Научная статья на тему 'Simplification and development of Tandon–Weng model for tensile modulus of ternary polymer nanocomposites: Comparison of predictions with experimental results'

Simplification and development of Tandon–Weng model for tensile modulus of ternary polymer nanocomposites: Comparison of predictions with experimental results Текст научной статьи по специальности «Нанотехнологии»

CC BY
82
69
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Физическая мезомеханика
WOS
Scopus
ВАК
RSCI
Область наук
Ключевые слова
polymer nanocomposites / ternary samples / Mori–Tanaka theory / Tandon–Weng model / modulus / полимерные нанокомпозиты / трехкомпонентные образцы / теория Mori–Tanaka / модель Tandon–Weng / модуль упругости

Аннотация научной статьи по нанотехнологиям, автор научной работы — Yasser Zare, Kyong Yop Rhee

Tandon–Weng model based on Mori–Tanaka idea for tensile modulus of conventional composites is currently used for various polymer nanocomposites, but some complex terms in this model may limit the calculations. In this article, this model is simplified and developed for ternary polymer nanocomposites containing layered and spherical nanofillers. The calculations of developed model are compared with the experimental results and the trends between experimental data and the predictions are explained. The developed model shows that some parameters such as tensile modulus of nanoparticles cannot significantly affect the tensile modulus of binary and ternary nanocomposites, due to its very high level.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Упрощенная модель Tandon–Weng для описания модуля упругости при растяжении трехкомпонентных полимерных нанокомпозитов

Модель Tandon–Weng, основанная на теории Mori–Tanaka для определения модуля упругости при растяжении обычных композитов, в настоящее время применяется для различных полимерных нанокомпозитов. Однако ряд сложных параметров данной модели налагает ограничения при проведении расчетов. В статье предложен упрощенный вариант модели для описания трехкомпонентных полимерных нанокомпозитов, содержащих слоистые и сферические нанонаполнители. Проведено сравнение результатов расчетов на основе разработанной модели с результатами экспериментов, предложено объяснение различия экспериментальных и расчетных данных. Показано, что некоторые параметры модели, например модуль упругости при растяжении наночастиц, не оказывают существенного влияния на модуль упругости при растяжении двухи трехкомпонентных нанокомпозитов.

Текст научной работы на тему «Simplification and development of Tandon–Weng model for tensile modulus of ternary polymer nanocomposites: Comparison of predictions with experimental results»

УДК 539.3

Упрощенная модель Tandon-Weng для описания модуля упругости при растяжении трехкомпонентных полимерных нанокомпозитов

Y. Zare, K.Y. Rhee

Университет Кёнхи, Йонъин, 446-701, Республика Корея

Модель Tandon-Weng, основанная на теории Mori-Tanaka для определения модуля упругости при растяжении обычных композитов, в настоящее время применяется для различных полимерных нанокомпозитов. Однако ряд сложных параметров данной модели налагает ограничения при проведении расчетов. В статье предложен упрощенный вариант модели для описания трехкомпонентных полимерных нанокомпозитов, содержащих слоистые и сферические нанонаполнители. Проведено сравнение результатов расчетов на основе разработанной модели с результатами экспериментов, предложено объяснение различия экспериментальных и расчетных данных. Показано, что некоторые параметры модели, например модуль упругости при растяжении наночастиц, не оказывают существенного влияния на модуль упругости при растяжении двух- и трехкомпонентных нанокомпозитов.

Ключевые слова: полимерные нанокомпозиты, трехкомпонентные образцы, теория Mori-Tanaka, модель Tandon-Weng, модуль упругости

DOI 10.24411/1683-805X-2019-16007

Simplification and development of Tandon-Weng model for tensile modulus of ternary polymer nanocomposites: Comparison of predictions with experimental results

Y. Zare and K.Y. Rhee

Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin, 446-701, Republic of Korea

Tandon-Weng model based on Mori-Tanaka idea for tensile modulus of conventional composites is currently used for various polymer nanocomposites, but some complex terms in this model may limit the calculations. In this article, this model is simplified and developed for ternary polymer nanocomposites containing layered and spherical nanofillers. The calculations of developed model are compared with the experimental results and the trends between experimental data and the predictions are explained. The developed model shows that some parameters such as tensile modulus of nanoparticles cannot significantly affect the tensile modulus of binary and ternary nanocomposites, due to its very high level.

Keywords: polymer nanocomposites, ternary samples, Mori-Tanaka theory, Tandon-Weng model, modulus

1. Introduction

The significant properties of nanostructures relative to conventional materials have attracted a great deal of interest over the last years [1-6]. With the recent progress in nanotechnology, it was reported that the filler size can cause unexpected behavior. However, the material and processing conditions must allow the size of particles to remain or go to the nanoscale. The table depicts the physical and mechanical properties of some nanoparticles used as a nano-filler. The nanoparticles show a very high level of tensile modulus and thus, their low amounts can cause high stiffening effect in the polymer nanocomposites [7]. The excel-

lent reinforcing by nanoparticles is also related to the strong particle-polymer interactions affected by interfacial/interphase characteristics [8]. Therefore, many variables can influence the general properties of polymer nanocomposites and the prediction of the nanocomposite behavior requires to a great knowing of the effective parameters.

The prediction of nanocomposites behavior can help the development and optimization of nanocomposites which will result in the obtaining of desired properties in the final products. Many authors have applied the conventional models suggested for different types of microcomposites for polymer nanocomposites. Some models such as Halpin-

© Zare Y., Rhee K.Y., 2019

Table

The characteristics of some known nanoparticles

No. Nanofiller Density, g • cm 3 Poisson ratio Tensile modulus, GPa Shear modulus, GPa

1 Nanoclay 1.8 0.20 180 75.0

2 SiO2 2.2 0.17 80 34.2

3 CaCO3 2.7 0.27 26 9.9

4 Al2°3 3.9 0.26 370 148.0

5 TiO2 4.0 0.27 250 98.4

Tsai and Hui-Shia were applied for tensile modulus of polymer nanocomposites [9]. The previous studies can provide valuable information for the effects of some important parameters such as the moduli of polymer matrix and nanofiller, the filler geometry and orientation on the modulus of polymer nanocomposites. Some studies reported the overprediction of the conventional models for polymer/clay nanocomposites [10], while several researches suggested the underprediction of the conventional models, for example the Halpin-Tsai and Guth models for polyamide 66 (PA 66)/CaCO3 nanocomposite [9]. Moreover, a good consistency between the experimental data and the calculations of the conventional models was reported in Ref. [11]. Conclusively, there is not a definite trend between the experimental data and the model predictions for polymer nano-composites and the estimation of the tensile modulus by conventional models is challenging.

Many parameters control the tensile modulus of nano-composites such as content, dimensions, moduli and dispersion/agglomeration of nanoparticles in addition to the characteristics of interface/interphase regions between polymer and nanofiller [12, 13]. However, the correct measurements of several parameters such as aspect ratio, orientation and dispersion/agglomeration of nanoparticles along with the interfacial/interphase properties are difficult or impossible, due to the manipulating of nanoscale and atomic interactions at interface/interphase areas.

In our previous work, Tandon-Weng model based on Mori-Tanaka theory was simplified for polymer nanocomposites containing spherical nanoparticles [14]. The simplified model was developed assuming interphase regions between polymer matrix and nanoparticles. In this paper, the simplified Tandon-Weng model is developed for ternary polymer nanocomposites containing layered and spherical nanofillers. The developed model is applied to calculate the moduli of several binary and ternary samples and the trends between experimental and theoretical results are described and justified.

2. Theoretical views

2.1. Mori-Tanaka model

The longitudinal and transverse elastic moduli are generally expressed by Tandon-Weng model based on Mori-

Tanaka theory [15, 16] as Eli 1

J22

1 + % (Ai + 2vmÄ2)/A,

1

(1)

(2)

1 + % [-2vm^ + (1-vm)44 + (1 + vm)A5 A6]/(2A6) where Em and vm are the tensile modulus and Poisson ratio of matrix, respectively, % is also the volume fraction of nanofiller. The parameters A1, A2,..., A6 are functions of the Eshelby's tensor and the properties of the filler and matrix as

4 = DiB + B5) - 2B2, (3)

A2 = (1 + D)B2 - (B4 + B5), (4)

A3 = B -D1B3, (5)

A4 = (1 + Di)Bi -2B3, (6)

A5 = (1 - Di)/ (B4 - B5), (7)

A = 2B2B3 - B1B + B5), (8)

where D1, D2 and D3 are functions of the Lame constants of the matrix and particles as

D1 = 1 + 2Of -Hm)Mf-*m), (9)

D2 = (A m + 2^m)M fm), (10)

D3 =^m/(Xf-Am), (11)

Ev

X = -

M. = -

(1 + v)(1 -2 v)' E

(12) (13)

2(1 + v)

where X and ^ are the Lame's first and second constants, respectively. E and v show the tensile modulus and Poisson ratio, respectively and m and f subscripts indicate the matrix and filler phases, respectively. The Bt parameters are also defined as

B +D2 + (1 -(Pf)(D1^1111 + 2S2211), (14)

B2 =Pf + D3 + (1 - Pf XMS1122 + S2222 + S2233 ), (15)

B3 =Pf + D3 +(1 -Pf)[Snn + (1 + D1 ) S2211 ], (16)

B4 = <f Di + D2 + (1 -<pf) X

X [S1122 + D1S2222 + S2233], (17)

B5 = Pf + D3 +(1 -<f)(S„22 + S2222 +D1S2233), (18) where parameters Sijkl depend to vm and aspect ratio of particles a for layered filler as

1

->1111

2(1-Vm)

1 - 2Vm +

3a2-1 (

a2 -1

S2222 =

1 - 2v„ +

a

3a

2 ^

a2 -1

g

/ -

8(1 -Vm) a2 -1

1

4(1 -Vm) 1

1 - 2V m -

4(a2 -1)

a

S2233

4(1 -Vm) [2(a2 -1) 3

1 - 2Vm + -

4(a2 -1)

S2211 =

1

a

2(1 -Vm)(a2 -1)

1

4(1 -Vm)

3a 2 a2 -1

- 1 + 2V „

S1122 =

1

, 1 -2vm + —2 2(1-Vm)I m a2 -1

1

2(1 -Vm ) 1

1 - 2v„+-

2(a2 -1)

a

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

S2323

4(1 -Vm) [2(a2 -1) 3

1 - 2V „ -

4(a2 -1)

1

S1212

4(1-Vm)

- 0.5

1 - 2v„ -

1 - 2v m -

3(a2 +1) a2 -1

a2 +1 a2 -1

g =

a

(1 -a2)3/2

[cos-1 a-a(1 -a2)1/2],

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

a for disc-like platelets is defined as t/d, where t and d are the thickness and diameter of the platelets.

The parameters S^ for spherical particles can be expressed by

7 - 5Vm (27)

S1111 = S2222 = S3333

15(1 -Vm)

S1122 = S2233 = S2211 = '

5Vm - 1

15(1 "Vm)

For a ternary sample containing two types of nano particles, the longitudinal and transverse moduli are ex pressed by Mori-Tanaka model as

^ = [1 + Pf, (An + 2V m A21)/ An +

+ Pfs (As + 2VmA^MA6s]_1>

-f2 = (1 + Pfl [ -2V m A3/ + (1 - V m) A4l + Em

+ (1 + V m) A5lA€l ]/(2 A€l) +...)-1 +

+ Pfs[-2Vm A3s +(1 -Vm) A4s + + (1 + V m) A5s A6sV(2 A6s)>

(29)

(30)

where l and s subscripts indicate the layered and spherical nanoparticles, respectively. The tensile modulus of binary and ternary samples can be calculated by the suggested model for 3D randomly dispersed particles [11] as

Er = 0.49 ^ + 0.5Ä

Em Em

(31)

where Er is defined as EjEm, Ec is the tensile modulus of nanocomposite. It should be noted that the longitudinal and transverse moduli for binary nanocomposites reinforced with spherical nanoparticles are equal.

2.2. Simplification of the model

The parameters can be simplified for polymer/clay binary nanocomposites assuming vf = 0.2, V m = 0.4, Em =

= 2 GPa, Ef = 180 GPa and a < 0.01 as

g = 0, S1111 = 1,

S2222 = S2233 = S2211 = S2323 - 0, Vm

S1122 =

1-V

S1212 = 0.5, D1 = 4.2, D2 = D3 = 0.1, B1 = 4.25,

B2 =Pf +

B3 = 1.1,

4.2Vm

• n

1 -V„

B4 = 4.2pf + 0.15 +

B5 =pf + 0.1 +

1-V

1-V

A1 = 25pf +1,

A2 = - 0.25, 1 -V„

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

V

A3 = -0.2, (46)

A4 = 20, (47)

0.7v

A = -25% +—^-1.1. (49)

1 Vm

For spherical nanoparticles, the simplified parameters and their details were reported in our previous work [14].

3. Experimental

Several ternary samples of polypropylene (PP)/nano-clay/CaCO3 at different weight percentages of both na-nofillers were prepared and tested. PP homopolymer (ZH500, MFI = 10g/10min, 230°C, 2.16 kg) was supplied from Navid Zar Shimi Company, Iran. A montmorillonite clay modified with a quaternary ammonium salt based on hydrogenated tallow (Cloisite20A type) was provided from Southern Clay Products. The maleic anhydride grafted PP (PPgMA) compatibilizer was supplied as PB3150 (MFI = = 20g/10min, 230°C, 2.16 kg) with 0.5 wt % of maleic anhydride. The precipitated CaCO3 (Socal312, 70 nm, coated with stearic acid) was provided from Solvay.

The melt mixing of samples was performed by a co-rotating twin screw extruder, Brabender TSE 20/40D (D = = 20 mm, L/D = 40). The screw speed and the feeding rate were kept at 250 rpm and 3 kg/h, respectively. The temperature profile was fixed from hopper to die at 210 to

230°C. The injection molding was performed using a Mono-Mat 80 injection molding machine at melt and mold temperatures of 245 and 80°C, respectively. The tensile test was performed using Z050, Zwick according to ASTM D638 at crosshead speed of 50 mm/min.

4. Results and discussion

The suggested equations are applied to calculate the tensile modulus in some reported samples from the literature and the own prepared ternary samples. Additionally, the calculations are compared with the experimental data.

Figure 1 exhibits the predictions of the simplified model for several binary nanocomposites containing spherical nanoparticles reported in the literature. It is revealed that the simplified model underpredicts the tensile modulus of the reported samples. This trend is also found in other samples such as PP/CaCO3 [20] and linear low density polyethylene (LLDPE)/SiO2 [21]. As a result, it can be concluded that the Mori-Tanaka model generally underpredicts the tensile modulus of the spherical-nanoparticles reinforced nanocomposites, i.e. the experimental data are higher than the theoretical predictions. This finding is well agreed with the observations of Sisakht et al. [9], where the conventional models such as Guth, Halpin-Tsai, Hashin-Shtrikman and inverse rule of mixtures underpredicted the tensile modulus of PA66/CaCO3 nanocomposite. The small nanopar-ticle size, which introduces a greater surface area, can provide more filler-filler and polymer-filler interaction/adhesion at atomic scale. As a result, the nanoparticles can cause

Er i.3H

1.2-l.H

Experimental ■ Theoretical

"0

0.00 0.01 0.02 0.03 Si02, vol %

1.2-

1.1-

Experimental ■ Theoretical

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Id

0.000 0.005 0.010

Ti02, vol %

Er 1.2

1.1-

1.0

■ Experimental Lb

Theoretical

0.00 0.01 0.02 0.03

CaC03, vol %

Er 1.6 1.4H 1.2 1.0

Experimental ■ Theoretical

0.00 0.01 0.02 0.03 0.04

CaC03, vol %

Fig. 1. The predictions of the simplified model for polyamide 66 (PA66)/SiO2 [17] (a), poly(vinyl chloride) (PVC)/CaCO3 [18] (b), high impact polystyrene (HIPS)/TiO2 [19] (c) and PA 66/CaCO3 [9] samples (d)

more effective reinforcement than that of the theoretical models express. In other words, the conventional models cannot regard the reinforcing effects of nanoparticles in polymer nanocomposites, which are provided by the interfacial interaction/adhesion, i.e. interphase formation. Many articles in the literature indicated to the mentioned effect of nanoparticles in polymer matrixes which is caused by the high surface area of the nanoparticles and the nano-scale interactions [22, 23]. For example, Ji et al. [24] introduced the thickness and tensile modulus of the interphase in two-phase Takayanagi model and developed a suitable three-phase model for the tensile modulus of nanocomposites. The developed models indicated the important role of the interphase in the mechanical behavior of nanocomposites.

Figure 2 displays the experimental data for the prepared ternary samples in this study and the reported results in the literature as well as the calculations of the developed model. The predictions are higher than the experimental results at all nanofiller weight percentages. It may be stated that the simplified Mori-Tanaka model overpredicts the tensile modulus of ternary polymer nanocomposites containing layered and spherical nanoparticles. Other conventional models such as Halpin-Tsai and its derivations for polymer/clay nanocomposites have described this trend (over-prediction) [10]. As a result, it is understood that the clay platelets play the main role in the ternary samples. This assumption is logical, because the clay platelets induce higher surface area and nucleation sites and significant re-

inforcing effect compared to CaCO3 nanoparticles [25]. Basically, this Mori-Tanaka model assumes that the nanoparticles are perfectly aligned, asymmetric and uniform in shape and size [16]. Moreover, the behavior of matrix and nanofiller in nanocomposite is identically considered to those of the neat materials. No particle-particle and strong polymer-particle interactions are taken into account in this model. However, some undesirable phenomena such as the weak dispersion of nanoparticles or poor exfoliation of clay platelets, the various values of length and thickness of platelets, the aggregation/agglomeration of nanoparticles especially at high nanofiller content in ternary samples, the poor interfacial adhesion at the polymer-filler interface and the particle-particle interaction are shown in polymer nanocomposites in practice [26, 27]. One or more of the above phenomena is enough to decrease the modulus of nano-composites, which results in the low modulus compared to the prediction of the simplified Mori-Tanaka model.

On the other hand, the conventional models such as Mori-Tanaka do not assume the roles and influences of polymer-particle and particle-particle interfacial interactions, interphase between polymer and nanofiller and the dispersion/aggregation level of nanoparticles in polymer matrix, while it was reported that these factors considerably affect the tensile modulus of polymer nanocomposites [28, 29]. It was indicated that the interphase occupies a high volume fraction in polymer nanocomposites and disregarding it causes the incorrect estimation of the tensile

Fig. 2. The predictions of the developed model for PP/nanoclay/CaCO3 ternary nanocomposites: own samples at 2 wt % nanoclay (a), own samples at 4 wt % nanoclay (b), own samples at 6 wt % nanoclay (c) and the reported results [20] (d)

modulus [30, 31]. Furthermore, the nanoparticles generally tend to aggregation/agglomeration in the fabrication process of samples affecting the properties of nanocom-posites [32, 33]. It is understood that the conventional models cannot properly predict the mechanical properties of the nanocomposites without supposing the influences of these factors.

The conventional models such as Mori-Tanaka assumed the influences of a, vm, Ef and vf on the final tensile modulus. However, it was shown that a cannot meaningfully change the tensile modulus and its effect is removed (g was assumed as 0), because a gets a very low value for nano-platelets (<0.01). The limited and low values of vm and vf parameters (below 0.5) cannot significantly vary the calculations of the conventional models, because the high level of Ef removes their influences in polymer nano-composites. However, the simplicity of the conventional models leads to their wide application for different polymer nanocomposites at the first step of behavior prediction or for an initial estimation or to answer this important question that whether these models are appropriate for polymer nanocomposites or not.

5. Conclusions

Tandon-Weng model based on Mori-Tanaka theory for tensile modulus of composites was simplified and developed for ternary polymer nanocomposites. The calculations of the developed model were also likened with the experimental results of many samples. Although original model assumed that many characteristics of the polymer matrix and filler such as Poisson's ratio, moduli, concentration and aspect ratio govern the tensile modulus, it was found that the aspect ratio of nanofiller and the tensile modulus of nanoparticles cannot change the tensile modulus of binary and ternary nanocomposites. The developed simplified model displayed that the tensile modulus only depends to Poisson's ratio of the matrix and nanofiller concentration. It was found that the simplified model underpredicts the modulus of binary nanocomposites containing spherical particles. This occurrence was attributed to the greater reinforcing effect of nanoparticles, which is obtained by strong interfacial interactions between polymer matrix and nanoparticles. The developed model for ternary samples also revealed the overprediction of the tensile modulus compared to experimental results. It was explained that some undesirable phenomena such as poor dispersion of nanoparticles, aggregation/agglomeration of nanoparticles especially at high nanofiller content, poor interfacial adhesion at polymer-filler interface and particle-particle interactions may decrease the tensile modulus of ternary samples in practice.

References

1. Salahandish R., Ghaffarinejad A., Naghib S.M., Niyazi A., Majidza-deh-AK., JanmalekiM, Sanati-Nezhad A. Sandwich-structured nano-particles-grafted functionalized graphene based 3D nanocomposites for high-performance biosensors to detect ascorbic acid biomolecule // Sci. Rep. - 2019. - V. 9. - P. 1226.

2. Askari E., Naghib S.M. A novel approach to facile synthesis and biosensing of the protein-regulated graphene // Int. J. Electrochem. Sci. - 2018. - V. 13. - P. 886-897.

3. Badamshina E.R., Goldstein R.V., Ustinov K.B., Estrin Ya.I. Strength and fracture toughness of polyurethane elastomers modified with carbon nanotubes // Phys. Mesomech. - 2018. - V. 21.- No. 3. - P. 187192.

4. Golovnev I.F., Golovneva E.I., Utkin A.A. A study into the temperature and size effects in nanostructures on their fracture under external mechanical loads // Phys. Mesomech. - 2018. - V. 21. - No. 6. -P. 523-528.

5. Zare Y., Rhee K.Y. Effects of interphase regions and filler networks on the viscosity of PLA/PEO/carbon nanotubes biosensor // Polymer Compos. - 2019.

6. Naghib S.M., Parnian E., Keshvari H., Omidinia E., Eshghan-Ma-lek M. Synthesis, characterization and electrochemical evaluation of polyvinylalchol/graphene oxide/silver nanocomposites for glucose biosensing application // Int. J. Electrochem. Sci. - 2018. - V. 13. -P. 1013-1026.

7. Ma X., Zare Y., Rhee K.Y. A two-step methodology to study the influence of aggregation/agglomeration of nanoparticles on Young's modulus of polymer nanocomposites // Nanoscale Res. Lett. - 2017. -V. 12.- P. 621.

8. Zare Y., Garmabi H., Rhee K.Y. Prediction of complex modulus in phase-separated poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites // Polymer Test. - 2018. - V. 66. - P. 189194.

9. Sisakht Mohsen R., Saied N.K., Ali Z., Hosein E.M., Hasan P. Theoretical and experimental determination of tensile properties of nano-sized and micron-sized CaCO3/PA66 composites // Polym. Compos. -2009. - V. 30. - P. 274-280.

10. Wu Y.-P., Jia Q.-X., Yu D.-S., Zhang L.-Q. Modeling Young's modulus of rubber-clay nanocomposites using composite theories // Polymer Test. - 2004. - V. 23. - P. 903-909.

11. Fornes T., Paul D. Modeling properties of nylon 6/clay nanocomposites using composite theories // Polymer. - 2003. - V. 44. - P.4993-5013.

12. Sharifzadeh E., Ghasemi I., Qarebagh A.N. Modeling of blend-based polymer nanocomposites using a knotted approximation of Young's modulus // Iran Polymer J. - 2015. - V. 24. - P. 1039-1047.

13. Yazdani H., Ghasemi H., Wallace C., Hatami K. Mechanical properties of carbon nanotube-filled polyethylene composites: A molecular dynamics simulation study // Polym. Compos. - 2018.

14. Zare Y Development of simplified Tandon-Weng solutions of Mori-Tanaka theory for Young's modulus of polymer nanocomposites considering the interphase // J. Appl. Polym. Sci. - 2016. - V. 133.

15. Mori T., Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions // Acta Metall. - 1973. -V. 21. - P. 571-574.

16. Tandon G., Weng G. The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites // Polym. Compos. - 1984. - V. 5. - P. 327-333.

17. Xu X., Li B., Lu H., Zhang Z., Wang H. The effect of the interface structure of different surface-modified nano-SiO2 on the mechanical properties of nylon 66 composites // J. Appl. Polym. Sci. - 2008. -V. 107. - P. 2007-2014.

18. Xie X.-L., Liu Q.-X., Li R.K.-Y., Zhou X.-P., Zhang Q.-X., Yu Z.-Z., Mai Y.-W. Rheological and mechanical properties of PVC/CaCO3

nanocomposites prepared by in situ polymerization // Polymer. -2004. - V. 45. - P. 6665-6673.

19. Zhang J., Wang X., Lu L., Li D., Yang X. Preparation and performance of high-impact polystyrene (HIPS)/nano-TiO2 nanocomposites // J. Appl. Polym. Sci. - 2003. - V. 87. - P. 381-385.

20. Chen H., Wang M., Lin Y, Chan C.M., Wu J. Morphology and mechanical property of binary and ternary polypropylene nanocomposites with nanoclay and CaCO3 particles // J. Appl. Polym. Sci. - 2007. -V. 106. - P. 3409-3416.

21. Kontou E., Niaounakis M. Thermo-mechanical properties of LLDPE/ SiO2 nanocomposites // Polymer. - 2006. - V. 47. - P. 1267-1280.

22. Lu P., Leong Y., Pallathadka P., He C. Effective moduli of nanoparticle reinforced composites considering interphase effect by extended double-inclusion model—Theory and explicit expressions // Int. J. Eng. Sci. - 2013. - V. 73. - P. 33-55.

23. Rafiee R., Pourazizi R. Influence of CNT functionalization on the interphase region between CNT and polymer // Comput. Mater. Sci. -2015. - V. 96. - P. 573-578.

24. Ji X.L., Jiao K.J., Jiang W., Jiang B.Z. Tensile modulus of polymer nanocomposites // Polym. Eng. Sci. - 2002. - V. 42. - P. 983.

25. Ataeefard M., Moradian S. Surface properties of polypropylene/ organoclay nanocomposites // Appl. Surf. Sci. - 2011. - V. 257. -P. 2320-2326.

26. Chen J., Yu Y., Chen J., Li H., Ji J., Liu D. Chemical modification of palygorskite with maleic anhydride modified polypropylene: Mechanical properties, morphology, and crystal structure of palygorskite/

polypropylene nanocomposites // Appl. Clay Sci. - 2015. - V. 115. -P. 230-237.

27. ZulfiqarS., SarwarM.I., RasheedN., Yavuz C.T. Influence of interlayer functionalization of kaolinite on property profile of copolymer nano-composites // Appl. Clay Sci. - 2015. - V. 112. - P. 25-31.

28. Rusmirovic J.D., Radoman T., Dzunuzovic E.S., Dzunuzovic J.V., Markovski J., Spasojevic P., Marinkovic A.D. Effect of the modified silica nanofiller on the mechanical properties of unsaturated polyester resins based on recycled polyethylene terephthalate // Polymer Compos. - 2017. - V. 38. - P. 538-554.

29. Taghizadeh E., Naderi G., Razavi-Nouri M. Effects of organoclay on the mechanical properties and microstructure of PA6/ECO blend // Polymer Test. - 2011. - V. 30. - P. 327-334.

30. Sevostianov I., Kachanov M. Effect of interphase layers on the overall elastic and conductive properties of matrix composites. Applications to nanosize inclusion // Int. J. Solid. Struct. - 2007. - V. 44. -P. 1304-1315.

31. Joshi P., Upadhyay S. Effect of interphase on elastic behavior of multiwalled carbon nanotube reinforced composite // Comput. Mater. Sci. - 2014. - V. 87. - P. 267-273.

32. Kallay N., Zalac S. Stability of nanodispersions: a model for kinetics of aggregation ofnanoparticles // J. Colloid Int. Sci. - 2002. - V. 253. -P. 70-76.

33. Li D., Kaner R.B. How nucleation affects the aggregation of nanoparticles // J. Mater. Chem. - 2007. - V. 17. - P. 2279-2282.

Поступила в редакцию 30.09.2019 г., после доработки 24.10.2019 г., принята к публикации 31.10.2019 г.

Сведения об авторах

Yasser Zare, PhD, Dr., Kyung Hee University, Republic of Korea, y.zare@aut.ac.ir Kyong Yop Rhee, PhD, Prof., Kyung Hee University, Republic of Korea, rheeky@khu.ac.kr

i Надоели баннеры? Вы всегда можете отключить рекламу.