измеренными значениями
|е11и| и действительными значениями |^11х| можно представить в виде
2
I |2 I |2 | |2
Г11и = \е0 + Е^11х = \er
Е
Е» + ^
11х
= Е»
Е'б + ^Их
(2)
I I? I I?
О ЕГ
е11и = \Е»\
Учитывая разность фаз векторных величин £11х и Е'в (ф11 — ф^) , уравнение (2) может быть записано в виде
|2 I |2 I I I I П
1х + щ + 2 еПх Е'0 \ cos(фll— ф^ ) I. (3)
При измерении больших значений модулей коэффициентов отражения, напротив, самое существенное влияние оказывает составляющая погрешности Ее£11х, и связь между |£11и|
и
1х
можно представить в виде
е11и ~ Е» е11х + = Е» епх 1 + Еее11х
= \е„\ е
1111 I |2 I |2
1 + 2 ез\е11х ^Фе +Ф11) + ез\ е11х
(4)
-'»1 | "11х|
При измерении малых значений модулей коэффициентов передачи самое существенное влияние оказывает погрешность развязки Ем, и связь между измеренными значениями |£21и|
и действительными значениями |£21х| можно представить в виде:
2
|е21и I = |ЕМ + ЕТ$21х I = |ЕТ I
Е
е + е
21х
= |ЕТ I |ЕМ + е21х I
|е21хг + iем г — 2 iе21х 11ем i ^^21 — фм )
2
2
2
2
2
С учетом вышеприведенных особенностей стандартная калибровка осуществляется в четыре этапа.
На первом этапе используются короткозамыкатель = — 1) и меры,
воспроизводящие номинальный фазовый сдвиг —л /2. Тогда с учетом (4) имеем:
Pi
ш
11и
k12 11и
= |Er| (1 -2|Es|cosф5 + |Es| ) « |Er| (1 -2|Es|cosф5).
I |2 I I I J 2 I 12 II
= |Er| (1 + 21Es| cos ф5 + |Es| ) « |Er| (1 + 2 Es| cos ф5). Из выражений (4) и (5) можно найти
£12
Ok11 . п.
I „ |2 S11H П" S11H
EJ =J-!—!-
I rI 2
(6)
(7)
(8)
На втором этапе используется эталонная мера КСВН (КСТИ = 1,4; = 0,286) и меры, воспроизводящие номинальный фазовый сдвиг —л /2. Тогда с учетом (3) имеем:
k 21 11и
k22
= er
= er
|Sf|2 + 21 SM\\E'd\ cosfaM -ф^) + \E'd I2
Is^l2 - 21 Sfll EDI sin^M -ф D) + 1 ED Г
\e' =
D _
Из выражений (7) и (9) можно найти
I II I I |2
ok 21 . ok 22 r\ QM
Л11и + Л11и - 2 S11
2 ER
(9) (10)
(11)
На третьем этапе фланцы главного и выносного измерительных блоков замыкаются накоротко (S2¡H = и используются меры, воспроизводящие фазовый сдвиг —л. Тогда
с учетом (3) и малости значения \ЕМ
^ имеем:
I |2 | |2
^к 31 . пк 32
Е 2 -\_JU_. (12)
I Л 2
На четвертом этапе между фланцами главного и выносного измерительных блоков включается эталонный поляризационный аттенюатор, на котором устанавливается значение
40 дБ (соответствует максимальному значению измеряемого ослабления САЦ; ^211ТТ| = 0,01), и используются меры, воспроизводящие фазовый сдвиг —л /2. С учетом (3) имеем:
S
k 41 21
S
k42
S
21
+ 2 S
21
S
ATT
- 2 S
ATT
|EjM I cos (фАГ -фМ ) + \e'm \E'm\ cos (фАГ -фМ ) + l em.
Из выражений (13) и (14) можно найти:
Е' =
м _
I Vk4! |2 + I vk42 I - 2 I VATT |2
|Л21и| + |S21 | 2 |S21 |
2 IEt I2
(13)
(14)
(15)
I |2 I |2
Значения Er ,\Ed\ .
\et\ , \em
заносятся в память ПК САЦ.
В режиме измерения модулей коэффициентов отражения к фланцам главного измерительного блока подключается исследуемый ОИ (случай двухполюсника) или же ОИ включается между фланцами главного и вспомогательного измерительного блоков (случай четырехполюсника), при этом, аналогично как и при калибровке, используются меры,
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
воспроизводящие номинальный фазовый сдвиг —к /2. Для определения значения |^11х| используется выражение
Г11J - ■
ow1 S11u 2 + ein 2 S11u 2 -2|E„|
2 Er I2
(16)
Такой алгоритм обработки информации позволяет скорректировать погрешности, обусловленные влиянием параметров |Е5| для больших значений модулей коэффициентов
отражения и \Е'в | - для малых значений.
В режиме измерения модулей коэффициентов передачи между фланцами главного и выносного измерительных блоков включается ОИ и используются меры, воспроизводящие
фазовый сдвиг —к /2. Для определения значения |^21х| используется выражение
Г21х - .
SU
+
S2
2 - 2 Е' I2
z рм
2 ET
(17)
2
2
Заключение
При синтезе типовой структурной схемы САЦ учтены особенности МДДВ, определяющие такие требования к САЦ, как минимизация количества фланцевых соединений СВЧ ИТ, конструктивная простота, возможность измерения ОИ с любыми геометрическими параметрами. Приведено описание БОИ и мер фазового сдвига, особенности процедур метрологической аттестации и калибровки этих мер. Разработана методика процесса калибровки и непосредственного измерения, которая благодаря применению мер фазового сдвига позволяет уменьшить погрешности при измерении малых и больших значений модулей коэффициентов отражения и малых значений модулей коэффициентов передачи.
Список литературы
1. Гусинский А.В., Шаров Г.А., Кострикин А.М. Векторные анализаторы цепей. Кн. 1, ч. 3. Минск: Бестпринт, 2008. 240 с.
2. Скалярный анализатор цепей коротковолновой части миллиметрового диапазона длин волн / А.В. Гусинский [и др.] // Материалы XII Междунар. науч.-техн. конф. «СВЧ техника и телекоммуникационные технологии». Украина, сентябрь 2002 г. С. 521-522.
3. Гусинский А.В., Дзисяк А.Б., Кострикин А.М. Измеритель коэффициентов передачи и отражения трехмиллиметрового диапазона длин волн // Изв. Белорусской инженерной академии. 2002. № 2 (14)/2. С. 18-19.
4. Гусинский А.В., Шаров Г.А., Кострикин А.М. Векторные анализаторы цепей. Кн. 2, ч. 3. Минск: Бестпринт, 2008. 506 с.
5. Метрологические исследования мер фазового сдвига в миллиметровом диапазоне длин волн / А.В. Гусинский [и др.] // Материалы XIII Междунар. науч.-техн. конф. «СВЧ техника и телекоммуникационные технологии». Украина, сентябрь 2003 г. С. 668-669.
References
1. Gusinskij A.V., Sharov G.A., Kostrikin A.M. Vektornye analizatory cepej. Kn. 1, ch. 3. Minsk: Bestprint, 2008. 240 s. (in Russ.)
2. Skaljarnyj analizator cepej korotkovolnovoj chasti millimetrovogo diapazona dlin voln / A.V. Gusinskij [i dr.] // Materiali XII Mezhdunar. nauch.-tehn. konf. «SVCh tehnika i telekommunikacionnye tehnologii». Ukraina, sentjabr' 2002 g. S. 521-522. (in Russ.)
3. Gusinskij A.V., Dzisjak A.B., Kostrikin A.M. Izmeritel' kojefficientov peredachi i otrazhenija trehmillimetrovogo diapazona dlin voln // Izv. Belorusskoj inzhenernoj akademii. 2002. № 2 (14)/2. S. 18-19.
4. Gusinskij A.V., Sharov G.A., Kostrikin A.M. Vektornye analizatory cepej. Kn. 2, ch. 3. Minsk: Bestprint, 2008. 506 s. (in Russ.)
5. Metrologicheskie issledovanija mer fazovogo sdviga v millimetrovom diapazone dlin voln / A.V. Gusinskij [i dr.] // Materiali XIII Mezhdunar. nauch.-tehn. konf. «SVCh tehnika i telekommunikacionnye tehnologii». Ukraina, sentjabr' 2003 g. S. 668-669. (in Russ.)
Сведения об авторе
Гусинский А.В., к.т.н., доцент, директор Центра 1.9 НИЧ Белорусского государственного университета информатики и радиоэлектроники.
Information about the author
Gusinsky A.V, PhD, associate professor, director of Center 1.9 R&D department of Belarusian state university of informatics and radioelectronics.
Адрес для корреспонденции
220013, Республика Беларусь,
г. Минск, ул. П. Бровки, 6,
Белорусский государственный университет
информатики и радиоэлектроники
тел. +375-17-293-84-42;
e-mail: [email protected]
Гусинский Александр Владимирович
Address for correspondence
220013, Republic of Belarus, Minsk, P. Brovka st., 6, Belarusian state university of informatics and radioelectronics tel. +375-17-293-84-42; e-mail: [email protected] Gusinsky Alexander Vladimirovich