Научная статья на тему 'Синтез системы бинарной координации при расхождении судов'

Синтез системы бинарной координации при расхождении судов Текст научной статьи по специальности «Математика»

CC BY
166
38
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ПРЕДУПРЕЖДЕНИЕ СТОЛКНОВЕНИЯ СУДОВ / СИТУАЦИОННОЕ ВОЗМУЩЕНИЕ / СИСТЕМА БИНАРНОЙ КООРДИНАЦИИ / ЗАКОН НЕОБХОДИМОГО РАЗНООБРАЗИЯ / WARNING OF COLLISION OF VESSELS / SITUATION INDIGNATION / SYSTEM OF BINARY CO-ORDINATION / LAW OF NECESSARY VARIETY

Аннотация научной статьи по математике, автор научной работы — Пятаков Эдуард Николаевич, Копанский Станислав Валентинович, Волков Евгений Леонидович

Анализируется ситуация опасного сближения двух судов, характеризующаяся ситуационным возмущением, значение которого зависит от соотношения дистанции кратчайшего сближения и предельно-допустимой дистанции. Причем ситуационное возмущение может принимать значение, равное единице, при котором расхождение производится стандартным маневрированием, и значение, равное двум, которое требует использования маневра экстренного расхождения. Рассмотренная система бинарной координации учитывает требование закона необходимого разнообразия Эшби, который предусматривает соответствие разнообразия имеющихся курсов уклонения разнообразию возможных опасных курсов сближения. Показано, что это требование выполняется при компенсации ситуационного возмущения либо одновременным маневром обоих судов, либо маневром судна с большей скоростью. Система бинарной координации, которая предложена в статье, содержит два уровня. Первый из них реализуется, когда ситуационное возмущение принимает значение, равное единице, и взаимные обязанности судов определяются с учетом соотношения статусов и скоростей. При значении ситуационного возмущения, равного двойке, имеет место второй уровень и предусмотрено экстренное маневрирование обоих судов. При сближении двух судов с одинаковыми статусами и скоростями их взаимные обязанности определяются тем, являются ли их курсы сближения встречными или попутными.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по математике , автор научной работы — Пятаков Эдуард Николаевич, Копанский Станислав Валентинович, Волков Евгений Леонидович

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

SYNTHESIS OF SYSTEM OF BINARY CO-ORDINATION AT DIVERGENCE OF VESSELS

The situation of dangerous rapprochement of two vessels is analysed, characterized by situation indignation, the value of which depends on correlation of distance of the shortest rapprochement and maximum-possible distance. Thus situation indignation can take on values equal to unit, at which divergence is produced by the standard manoeuvring, and value equal two, requiring the use of manoeuvre of urgent divergence.The considered system of binary co-ordination takes into account the requirement of law of the necessary variety Eshby, which foresee accordance of variety of present courses of deviation to the variety of possible dangerous courses of rapprochement. It is shown that this requirement is executed during indemnification of situation indignation or simultaneous maneuver of both vessels or manoeuvre of ship with greater speed.The system of binary co-ordination which is offered in the article contains two levels, the first level will be realized, when situation indignation takes on a value equal to unit, and the mutual duties of vessels are determined taking into account correlation of statuses and speeds, and at the value of situation indignation of equal to two the second level takes place and the urgent maneuverings of both vessels is foreseen.At rapprochement of two vessels with identical statuses and speeds their mutual duties are determined to those, whether there are courses rapprochement meeting or passing.

Текст научной работы на тему «Синтез системы бинарной координации при расхождении судов»

ВЕСТНИКЛ

ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА ЩЛ\\\ \ "

МОРСКОГО И РЕЧНОГО ФЛОТА ИМЕНИ АДМИРАЛА С. О. МАКАРОВА^

Э01: 10.21821 /2309-5180-2016-8-4-23-29

УДК 656.61.052 Э. Н. Пятаков,

С. В. Копанский, Е. Л. Волков

СИНТЕЗ СИСТЕМЫ БИНАРНОЙ КООРДИНАЦИИ ПРИ РАСХОЖДЕНИИ СУДОВ

Анализируется ситуация опасного сближения двух судов, характеризующаяся ситуационным возмущением, значение которого зависит от соотношения дистанции кратчайшего сближения и предельно-допустимой дистанции. Причем ситуационное возмущение может принимать значение, равное единице, при котором расхождение производится стандартным маневрированием, и значение, равное двум, которое требует использования маневра экстренного расхождения. Рассмотренная система бинарной координации учитывает требование закона необходимого разнообразия Эшби, который предусматривает соответствие разнообразия имеющихся курсов уклонения разнообразию возможных опасных курсов сближения. Показано, что это требование выполняется при компенсации ситуационного возмущения либо одновременным маневром обоих судов, либо маневром судна с большей скоростью. Система бинарной координации, которая предложена в статье, содержит два уровня. Первый из них реализуется, когда ситуационное возмущение принимает значение, равное единице, и взаимные обязанности судов определяются с учетом соотношения статусов и скоростей. При значении ситуационного возмущения, равного двойке, имеет место второй уровень и предусмотрено экстренное маневрирование обоих судов. При сближении двух судов с одинаковыми статусами и скоростями их взаимные обязанности определяются тем, являются ли их курсы сближения встречными или попутными.

Ключевые слова: предупреждение столкновения судов, ситуационное возмущение, система бинарной координации, закон необходимого разнообразия.

Введение

Обеспечение безопасного расхождения судов в случае возникновения угрозы их столкновения является одной из наиболее актуальных проблем безопасности судовождения. При возникновении ситуационного возмущения суда должны компенсировать его путем выполнения маневра расхождения. При этом, как правило, маневры расхождения судов должны быть согласованы с помощью системы бинарной координации, структура которой требует подробного исследования, которому и посвящена настоящая статья.

Структура Международных правил предупреждения столкновений судов в море, 1972 г. (МППСС-72) в части маневрирования при расхождении и применение системы бинарной координации, реализованной в них, рассмотрены в работе [1], публикация [2] посвящена вопросам управления группой судов в ситуации опасного сближения. Формальное описание системы бинарной координации МППСС-72 содержится в работе [3], которое получило дальнейшее обобщение в виде одного из возможных вариантов координации взаимодействия трех опасно сближающихся судов, изложенного в публикации [4]. Процедура выбора безопасного маневра расхождения изменением курсов судов рассмотрена в работе [5], а использованию области опасных курсов для предупреждения столкновения пары судов при внешнем управлении посвящены работы [6], [7]. Расхождение нескольких судов в ситуации опасного сближения изменением курса при внешнем типе управления изложено в работах [8], [9]. Стратегия расхождения судов в ситуации чрезмерного сближения описана в работе [10], а в работе [11] рассмотрены вопросы маневрирования при чрезмерном сближении судов на попутных курсах. Математическая модель расхождения с судами смещением на параллельную линию пути предложена в работе [12].

В общем случае модель формализации МППСС-72 [1], [3] учитывает начальную относительную позицию судна и цели, а также их параметры движения. Выходом модели МППСС-72 являются логические переменные, определяющие возможность изменения курса вправо и влево

и требование уступать дорогу или сохранять параметры движения. В модели принимаются неизменные параметры движения целей и заданные допустимые дистанции кратчайшего сближения с каждым судном. Неопределенности, содержащиеся в МППСС-72 при опасном сближении судов, рассмотрены в работе [13]. Поэтому следует рассмотреть модель бинарной координации, которая свободна от недостатков МППСС-72, приведенных в последней работе.

Целью данной статьи является определение структуры системы бинарной координации маневров расхождения опасно сближающихся судов, свободной от неопределенностей в случае ее применения.

Основная часть

Система бинарной координации c0(Bz) является средством для описания тенденции поведения пары взаимодействующих судов при возникновении ситуационного возмущения с целью его компенсации. Первой характеристикой ситуационного возмущения является его значение ю, возникающее при прогнозируемом попадании судов в область недопустимых позиций, которое выявляет грядущую опасную позицию заблаговременно, исходя из прогноза изменения относительной позиции пары судов. Поэтому оно носит условный характер, так как на его истинность влияют возможные действия судов и способ прогноза. Следовательно, ситуационное возмущение ю возникает тогда, когда прогнозируемое значение дистанции кратчайшего сближения Dmin меньше значения предельно-допустимой дистанции сближения D , величина которой зависит от формы области недопустимых позиций и ракурса сближения судов.

Второй характеристикой ситуационного возмущения является время запаса tz1 и t для каждого из пары судов. Смысл времени запаса заключается в следующем. Если при наличии ситуационного возмущения дистанция между судами превосходит значение Dd и судно может своим маневром обеспечить максимальное значение дистанции кратчайшего сближения max Dmi для которого max Dmm > Dd, то суда находятся в допустимой позиции. С течением времени дистанция между судами сокращается, и наступает момент времени td, когда достигается равенство max Dmm = Dd. При дальнейшем сближении судов с программными параметрами движения max Dmin < Dd судно с меньшей скоростью попадает в подмножество недопустимых позиций, причем никаким маневром оно не сможет разойтись с другим судном в дистанции Dd. Поэтому время запаса t равно интервалу времени от текущего момента до момента времени tdj попадания судна в подмножество недопустимых позиций. Значение времени запаса t для пары судов целесообразно выбирать из соотношения tZ12 = min (tZ1, tZ2).

Ситуационное возмущение ю может принимать три значения:

ю =

0, Dmm > Dd;

1, Dmin < Dd, tzU > 0;

2, Dmin < Dd, tzi2 < 0.

В качестве маневра расхождения рассмотрим маневр изменения курса судна. Очевидно, система cо(Bz) состоит из двух частей в зависимости от реализованного значения ситуационного возмущения ю. Вначале рассмотрим ситуацию, когда ю = 1. Прежде всего, система бинарной координации cо(Bz) должна удовлетворять закону необходимого разнообразия Эшби [14], согласно которому разнообразие имеющихся стратегий расхождения должно соответствовать разнообразию возможных ситуационных возмущений. В противном случае система со (Bz) не сумеет компенсировать ситуационные возмущения, создавая предпосылки для столкновений судов. В нашем случае это значит, что система cо(Bz) должна располагать потенциальной возможностью компенсации ситуационного возмущения во всех случаях при ю = 1.

С одной стороны, ситуационное возмущение характеризуется множеством недопустимых относительных курсов Ма, при которых существует опасность столкновения, а с другой — система бинарной координации cо(Bz) имеет возможность сформировать множество безопасных относительных курсов М. Опасность столкновения будет предупреждена и ситуационное возмущение

будет компенсировано, если множество недопустимых относительных курсов Ма будет включено в множество безопасных относительных курсов М т. е. Ма сМ . В этом случае существуют безопасные относительные курсы, позволяющие реализовать стратегию расхождения G, и будут выполнены требования закона необходимого разнообразия Эшби. При ситуационном возмущении начальный относительный курс принадлежит множеству Мё, которое, как показано на рис. 1, заключено в границах Ма = (а - 9, а + 9), где 9 = arcsin ^^ .

Рис. 1. Определение множества М

Dd

Множество Ма можно представить дугой d = 2arcsin = 2, причем ё = п. Рассмотрим множество безопасных относительных курсов М , соответствующее маневрированию каждого из судов с и с2. При маневрировании судна с большей скоростью с2 изменение его курса на 2п ведет к изменению относительного курса также на 2п. Если же маневрирует судно с меньшей скоростью с1, то относительный курс изменяется в пределах от Ко4тт = п + К2 - агат р до Ко4тах = п + К2 + arcsin р, как показано в работе [1]. Следовательно, множество относительных курсов при маневрировании судна с характеризуется дугой 5 = 2 arcsin р < п.

Таким образом, при маневрировании судна с2 множества М^ = 2п и Ма с М чего нельзя утверждать в случае маневрирования судна с1. Закон необходимого разнообразия Эшби выполняется, если система бинарной координации cо(Bz) предусматривает компенсацию ситуационного возмущения следующими способами:

- совместным маневром обоих судов: с1 и с2.

- маневром судна с большей скоростью с2.

Судно, которому предписывается системой со (Bz) выполнение маневра расхождения, будем называть активным, а судно, сохраняющее неизменными параметры движения, — пассивным.

При первом способе совместного маневрирования компенсация ситуационного возмущения производится двумя активными судами. В этом случае необходимо согласование маневров расхождения обоих судов, т. е. их координация. Очевидно, что координация обеспечивает увеличение дистанции кратчайшего сближения при выполнении маневров расхождения судов. Это происходит, как показано на рис. 2, для судов, сближающихся на встречных курсах, при изменении их начальных курсов в одну сторону (например, при увеличении курсов обоих судов). В случае сближения судов на попутных курсах для координации маневров расхождения необходимо изменение курсов судов в разные стороны (например, судно с1 увеличивает курс, а судно с2 — уменьшает курс).

»ВЕСТНИК

rraS ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА

МОРСКОГО И РЕЧНОГО ФЛОТА ИМЕНИ АДМИРАЛА С. 0. МАКАРОВА

Изменение дистанции кратчайшего сближения Dmin определяется составляющей суммарной скорости судов V2sin(K2y - а) - V1 sin (K¡y - а), перпендикулярной к линии пеленга. Указанная скорость увеличивается, если составляющие скорости имеют разные знаки, чем и обоснованы выводы по координации маневров расхождения двух активных судов.

При втором способе, когда маневрирует только судно с большей скоростью, компенсация ситуационного возмущения производится одним судном, т. е. маневр расхождения выполняется одним из судов, в то время как другое судно сохраняет неизменные параметры движения. В этом случае не возникает необходимость в координации. Следует отметить, что бинарная координация служит для обеспечения выбора безопасных маневров расхождения пары судов из разных подмножеств курсов уклонения, для чего нет необходимости учитывать их динамику (как, например, в МППСС-72) в отличие от учета динамики при расчете параметров маневра расхождения. Также существенным является то, что рассматриваемая система бинарной координации предполагает согласование взаимодействия по расхождению только двух судов, и в ее рамках невозможно рассматривать ситуации опасного сближения большего числа судов.

Система бинарной координации co(Bz) должна учитывать сближение судов с учетом их статуса, причем судно с большим статусом, как правило, превосходит по скорости судно с меньшим статусом. Для случая ю = 1 основным признаком координации являются статусы судов St1 и St2. Статус судна характеризует его возможность выполнять маневр расхождения в зависимости от рода его деятельности, конструкции и технического состояния. Правилом 18 МППСС-72 предусмотрены следующие статусы судов, расположенных в порядке возрастания:

- суда с механическим двигателем;

- парусные суда;

- рыболовные суда;

- суда, стесненные осадкой;

- суда, ограниченные в возможности маневрировать;

- суда, которые не могут управляться.

Принимаем указанную градацию статусов судов. Если статусы судов не равны, то судно с более высоким статусом является пассивным, а другое судно — активным. В случае одинаковых статусов ^ = St2) определяющим параметром является скорость судов. В этом случае судно с более высокой скоростью с2 является активным, а судно с1 — пассивным. В случае равенства скоростей (У2 = У^ оба судна являются активными и изменяют свои курсы в зависимости от того, на каких (встречных или попутных) курсах они сближаются, как рассматривалось ранее. В случае ю = 2 координатор со(Вг) предписывает компенсацию ситуационного возмущения экстренным маневрированием [15].

Выводы

1. Показано, что при попадании пары судов в ситуацию опасного сближения возникает ситуационное возмущение, значение которого зависит от соотношения дистанции кратчайшего сближения и предельно допустимой дистанции.

2. Рассмотренная система бинарной координации удовлетворяет закону необходимого разнообразия Эшби, так как разнообразие имеющихся курсов уклонения соответствует разнообразию возможных опасных курсов сближения.

3. Предложена система бинарной координации, которая содержит два уровня в соответствии со значениями ситуационного возмущения, причем при его значении, равном единице, взаимные обязанности судов определяются с учетом соотношения статусов и скоростей, а при значении ситуационного возмущения, равном двум, предусмотрено экстренное маневрирование обоих судов.

4. В ситуации опасного сближения двух судов с одинаковыми статусами и скоростями их взаимные обязанности определяются тем, на каких курсах (встречных или попутных) происходит сближение.

СПИСОК ЛИТЕРАТУРЫ

1. Цымбал Н. Н. Гибкие стратегии расхождения судов / Н. Н. Цымбал, И. А. Бурмака, Е. Е. Тюпи-ков. — Одесса: КП ОГТ, 2007. — 424 с.

2 Бурмака И. А. Управление группой судов в ситуации опасного сближения / И. А. Бурмака, А. Ю. Булгаков // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. — 2014. — № 6 (28). — С. 1-13.

3. Пятаков Э. Н. Взаимодействие судов при расхождении для предупреждения столкновения / Э. Н. Пятаков, Р. Ю. Бужбецкий, И. А. Бурмака, А. Ю. Булгаков. — Херсон: Гринь Д.С., 2015. — 312 с.

4. Пятаков Э. Н. Определение областей взаимных обязанностей судов при опасном сближении / Э. Н. Пятаков, С. В. Копанский // Судовождение. — 2016. — № 26. — С. 137-143.

5. Цымбал Н. Н. Выбор маневра расхождения изменением курса судна / Н. Н. Цымбал, Э. Н. Пятаков // Автоматизация судовых технических средств. — 2014. — № 20. — С. 100-104.

6. Бурмака И. А. Определение области курсов двух судов, обеспечивающих безопасное расхождение / И. А. Бурмака, А. Ю. Булгаков // Вестник Государственного морского университета им. адм. Ф. Ф. Ушакова. — 2014. — № 2 (7). — С. 17-20.

7. Булгаков А. Ю. Использование опасной области курсов двух судов для выбора допустимого маневра расхождения / А. Ю. Булгаков // Водный транспорт. — 2014. — № 2. — С. 13-18.

8. Бурмака И. А. Маневр расхождения трех судов изменением курсов / И. А. Бурмака, А. Ю. Булгаков // Автоматизация судовых технических средств. — 2014. — № 20. — С. 18-23.

9. Бурмака И. А. Выбор оптимального вектора управления судами изменением курсов для безопасного расхождения / И. А. Бурмака, А. Ю. Булгаков // Автоматизация судовых технических средств. — 2015. — № 21. — С. 29-33.

»ВЕСТНИК

rraS ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА

МОРСКОГО И РЕЧНОГО ФЛОТА ИМЕНИ АДМИРАЛА С. 0. МАКАРОВА

10. БурмакаА. И. Стратегия расхождения судов в ситуации чрезмерного сближения / А. И. Бурмака // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. — 2014. — № 1 (23). — С. 20-22.

11. Бурмака А. И. Стратегия расхождения судов в ситуации чрезмерного сближения на попутных курсах / А. И. Бурмака // Вестник Государственного морского университета им. адм. Ф. Ф. Ушакова. — 2014. — № 2 (7). — С. 14-17.

12. Вагущенко Л. Л. Расхождение с судами смещением на параллельную линию пути / Л. Л. Вагущен-ко. — Одесса: Фешкс, 2013. — 180 с.

13. Пятаков Э. Н. Неопределенности в трактовке МППСС-72 при опасном сближении судов и выборе маневра расхождения / Э. Н. Пятаков // Судовождение. — 2013. — № 23. — С. 122-129.

14. Эшби У. Росс. Введение в кибернетику / У Росс Эшби. — М.: Мир, 1959. — 256 с.

15. Бурмака И. А. Экстренная стратегия расхождения при чрезмерном сближении судов / И. А. Бурмака, А. И. Бурмака, Р. Ю. Бужбецкий. — LAP LAMBERT Academic Publishing, 2014. — 202 с.

SYNTHESIS OF SYSTEM OF BINARY CO-ORDINATION AT DIVERGENCE OF VESSELS

The situation of dangerous rapprochement of two vessels is analysed, characterized by situation indignation, the value of which depends on correlation of distance of the shortest rapprochement and maximum-possible distance. Thus situation indignation can take on values equal to unit, at which divergence is produced by the standard manoeuvring, and value equal two, requiring the use of manoeuvre of urgent divergence.

The considered system of binary co-ordination takes into account the requirement of law of the necessary variety Eshby, which foresee accordance of variety of present courses of deviation to the variety of possible dangerous courses of rapprochement. It is shown that this requirement is executed during indemnification of situation indignation or simultaneous maneuver of both vessels or manoeuvre of ship with greater speed.

The system of binary co-ordination which is offered in the article contains two levels, the first level will be realized, when situation indignation takes on a value equal to unit, and the mutual duties of vessels are determined taking into account correlation of statuses and speeds, and at the value of situation indignation of equal to two the second level takes place and the urgent maneuverings of both vessels is foreseen.

At rapprochement of two vessels with identical statuses and speeds their mutual duties are determined to those, whether there are courses rapprochement meeting or passing.

Keywords: warning of collision of vessels, situation indignation, system of binary co-ordination, law of necessary variety.

REFERENCES

1. Tsimbal, N. N., I. A. Burmaka, and E. E. Tyupikov. Gibkie strategii raskhozhdeniya. Odessa: KP OGT,

2007.

2. Burmaka, I. A., and A. Yu. Bulgakov. "Management of the group of vessel in the situation of dangerous approach." Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S.O. Makarova 6(28) (2014): 1-13.

3. Pyatakov, E. N., R. Y. Buzhbeckij, I. A. Burmaka, and A. Y. Bulgakov. Vzaimodeystvie sudov pri raskhozhdenii dlyapreduprezhdeniya stolknoveniya. Kherson: Grin D. S., 2015.

4. Pyatakov, E. N., and S. V. Kopanskiy. "Opredelenie oblastey vzaaimnykh obyazannostey sudov pri opasnom sblizhenii." Sudovozhdenie 26 (2016): 137-143.

5. Tsimbal, N. N., and E. N. Pyatakov. "Vibor manevra raskhozhdeniya izmeneniem kursa sudna." Avtomatizatsiya sudovykh tekhnichtskikh sredstv 20 (2014): 100-104.

6. Burmaka, I. A., and A. Y. Bulgakov. " Determination of range of courses of two vessels that provide safe passing." Vestnik Gosudarstvennogo morskogo universiteta im. admirala F.F. Ushakova 2(7) (2014): 17-20.

7. Bulgakov, A. Y. "Use of dangerous region of courses of two vessels for choice of possible manoeuvre of divergence." Vodnyy transport 2 (2014): 13-18.

8. Burmaka, I. A., and A. Y. Bulgakov. "Manevr raskhozhdeniya treh sudjv izmineniem kursov." Avtomatizatsiya sudovykh tekhnichtskikh sredstv 20 (2014): 18-23.

ВЕСТНИКЛ

ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА -ШШ ^^

МОРСКОГО И РЕЧНОГО ФЛОТА ИМЕНИ АДМИРАЛА С. О. МАКАРОВА^

9. Burmaka, I. A., and A. Y. Bulgakov. "Vibor optimalnogo vektora upravleniya sudami izmineniem kursov dlya bezopasnogo rasrhozhdeniya." Avtomatizatsiya sudovykh tekhnichtskikh sredstv 21 (2015): 29-33.

10. Burmaka, A. I. "The strategy of maneuvering of ships in a situation of excessive proximity." Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S.O. Makarova 1(23) (2014): 20-22.

11. Burmaka, A. I. "Vessel's collision avoidance strategy in case of close-quarters situation when moving in the same direction." Vestnik Gosudarstvennogo morskogo universiteta im. admirala F.F. Ushakova 2(7) (2014): 14-17.

12. Vagushchenko, L. L. Raskhozhdenie s sudami smeshcheniem naparallelnuyu liniyuputi. Odessa: Feniks,

2013.

13. Pyatakov, E. N. "Neopredelennosti v traktovke MPPSS-72 pri opasnom sblizhenii sudov i vybore manevra raskhozhdeniya." Sudovozhdenie 23 (2013): 122-129.

14. Eshbi, U. Ross. Vvedenie v kibernetiku. M: Mir, 1959.

15. Burmaka, I. A., A. I. Burmaka, and R. Y. Buzhbeckij. Ekstrennaya strategiya rasrhozhdeniya pri chrezmernom sblizhenii sudov. LAP LAMBERT Academic Publishing, 2014.

_ИНФОРМАЦИЯ ОБ АВТОРАХ_

Пятаков Эдуард Николаевич — кандидат технических наук, доцент. Национальный университет «Одесская морская академия» epyatakov@ukr. net

Копанский Станислав Валентинович — аспирант.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Научный руководитель:

Пятаков Эдуард Николаевич.

Национальный университет

«Одесская морская академия»

[email protected]

Волков Евгений Леонидович — аспирант.

Научный руководитель:

Пятаков Эдуард Николаевич.

Национальный университет

«Одесская морская академия»

yev-volkov@yandex. ua

INFORMATION ABOUT THE AUTHORS

Pyatakov Eduard Nikolaevich —

PhD, associate professor.

National university "Odessa maritime academy"

epyatakov@ukr. net

Kopanskiy Stanislav Valentinovich — postgraduate. Supervisor:

Pyatakov Eduard Nikolaevich.

National university "Odessa maritime academy"

kopanskystas@mail. ru

Volkov Evgeniy Leonidovich — postgraduate.

Supervisor:

Pyatakov Eduard Nikolaevich.

National university "Odessa maritime academy"

yev-volkov@yandex. ua

Статья поступила в редакцию 29 апреля 2016 г.

Э01: 10.21821/2309-5180-2016-8-4-29-43

УДК 656.61.052 Р. С. Царик,

Д. А. Акмайкин

РАЗРАБОТКА АЛГОРИТМА ФОРМИРОВАНИЯ КОНТЕЙНЕРНОГО ШТАБЕЛЯ ДЛЯ ОБЕСПЕЧЕНИЯ ТРЕБУЕМОЙ ВИДИМОСТИ С ХОДОВОГО МОСТИКА КОНТЕЙНЕРОВОЗА

В статье рассмотрен вопрос разработки алгоритма формирования контейнерного штабеля для обеспечения требуемой видимости с ходового мостика контейнеровоза. Использованы математические методы с геометрическими построениями и практический опыт обеспечения безопасной эксплуатации контейнеровозов. Предложен новый метод ступеней в обеспечении требуемой видимости с ходового мостика и основанный на нем алгоритм формирования контейнерного штабеля на стадии составления грузового плана в соответствии с установленными ограничениями. Отмечается универсальность предложенного метода для использования на контейнеровозах различных архитектурно-конструктивных типов

i Надоели баннеры? Вы всегда можете отключить рекламу.