Научная статья на тему 'Система FeS-FeGaInS4-FeIn2S4'

Система FeS-FeGaInS4-FeIn2S4 Текст научной статьи по специальности «Химические науки»

CC BY
86
22
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Azerbaijan Chemical Journal
Область наук
Ключевые слова
FEIN2S4 / FES / FEGAINS4 / PHASE DIAGRAM / LIQUIDUS / SOLID SOLUTIONS / FAZA DIAQRAMı / LIKVIDUS / BəRK MəHLULLAR / ФАЗОВАЯ ДИАГРАММА / ЛИКВИДУС / ТВЕРДЫЕ РАСТВОРЫ

Аннотация научной статьи по химическим наукам, автор научной работы — Мамедов Ф. М.

Фазовые равновесия в системе FeS-FeGaInS4-FeIn2S4 исследованы методами дифференциально термического и рентгенофазового анализов. Построена T-x-y -диаграмма системы, установлено, что она относится к квазитройным системам с тройной эвтектикой и ограниченными твердыми растворами на основе исходных соединений. Ликвидус состоит из трех полей, отвечающих первичной кристаллизации твердых растворов на основе FeS, FeGaInS4 и FeIn2S4

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

FES-FEGAINS4-FEIN2S4 SYSTEM

Phase equilibria in the FeS-FeGaInS4-FeIn2S4 system were studied by differential thermal analysis and X-ray phase diffraction technique and T-x-y diagram was plotted. It was establishedthat it refers to quasi-ternary systems with triple eutectic and limited solid solutions on the basis of starting compounds. Liquidus consists of three fields corresponding to the primary crystallization of solid solutions based on FeS, FeGaInS4 and FeIn2S4

Текст научной работы на тему «Система FeS-FeGaInS4-FeIn2S4»

ISSN 2522-1841 (Online) AZERBAIJAN CHEMICAL JOURNAL No 3 2020 ISSN 0005-2531 (Print)

UDC 546 (72.681.682.22)

FeS-FeGaInS4-FeIn2S4 SYSTEM F.M.Mammadov

M.Nagiyev Institute of Catalysis and Inorganic Chemistry, NAS of Azerbaijan

[email protected] Received 27.01.2020 Accepted 17.03.2020

Phase equihbria in the FeS-FeGaInS4-FeIn2S4 system were studied by differential thermal analysis and X-ray phase diffraction technique and T-x-y diagram was piotted. It was estabhshedthat it refers to quasi-ternary systems with triple eutectic and limited solid solutions on the basis of starting compounds. Liquidus consists of three fields corresponding to the primary crystalhzation of sohd soiutions based on FeS, FeGa!nS4 and FeIn2S4.

Keywords: FeIn2S4, FeS, FeGaInS4, phase diagram, liquidus, solid solutions.

doi.org/10.32737/0005-2531-2020-3-29-33 Introduction

Recently, the magnetic compounds with general formulae pf AB2X4 (A - Mn, Fe, Co, Ni,

1 3

B -p - and p -elements, X - chalcogen) have attracted increased interest. The various functional properties of these compounds have been studied in a number of works. These compounds are characterized by the phenomenon of magnetism with electronic or optical control. Therefore, they are very promising for the manufacture of optical emitters, photodetectors, switches and light modulators as well as spintronic and other functional devices controlled by a magnetic field [1-8]. It is known that the development of a new scientific field - spintronics is associated with the possibility of transferring the oriented electron spin from a ferromagnet to a semiconductor. The above compounds also apply to materials promising for the specified area [911]. MnBi2Te4 (the first antiferromagnetic topological insulator) MnBi4Te7 and MnBi6Te1o compounds were described in papers [12-15] publicshed recently.

To determine of conditions of synthesis processes for novel complex phases, including, based on compounds of the AB2X4 type, it is expedient to study phase equilibria in the corresponding systems [16-20].

The present work is devoted to the study of phase equilibria in the FeS-FeIn2S4-FeGaInS4 system.

The initial compounds of these systems are studied in detail.

The FeS compound melt congruently at 1461 K and undergoes polymorphic transitions at 411 and 588 K [21]. The high-temperature modification of FeS crystallizes in a tetragonal structure (Sp.gr. P4/nmm) with lattice parameters a = 0.3768, c = 0.5039 nm [22] or a = 0.36735, c = 0.50328 nm [23], while the low-temperature modification has a hexagonal structure: a = 0.34436 (1), c = 0.57262 (2) nm [24].

The FeIn2S4 ternary compound melts congruently at 1398 [25] or 1415 K [26], respectively, and crystallizes in the spinel structure (Sp.gr. Fd-3m) with the lattice parameters a = 1.0598 [27] or a = 1.053 nm [25].

The FeGaInS4 compound also melts congruently (1375 K) and has a trigonal structure of the ZnAl2S4 type (Sp.gr. P-3m1) with parameters: a = 0.37765, c = 1.22257 nm [26, 28].

The boundary quasibinary components of the FeS-FeIn2S4-FeGaInS4 system were studied in [25, 26] and it was shown that they all belong to an eutectic type. According to [25], in the 2FeS-FeIn2S4 system, the eutectic has a composition of 73 mol% FeS and crystallizes at 1373 K. The eutectic coordinates in the 2FeS-FeGaInS4 system - 63 mol% FeGaInS4 and 1310 K, and in the FeIn2S4-FeGaInS4 system -70 mol% FeIn2S4 and 1340 K [26].

Experimental part

Materials and synthesis

The compound FeS, FeIn2S4 and FeGaInS4 were synthesized using the high purity iron (99.995%), indium (99.999%), gallium

(99.999%), and sulfur (99.99%), purchased from "Alfa Aesar" as intial materials. Stoichiometric mixtures of elements were placed in an evacuated quartz ampoule (20 cm in length and 1.5 cm in diameter) with a residual pressure of ~10-2 Pa. The synthesis was carried out in a two-zone furnace. The lower, "hot zone" was slowly heated from room temperature to then above 30-50 K the melting point of the synthesized compounds, and the outer part of the ampoule was cooled with water ("cold zone"). The interaction of the components occurs in the "hot zone", and in the cold zone the chalcogen condenses and returns to the interaction zone. As a result of the reaction in the cold zone, the nass of the chalcogen is decreasing and practically consumed within 1 -2 h. After this, the ampoule is completely placed in the oven and kept at the indicated temperature for 2-3 h. The obtained samples were subjected to heat treatment at 800 K for 100 h. to increase crystallinity.

All investigated samples were prepared from pre-synthesized compounds in vacuum quartz ampoules. Samples were first annealed at 1000 K (200 h), and then at 700 K (300 h) in order to reach the state closest to equilibrium. After annealing, some alloys were quenched in cold water.

Analysis

For the analysis of samples, differential thermal analysis (DTA) and X-ray powder diffraction (XRD) were used. DTA was performed using the NETZSCH 404 F1 Pegasus system from room temperature to ~1450 K, depending on the composition of the alloys at a heating rate of 10 K/min. The temperatures of the thermal effects were taken mainly from the heating curves. The temperature accuracy was ± 2 K.

X-ray powder diffraction (PXRD) data were collected on a Bruker D2 Phaser diffract-tometer using CuKai - radiation (X = 1.54056 Á) at room temperature.

According to DTA, the synthesized compounds melt at 1460 K (FeS), 1415 K (FeIn2S4) and 1375 K (FeGaInS4). Our data are consistent with published data [21, 26].

X-ray diffraction patterns of the synthesized compounds indicate the formation of single-phase materials. The calculated lattice parameters of hexagonal FeS (a = 0.34440 and c = 0.57260 nm), cubic FeIn2S4 (a = 1.0607 nm), and trigonal FeGaInS4 (a = 0.37765, c = 1.22257 nm) are in good agreement with published data [24, 27, 28].

Results and its discussion

Figure 1 shows the diagram of solid-phase equilibria at room temperature and the projection of the liquidus surface of the FeGaInS4 FeS-FeIn2S4-system. According to the data obtained, this system is a quasi-ternary cross-section of the quaternary Fe-Ga-In-S system and has a phase diagram with invariant eutectic equilibrium. Liquidus consists of three fields corresponding to the primary crystallization of a-, P- and y-phases based on FeS (high-temperature modification), FeGaInS4 and FeIn2S4.

These surfaces are delimited by eutectic curves eiE, e2E, and e3E with monovariant equilibria

L ~ p + y (exE curve; 1340-1290) (1) L ~ a + p (e2E curve; 1310-1290) (2) L ~ a + y (e3E curve; 1360-1290) (3)

The indicated curves converge at point E with a minimum crystallization temperature (1290 K) of triple eutectic

L ~ a + p + y (4)

Solid-phase equilibrium diagram (Figure 1). In the solid-state, the solubility based on the starting compounds is 3-8 mol%. This leads to the formation of narrow two-phase regions a+P, a+Y, and P+y along the boundary quasi-binary systems and a wide three-phase region a+P+Y.

Polythermal section 2FeS-[A] (Figure 2). Liquidus consists of two curves corresponding to the primary crystallization of the a- and y-phases. After these processes, equilibrium eutectic reactions (3) (5-80 mol% [A]) and (1) (80-95 [A]) tale place in the system. Crystallization is completed invariantly according to the eutectic reaction (4) which corresponds to the horizontal at 1200 K in Figure 3.

FeS-FeGaInS4-FeIn2S4 SYSTEM

31

Fig. 1. The projection of the liquidus surface of the FeS-FeIn2S4-FeGaInS4 system.

Fig. 2. Polythermal section 2FeS-[A] of the FeS-FeIn2S4-FeGaInS4 system.

FeGaInS4

Fig. 3. Polythermal section FeGaInS4-[B] of the FeS-FeIn2S4-FeGaInS4 system.

The polythermal section FeGaInS—[B]

(Figure 3) crosses the liquidus surfaces of all three phases of the FeS-FeGaInS4-FeIn2S4 system. Below the liquidus, equilibrium monovariant reactions (1) and (3) take place. These processes span the ranges of compositions 5-55 and 55-100 mol% [B], respectively. The horizontal at 1290 K corresponds to the completion of crystallization in a four-phase eutectic reaction (4).

Conclusion

The new data on phase equilibria in the 2FeS-FeGaInS4-FeIn2S4 system were obtained. A T-x-y diagram of the system was constructed. It was established that it refers to quasi-ternary systems with triple eutectic and limited mutual solubility of the starting compounds in the solid-state. The obtained experimental results can be used to select the composition of solution-melts for growing crystals of solid solutions of a given composition.

References

1. Hyunjung Kim, Anand P. Tiwari, Eunhee Hwang, Yunhee Cho, Heemin Hwang, Sora Bak, Yeseul Hong, Hyoyoung Lee. FeIn2S4 Nanocrystals: A Ternary Metal Chalcogenide Material for Ambipolar Field-Effect Transistors. Adv. Sci. 2018. V. 5. No 7. P. 1800068 (1 of 8).

2. Torresa T„ Sagredoa V., Chalbauda L.M.. Attolinib G„ Bolzoni F. Magnetic and structural characterization of the semiconductor FeIn2Se4. Physica. B. 2006. V. 384. P. 100-102.

3. Gao M-R., Xu Y-F., Jiang J. and Yu S-H. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Reviews. 2013. V. 42. P. 2986-3017.

4. Xia C., Li J. Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides. J. Semiconductors. 2016. V. 37. P. 051001-1 051001-9

5. Ranmohotti K.G.S., Djieutedjeu H., Lopez J., Page A., Haldolaarachchige N., Chi H., Sahoo P., Uher C., Young D., Poudeu P.F.P. Coexistence of High-T c Ferromagnetism and n-Type Electrical Conductivity in FeBi2Se4, J. Am. Chem. Soc. 2015. V. 137. No 2. P. 691-698.

6. Songrui Zhao, Dalmas de Reotier P., Yaouanc A., MacLaughlin D.E., Mackie J.M., Bernal O.O., Nambu Y., Higo T., Nakatsuji S. Spin dynamics and spin freezing in the triangular lattice antiferromagnets FeGa2S4 and NiGa2S4. Phys. Rev. B. V. 86. 2012. 064435. (1-11).

7. Djieutedjeu H, Makongo J.P.A., Rotaru A., Palasyuk A., Takas N.J, Zhou X, Ranmohotti K.G.S., Spinu L., Uher C., Poudeu P.F.P. Crystal Structure, Charge Transport, and Magnetic Properties of MnSb2Se4. Europ. J. Inorg. Chem. 2011. V. 26. P. 39693977. DOI: 10.1002/ejic.201100364

8. Karthikeyan N., Aravindsamy G., P. Balamu-rugan, K. Sivakumar. Thermoelectric properties of layered type FeIn2Se4 chalcogenide compound. Mater. Res. Innovations. 2017. P. 278-281.

9. Niftiyev N.N., F. M. Mamedov, Quseynov V.I., Kurbanov S.Sh. AC Electrical Conductivity of FeIn2Se4 Single Crystals. Semiconductors. 2018. V. 52. Issue 6. P. 683-685.

10. Niftiev N.N., Tagiev O.B., Muradov M.B., Mamedov F.M. AC electrical properties of FeIn2S4. Technical Physics. 2012. V. 57. Issue 4. P. 572-574.

11. Mammadov F.M., Niftiyev N.N. Dielectric properties of layered FeGaInS4 single crystals in an alternating electric field. Semiconductors.

2016. V. 50. Issue 9. P. 1203-1207.

12. Otrokov M.M., Klimovskikh I.I., Bentmann H., Zeugner A. and others. Prediction and observation of the first antiferromagnetic topological insulato. Nature. 2019. 576. P. 416-422.

13. Aliev Ziya S., Amiraslanov Imamaddin R., Nasonova Daria I., Shevelkov Andrei V. Novel ternary layered manganese bismuth tellurides of the MnTe-Bi2Te3 system: Synthesis and crystal structure. J. Alloys and Comp. 2019. 789. P. 443450.

14. Jahangirli Z.A., Alizade E.H., Aliev Z.S., Otrokov M. M. Electronic structure and dielectric function of Mn-Bi-Te layered compounds. J.Vacuum Science & Technology. B. 2019. V. 37. 062910.

15. Mamedov N.T., Alizade E.H., Jahangirli Z.A., Aliev Z.S. Infrared spectroscopic ellipsometry and optical spectroscopy of plasmons in classic 3D Topological Insulators. J. Vacuum Sci. Technology. B. 2019. V. 37. 10,1116/1,5122776.

16. Zlomanov V.P., Khoviv A.M., Zavrazhnov A.Yu. Physicochemical Analysis and Synthesis of Nonstoichiometric Solids. In: InTech. Mater. Sci. Adv. Topics. 2013. P. 103-128.

17. Babanly M.B., Chulkov E.V., Aliev Z.S., Shevelkov A.V., Amiraslanov I.R. Phase diagrams in materials science of topological insulators based on metal chalkogenides. Russ. J. Inorg. Chem.

2017. V. 62. No 13. P. 1703-1729.

18. Imamaliyeva S.Z., Babanly D.M., Tagiev D.B., Babanly M.B. Physicochemical Aspects of Development of Multicomponent Chalcogenide Phases Having the Tl5Te3 Structure: A Review. Russ. J. Inorg. Chem. 2018. No 13. P. 1703-1730.

19. Babanly M.B., Mashadiyeva L.F., Babanly D.M., Imamaliyeva S.Z., Taghiyev D.B., Yusibov Y.A. Some aspects of complex investigation of the

FeS-FeGalnSi-Feln? S4 SYSTEM

33

phase equilibria and thermodynamic properties of the ternary chalcogenid systems by the EMF method. Russ. J. Inorg. Chem. 2019. No 13. P. 1649-1671.

20. Mammadov F.M., Amiraslanov I.R., Aliyeva Y.R., Ragimov S.S., Mashadiyeva L.F., Babanly M.B. Phase Equilibria in the MnGa2Te4-MnIn2Te4 System, Crystal Structure and Physical Properties of MnGaInTe4. Acta Chim. Slov. 2019. 66. 466-472.

21. Binary alloy phase diagrams. Ed. T.B.Massalski, second edition. ASM International. Materials park. Ohio, 1990. 3875 p.

22. Bertaut E.F., Burlet P, and Chappert J. On the absence of magnetic order in tetragonal FeS. Sol. State Comm. 1965. V. 3. P. 335-338.

23. Lennie A.R., Redfern S.A., Schofield P.F., Vaughan D.J. Synthesis and Rietveld crystal structure refinement of mackinawite, tetragonal FeS. Mineralogical Magazine. 1995. V. 59. P. 677.

24. Kuhn S.J., Kidder M.K., Parker D.S., Mc Guire M.A., Chance W.M., Sefat A.S. Structure and property

correlations in FeS. Physica C: Superconductivity and Its Applications. 2017. V. 534. P. 29-36.

25. Rustamov P.G., Babaeva B.K., Allazov M.R. Diagramma sostoianiia sistemy FeS-In2S3. Zhurn. neorgan. himii. 1979. No 12. S. 22082211.

26. Mammadov F.M., Amiraslanov I.R., Efendiyeva N.N., Imamaliyeva S.Z. Phase diagrams of the FeGa2S4-FeIn2S4 and FeS-FeGaInS4 systems. Chemical Problems. 2019. 1 (17). P. 58-65.

27. Hahn H., Klingler W. Untersuchungen uber ternare chalkogenide. I. Uber die, kristallstruktur einiger ternaerer sulfide, die sich vom In2S3 ableiten. Zeitschrift fur Anorganische und Allgemeine Chemie. 1950. 263. P. 177-190.

28. Mammadov F.M., Niftiyev N.N., Mammadov F.I. Synthesis and crystal structure of the FeGaInS4 compound. Azerb. Chem. Journ. 2017. No 2. P. 135-138.

FeS-FeGaInS4-FeIn2S4 SiSTEMi F.M.Mэmmэdov

Differensial termiki vэ rentgenfaza апаЬ7 metodlan Пэ FeS-FeGa2S4-FeGaInS4 sistemindэ faza tarazhgl tэdqiq edilmi§dir. FeS-FeGa2S4-FeGaInS4 sisteminin T-x-y faza diaqraml qurulmu§, тиэууэп edilmi§dir Ы, sistem ид1и evtektika vэ ba§1anglc ЬШЭ^^ЬГ эsaslnda mэhdud bэrk mэh1u1 sahэsi i1э xarakterizэ o1unan kvazшg1и sistem1эrэ aiddir. Sistemin likvidusu FeS, FeGaInS4 и FeIn2S4 Ьи-к^эки эsaslnda bэrk mэh1u11arIn i1kin krista11a§ma sahэ1эrini эhatэ edir.

Лдаг sдzlэr: FeIn2S4, FeS, FeGaInS4, faza diaqraml, likvidus, Ьэ^ mэhlullar.

СИСТЕМА FeS-FeGaInS4-FeIn2S4 Ф.М.Мамедов

Фазовые равновесия в системе FeS-FeGaInS4-FeIn2S4 исследованы методами дифференциально термического и рентгенофазового анализов. Построена T-x-y-диаграмма системы, установлено, что она относится к квазитройным системам с тройной эвтектикой и ограниченными твердыми растворами на основе исходных соединений. Ликвидус состоит из трех полей, отвечающих первичной кристаллизации твердых растворов на основе FeS, FeGaInS4 и FeIn2S4.

Ключевые слова: FeIn2S4, FeS, FeGaInS4, фазовая диаграмма, ликвидус, твердые растворы.

i Надоели баннеры? Вы всегда можете отключить рекламу.