Научная статья на тему 'A modeling approach for Young’s modulus of interphase layers in polymer nanocomposites'

A modeling approach for Young’s modulus of interphase layers in polymer nanocomposites Текст научной статьи по специальности «Нанотехнологии»

CC BY
166
101
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Физическая мезомеханика
WOS
Scopus
ВАК
RSCI
Область наук
Ключевые слова
polymer nanocomposites / interphase layers / interphase modulus / полимерные нанокомпозиты / межфазные слои / модуль межфазного слоя

Аннотация научной статьи по нанотехнологиям, автор научной работы — Yasser Zare, Kyong Yop Rhee

In this work, the interphase in polymer nanocomposites is modeled as a multilayered part in which the Young’s modulus of each layer Ek continuously changes from nanoparticle surface (xk = 0) to polymer matrix (xk = t). The dependency of Ek on xk is analyzed by linear, exponential and power functions. The average interphase modulus is determined by the Ji model for several samples and the accurate dependency of Ek on x is derived. The linear and exponential relations display a relatively similar trend for Ek, but they cannot suggest an accurate Ek assuming the predicted interphase modulus by the Ji model. The equation which relates the Ek on xkY can present acceptable values for Ek, where the value of Y determines the Young’s modulus Ek. This approach can be applied to evaluate the magnitude of interphase in polymer nanocomposites.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Подход к моделированию модуля Юнга межфазных слоев в полимерных нанокомпозитах

В работе проведено моделирование межфазного слоя в полимерном нанокомпозите, представленном в виде многослойной конструкции, в которой модуль Юнга каждого слоя Ek непрерывно изменяется от поверхности наночастиц (xk = 0) к полимерной матрице (xk = t). Получены линейная, экспоненциальная и степенная зависимости Ek от xk. Для нескольких образцов с использованием модели Ji определено среднее значение межфазного модуля, а также получена точная зависимость Ek от x. Линейные и экспоненциальные уравнения описывают схожее поведение величины Ek, однако они не позволяют точно определить с учетом предсказанного в рамках модели Ji значения межфазного модуля. С помощью уравнения, описывающего зависимость Ek от xkY, можно получить допустимые значения Ek с учетом значения Y. Предлагаемый подход применим для оценки влияния межфазного слоя в полимерных нанокомпозитах

Текст научной работы на тему «A modeling approach for Young’s modulus of interphase layers in polymer nanocomposites»

УДК 539.3

Подход к моделированию модуля Юнга межфазных слоев в полимерных нанокомпозитах

Y. Zare, K.Y. Rhee

Университет Кёнхи, Сеул, 446-701, Южная Корея

В работе проведено моделирование межфазного слоя в полимерном нанокомпозите, представленном в виде многослойной конструкции, в которой модуль Юнга каждого слоя Ek непрерывно изменяется от поверхности наночастиц (xk = 0) к полимерной матрице (% = t). Получены линейная, экспоненциальная и степенная зависимости Ek от xk. Для нескольких образцов с использованием модели Ji определено среднее значение межфазного модуля, а также получена точная зависимость Ek от x. Линейные и экспоненциальные уравнения описывают схожее поведение величины Ek, однако они не позволяют точно определить Ek с учетом предсказанного в рамках модели Ji значения межфазного модуля. С помощью уравнения, описывающего зависимость Ek от xj, можно получить допустимые значения Ek с учетом значения Y. Предлагаемый подход применим для оценки влияния межфазного слоя в полимерных нанокомпозитах.

Ключевые слова: полимерные нанокомпозиты, межфазные слои, модуль межфазного слоя

DOI 10.24411/1683-805X-2019-13011

A modeling approach for Young's modulus of interphase layers in polymer nanocomposites

Y. Zare and K.Y. Rhee

Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin, 446-701, Republic of Korea

In this work, the interphase in polymer nanocomposites is modeled as a multilayered part in which the Young's modulus of each layer Ek continuously changes from nanoparticle surface (xk = 0) to polymer matrix (xt = t). The dependency of Ek on xt is analyzed by linear, exponential and power functions. The average interphase modulus is determined by the Ji model for several samples and the accurate dependency of Ek on x is derived. The linear and exponential relations display a relatively similar trend for Ek, but they cannot suggest an accurate Ek assuming the predicted interphase modulus by the Ji model. The equation which relates the Ek on xTk can present acceptable values for Ek, where the value of Y determines the Young's modulus Ek. This approach can be applied to evaluate the magnitude of interphase in polymer nanocomposites.

Keywords: polymer nanocomposites, interphase layers, interphase modulus

1. Introduction

The addition of few weight percent of nanoparticles to polymer matrixes can result in significant improvement in mechanical properties [1-10]. Many studies have been carried out to evaluate the stiffness and conductivity of polymer nanocomposites containing rigid inorganic nanopar-ticles [11-19]. In these researches, considerable effort has been focused on material and morphological characterization. Predictive methods taking into account the actual nanostructure have been developed to understand the re-

lations between nanostructure and nanocomposite behavior. This may play a significant role in development of polymer nanocomposites by providing much information for their design and optimization. The conventional models such as Mori-Tanaka and Halpin-Tsai suggested for microcomposites were used to predict the tensile modulus of nano-composites [20]. They consider that the tensile modulus of composites is a function of constituent properties such as the volume fraction and modulus, but they disregard the effects of nanoparticles size and interphase properties between the matrix and the nanoparticles.

© Zare Y., Rhee K.Y., 2019

In a nanocomposite without interphase, internal stresses develop as a result of the discrepancy in properties of polymer and nanoparticles. To decrease the internal stresses, coated nanoparticles are used indicating that the nanopar-ticle-matrix interphase play an important role in the effective properties of polymer nanocomposites. The interphase characteristics cannot be directly characterized from experiments, due to the small thickness of interphase, so the modeling approaches are applied to measure the properties of interphase.

A multilayered interphase, which includes different properties for each layer, is modeled in different work [2124]. Moreover, various properties of interphase layers such as thickness and modulus were considered and their influences on the nanocomposite behavior were discussed. Sha-bana [21] took into account the progressive debonding of the reinforcement from the interphase in the damage. By this approach, he studied the effects of the interphase thickness, number of layers, properties of each layer, progressive debonding damage, reinforcement size and aspect ratio, and elastoplasticity of the matrix on the effective thermo-mechanical properties of nanocomposites. Boutaleb et al. [22] considered the thickness of interphase as a characteristic length scale and evaluated the key role of the interphase on both stiffness and yield stress. They compared the model outputs with experimental data of various poly-mer/SiO2 nanocomposites.

On the other hand, the overall interphase properties such as thickness, modulus and strength have been determined by simple micromechanical models for mechanical properties such as Young's modulus and tensile strength [2530]. For example, the Ji model [31] was successfully applied to determine the Young's modulus and thickness of interphase in polymer nanocomposites containing different nanofillers [32, 33]. However, a simple model, which carefully explains the modulus of interphase layers and the

dependency of modulus on the distance between nano-particles and polymer matrix has not been suggested in the previous work, whereas the overall properties of interphase can be well determined by the suggested models.

In this work, the interphase is modeled as a multilayered phase and the Young's modulus of each layer Ek is assumed to be continuously graded from nanoparticle surface to polymer matrix. The dependency of Ek on the distance between nanoparticle surface and polymer matrix xk is estimated by linear, exponential and power functions. Finally, the accurate dependency of Ek on xk is defined by the average interphase characteristics calculated by the Ji model.

2. Theoretical background

In the interphase between polymer matrix and nano-particles, the thermomechanical properties such as coefficients of thermal and moisture expansion and Young's modulus change from those of the nanoparticles to those of the polymer matrix. The interphase can be divided into n layers. Figure 1 shows a cross section of a nanoparticle covered by a four-layered interphase where the nanoparticle and the interphase are coaxial. The nanoparticle may have spherical, cylindrical or layered shape. A spherical nano-particle is illustrated in Fig. 1 for example.

When the interphase layers have the same thickness, the thickness of the kth layer is given by

t*=n, (1)

where t is the total thickness of interphase, x is defined as the distance from a nanoparticle surface (x = 0) to polymer matrix (Fig. 1). The x for central point of the kth layer xk is given as

xk = ktk - . (2)

Nanoparticle

Nanoparticle

Polymer matrix

Fig. 1. Schematic illustration of interphase layers around the nanoparticles in polymer nanocomposites (color online)

Interphase

layers

Fig. 2. The modulus of interphase layers Ek by Eq. (3) (1), Eq. (4) (2), Eq. (5), 7 = 0.3 (3), Eq. (5), 7 = 1.5 (4), Eq. (5), 7 = = 2.5 (5) for an interphase containing 5 layers: t

k - 2 nm,

Ep - 100 GPa and Em - 2 GPa

The Young's modulus of interphase layers may change at different linear, exponential and power trends. The Young's modulus of kth layer is expressed as

Ek = Ep - (Ep - Em) ^, (3)

t

Ek - Ep exp

.Xk. t

+ [Em - Ep exp(-1)]

t

Ek - Ep -(ep - em)

Xl t y

(4)

(5)

where Em and Ep are the Young's moduli of matrix and nanoparticles, respectively, and 7 is an exponent. In Eqs. (3)-(5), Ek = Ep at xk = 0 (nanoparticle surface) and Ek = Em at xk = t (polymer matrix).

Ji et al. [31] suggested a three-phase model for Young's modulus of composites taking into account the matrix, the nanofiller and the interphase between polymer and nanoparticles. The Ji model for composites including layered (1), spherical (2) and cylindrical (3) nanoparticles is expressed as

a-P

E - E„

(1 -a) +

(1 -a) + a(m -1)/lnm

- +

ß

(1 -a) + (a-ß)( m + 1)/2 + ßE/ En

-1

(6)

a

a

2^ + r

Vf.

i +1 3

Vf.

't

a3r+1

ß-Wf,

Ei

m -——,

Vf,

(8)

(9) (10) (11)

where E{ is the average Young's modulus of interphase, % is volume fraction of nanofiller, r and d are the radius and thickness of nanofillers, respectively.

3. Results and discussion

In this part, the calculations of Eqs. (3)-(5) for modulus of interphase layers are firstly presented. The Ji model (Eqs. (6)-(11)) is applied to calculate the average values of t and E{ in several reported samples. Finally, the predictions of the Ji model are compared to the calculations of Eqs. (3)-(5) to choose the best model, which can show the accurate data for modulus of interphase layers.

Figure 2 shows the modulus of interphase layers Ek by Eqs. (3)-(5) for an interphase containing 5 layers with tk = = 2 nm, Ep = 100 GPa and Em = 2 GPa. All equations show that Ek decreases from the surface of nanoparticles (xk = 0) to polymer matrix (xk = t). However, Eqs. (3) and (4) display a relatively similar trend for Ek. In Eq. (5) Ek can present a higher or lower modulus than Eqs. (3) and (4) attributed to the level of 7 parameter. In Fig. 2, 7 = 0.3 gives lower modulus compared to calculations of Eqs. (3) and (4), while 7 = 2.5 suggests a higher modulus for each layer compared to other predictions. Accordingly, 7 parameter plays a main role in predictions of Eq. (5). It may be concluded that a higher 7 value corresponds to a strong adhesion between polymer and nanofiller phases (strong interphase), whereas a lower 7 expresses weak interphase properties.

+

Table 1

The characteristics of the samples and their interphase properties

No. Sample [Ref.] r or d, nm Em' GPa Ep, GPa t, nm Ei Eqs. (6)-(11) Ek at x -1/ 2 Eq. (3) Ek at x -1/ 2 Eq. (4) Y Eq. (5)

1 PBT/nanoclay [34] 2 2.14 178 12 9.6 90 76.3 0.063

2 LLDPE/SiO2 [35] 8 3.7 80 12 11.1 41.9 35.7 0.147

3 Epoxy/MWCNT [36] 15 1.9 750 22.5 133 501 423.5 0.203

4 PEI/MWCNT [37] 9 2.96 750 11 8.8 501 424.1 0.009

PBT—poly (butylene terephthalate), LLDPE—linear low density polyethylene, MWCNT—multiwalled carbon nanotubes, PEI— polyetherimide.

Fig. 3. Ek for samples 1 (a) and 2 (b) by Eqs. (3) and (4) assuming a 5-layered interphase

Table 1 shows several samples from valid literature as well as the properties of neat polymer and nanofiller. The experimental Young's moduli of samples are applied to Ji model (Eqs. (6)-(11)) and the average values of t and E{ are calculated. The interphase thickness cannot exceed from about 40 nm as the common [38], and E{ changes between the moduli of polymer matrix and nanofiller. The experimental moduli are fitted to the Ji model at suitable t and E{ values and finally, the average values of t and E{ are calculated (Table 1). The experimental data may be fitted to the Ji model at one or more couple of t and E{. Values t are higher than the thickness or radius of nanoparticles in all samples. The presented data show the significant thickness and modulus of interphase in the reported samples, which demonstrate the main role of interphase in the final properties of polymer nanocomposites.

As mentioned, the Ji model expresses an average or overall modulus for interphase. It can be stated that the Ji model gives the modulus of the central layer within the interphase or the modulus at x = -/2. Accordingly, the predicted modulus by the Ji model can be compared to the calculated modulus for the central layer of interphase. The interphase modulus at xk = -/2 are calculated by Eqs. (3) and (4) for all samples and reported in Table 1. The calculated modulus at xk = -/2 is much higher than the predicted modulus by the Ji model. Figure 3 shows the modulus of interphase layers by Eqs. (3) and (4) for samples 1 and 2 assuming a 5-layered interphase. The high difference between the Ek at xk = -/2 and E{ by the Ji model is clear

in these illustrations. As a result, Eqs. (3) and (4) cannot present suitable data for Ek in polymer nanocomposites, may be due to the much higher modulus of nanoparticles compared to modulus of polymer matrix (see Table 1).

Equation (5) is also applied to predict the modulus of interphase layers for the reported samples. Figure 4 illustrates the predicted moduli for samples 1 and 2. As observed, the predictions of Eq. (5) at xk = -/2 can correctly fit to the calculated modulus by the Ji model by a suitable value of Y. As a result, Eq. (5) can be simply used to calculate the modulus of interphase layers in the polymer nanocomposites. The calculated values of Y which cause a good agreement between the calculations of the Ji model and Eq. (5) at xk = -/2 are shown in Table 1. The different levels of Y demonstrate the various extents of interphase properties in the reported samples. The properties of interphase are attributed to various parameters such as the interfacial area, the compatibility extent between the polymer matrix and the nanofiller and the interfacial interaction [33, 39]. It was indicated in the literature that treatment, modification and functionalization of nanofillers can promote the compatibility and interfacial interaction between polymer chains and nanoparticles and improve the interfacial adhesion.

The former studies introduced the interfacial parameters by modeling of tensile/yield strength. Many known and simple models such as Pukanszky [40], Nicolais-Narkis [41] and Piggott-Leidner [42] were suggested which can quantify the level of interphase properties in nanocom-

Fig. 4. The predicted moduli for samples 1 (a) and 2 (b) by Eq. (5) assuming a 5-layered interphase

posites. However, the suggested method in the current work by coupling the Ji model and Eq. (5) can give the magnitude of interphase properties by modeling the Young's modulus of nanocomposites.

4. Conclusions

The Young's modulus of the interphase layers Ek was correlated to xk from nanoparticle surface (xk = 0) to polymer matrix (xk = t) by linear, exponential and power functions. The average value of interphase modulus was determined by the Ji model and the accurate dependency of Ek on xk was expressed. The calculated data by the Ji model show the high thickness and modulus of interphase in the reported samples, which prove the important role of interphase characteristics in the final behavior of polymer nanocomposites. The linear and exponential relations display relatively similar calculations for Ek, but their calculations at xk = -12 are much higher than the predicted interphase modulus by the Ji model. Therefore, they cannot give suitable data for Ek in polymer nanocomposites, may be due to the higher modulus of nanoparticles compared to modulus of polymer matrix. The equation which relates the Ek to xl can suggest suitable values for Ek. However, the value of Y determines the higher or lower Ek compared to the predictions of other equations. The Y as an interphase parameter depends on the interphase properties such as the interfacial area, the compatibility between the polymer matrix and the nanofiller and the interfacial interaction. Conclusively, the suggested technique by coupling the Ji model and Eq. (5) for Young's modulus of interphase layers can offer the magnitude of interphase properties in polymer nanocomposites.

References

1. Zare Y., Rhee K. Evaluation and development of expanded equations based on Takayanagi model for tensile modulus of polymer nanocomposites assuming the formation of percolating networks // Phys. Mesomech. - 2018. - V. 21. - No. 4. - P. 351-357.

2. Badamshina E.R., Goldstein R.V., Ustinov K.B., Estrin Ya.l. Strength and fracture toughness of polyurethane elastomers modified with carbon nanotubes // Phys. Mesomech. - 2018. - V. 21. - No. 3. - P. 187192.

3. Zare Y., Garmabi H., Rhee K.Y. Structural and phase separation characterization of poly (lactic acid)/poly (ethylene oxide)/carbon nanotube nanocomposites by rheological examinations // Composites. B. Eng. -2018. - V. 144. - P. 1-10.

4. Nikfar N., Zare Y., Rhee K.Y. Dependence of mechanical performances

of polymer/carbon nanotubes nanocomposites on percolation threshold // Physica B. Condens. Matter. - 2018. - V. 533. - P. 69-75.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

5. Zare Y., Rhee K.Y. Dependence of Z parameter for tensile strength of multi-

layered interphase in polymer nanocomposites to material and interphase properties // Nanoscale Res. Lett. - 2017. - V. 12. - P. 42.

6. Naghib S.M., Rabiee M, Omidinia E. Electroanalytical validation of a novel nanobiosensing strategy and direct electrochemistry of phenylalanine dehydrogenase for clinical diagnostic applications // Int. J. Electrochem. Sci. - 2014. - V. 9. - P. 2301-2315.

7. Kalantari E., Naghib S.M., Naimi-Jamal M.R., Mozafari M. Green solvent-based sol-gel synthesis of monticellite nanoparticles: a rapid

and efficient approach // J. Sol-Gel Sci. Tech. - 2017. - V. 84. - P. 8795.

8. Salahandish R., Ghaffarinejad A., Naghib S.M., Majidzadeh-A K., Zargartalebi H., Sanati-Nezhad A. Nano-biosensor for highly sensitive detection of HER2 positive breast cancer // Biosensor. Bioelect-ron.- 2018. - V. 117. - P. 104-111.

9. Khoramishad H., Khakzad M., Fasihi M. The effect of outer diameter of multi-walled carbon nanotubes on fracture behavior of epoxy ad-hesives // Sci. Iranica. Trans. B. Mech. Eng. - 2017. - V. 24. - P. 29522962.

10. Khoramishad H., Ebrahimijamal M., Fasihi M. The effect of gra-phene oxide nano-platelets on fracture behavior of adhesively bonded joints // Fatig. Fract. Eng. Mater. Struct. - 2017. - V. 40. - P. 19051916.

11. Zare Y., Rhee K.Y. Simplification and development of McLachlan model for electrical conductivity of polymer carbon nanotubes nanocomposites assuming the networking of interphase regions // Compos. B. Eng. - 2019. - V. 156. - P. 64-71.

12. Liu Z., Peng W., Zare Y., Hui D., Rhee K.Y. Predicting the electrical conductivity in polymer carbon nanotube nanocomposites based on the volume fractions and resistances of the nanoparticle, interphase, and tunneling regions in conductive networks // RSC Advanc. - 2018.-V. 8. - P. 19001-19010.

13. Razavi R., Zare Y., Rhee K.Y. A two-step model for the tunneling conductivity of polymer carbon nanotube nanocomposites assuming the conduction of interphase regions // RSC Advanc. - 2017. - V. 7. -P. 50225-50233.

14. Ma X., Zare Y., Rhee K.Y. A two-step methodology to study the influence of aggregation/agglomeration of nanoparticles on Young's modulus of polymer nanocomposites // Nanoscale Res. Lett. - 2017. -V. 12.- P. 621.

15. Zare Y., Rhee K.Y. A power model to predict the electrical conductivity of CNT reinforced nanocomposites by considering interphase, networks and tunneling condition // Compos. B. Eng. - 2018. - V. 155. -P. 11-18.

16. SadeghiA., Moeini R., Yeganeh J.K. Highly conductive PP/PET polymer blends with high electromagnetic interference shielding performances in the presence of thermally reduced graphene nanosheets prepared through melt compounding // Polymer Compos. - 2018. -V. 40. - P. E1461-E1469.

17. Sanjari Shahrezaei M.A., Goharpey F., Khademzadeh Yeganeh J. Effect of selective localization of cellulose nanowhiskers on viscoelas-tic phase separation // Polymer Eng. Sci. - 2018. - V. 58. - P. 928942.

18. Rostami A., Vahdati M., Nazockdast H. Unraveling the localization behavior of MWCNTs in binary polymer blends using thermodynamics and viscoelastic approaches // Polymer Compos. - 2018. - V. 39. -P. 2356-2367.

19. Rostami A., Vahdati M., Alimoradi Y., Karimi M., Nazockdast H. Rheology provides insight into flow induced nano-structural breakdown and its recovery effect on crystallization of single and hybrid carbon nanofiller filled poly (lactic acid) // Polymer. - 2018. - V. 134. -P. 143-154.

20. Zare Y., Garmabi H. Analysis of tensile modulus of PP/nanoclay/ CaCO3 ternary nanocomposite using composite theories // J. Appl. Polymer Sci. - 2012. - V. 123. - P. 2309-2319.

21. Shabana Y.M. A micromechanical model for composites containing multi-layered interphases // Composite Struct. - 2013. - V. 101. -P. 265-273.

22. Boutaleb S., Zanri F., Mesbah A., Nant-Abdelaziz M., Gloagu-en J.-M., Boukharouba T., Lefebvre J.-M. Micromechanics-based modelling of stiffness and yield stress for silica/polymer nanocomposites // Int. J. Solid. Struct. - 2009. - V. 46. - P. 1716-1726.

23. Romanowicz M. Progressive failure analysis of unidirectional fiber-reinforced polymers with inhomogeneous interphase and randomly distributed fibers under transverse tensile loading // Compos. A. Appl. Sci. Manufact. - 2010. - V. 41. - P. 1829-1838.

24. Zhong Y., Wang J., Wu Y.M., Huang Z. Effective moduli of particle-filled composite with inhomogeneous interphase: Part II—Mapping method and evaluation // Compos. Sci. Tech. - 2004. - V. 64. -P. 1353-1362.

25. Zare Y., Fasihi M., Rhee K.Y. Efficiency of stress transfer between polymer matrix and nanoplatelets in clay/polymer nanocomposites // Appl. Clay Sci. - 2017. - V. 143. - P. 265-272.

26. Zare Y., Rhee K.Y. Multistep modeling of Young's modulus in polymer/clay nanocomposites assuming the intercalation/exfoliation of clay layers and the interphase between polymer matrix and nanoparticles // Compos. A. Appl. Sci. Manufact. - 2017. - V. 102. - P. 137-144.

27. Zare Y., Rhee K.Y., Park S.-J. Predictions of micromechanics models for interfacial/interphase parameters in polymer/metal nanocomposites // Int. J. Adhes. Adhesives. - 2017. - V. 79. - P. 111-116.

28. Razavi R., Zare Y., Rhee K.Y. A model for tensile strength of polymer/ carbon nanotubes nanocomposites assuming the percolation of interphase regions // Colloid. Surf. A. Physicochem. Eng. Aspects. - 2018.-V. 538. - P. 148-154.

29. Amraei J., Jam J.E., Arab B., Firouz-Abadi R.D. Modeling the interphase region in carbon nanotube-reinforced polymer nanocomposites // Polymer Compos. - 2019. - V. 40. - P. E1219-E1234.

30. Hassanzadeh-Aghdam M., Mahmoodi, Ansari R., Darvizeh A. Interphase influences on the mechanical behavior of carbon nanotube-shape memory polymer nanocomposites: A micromechanical approach // J. Intell. Mater. Syst. Struct. - 2018. - doi 1045389X18812704.

31. Ji X.L., Jing J.K., Jiang W., Jiang B.Z. Tensile modulus of polymer nanocomposites // Polymer Eng. Sci. - 2002. - V. 42. - P. 983-993.

32. Zare Y., Garmabi H. Thickness, modulus and strength of interphase in clay/polymer nanocomposites // Appl. Clay Sci. - 2015. - V. 105. -P. 66-70.

33. Zare Y., Garmabi H. A developed model to assume the interphase properties in a ternary polymer nanocomposite reinforced with two nanofillers // Compos. B. Eng. - 2015. - V. 75. - P. 29-35.

34. Chang Y.W., Kim S., Kyung Y. Poly (butylene terephthalate)-clay nanocomposites prepared by melt intercalation: morphology and ther-momechanical properties // Polymer Int. - 2005. - V. 54. - P. 348-353.

35. Kontou E., Niaounakis M. Thermo-mechanical properties of LLDPE/ SiO2 nanocomposites // Polymer. - 2006. - V. 47. - P. 1267-1280.

36. Yeh M.-K., Hsieh T.-H., Tai N.-H. Fabrication and mechanical properties of multi-walled carbon nanotubes/epoxy nanocomposites // Mater. Sci. Engin. A. - 2008. - V. 483. - P. 289-292.

37. Isayev A., Kumar R., Lewis T.M. Ultrasound assisted twin screw extrusion of polymer-nanocomposites containing carbon nanotubes // Polymer. - 2009. - V. 50. - P. 250-260.

38. Grosberg A.Y., Kuznetsov D. Quantitative theory of the globule-to-coil transition. 1. Link density distribution in a globule and its radius of gyration // Macromolecules. - 1992. - V. 25. - P. 1970-1979.

39. Zare Y Effects of interphase on tensile strength of polymer/CNT nanocomposites by Kelly-Tyson theory // Mech. Mater. - 2015. -V. 85. - P. 1-6.

40. Pukanszky B. Influence of interface interaction on the ultimate tensile properties ofpolymer composites // Composites. - 1990. - V. 21. -P. 255-262.

41. Nicolais L., Narkis M. Stress-strain behavior of styrene-acrylonitrile/ glass bead composites in the glassy region // Polymer Eng. Sci. -1971. - V. 11. - P. 194-199.

42. Piggott M., Leidner J. Misconceptions about filled polymers // J. Appl. Polymer Sci. - 1974. - V. 18. - P. 1619-1623.

Поступила в редакцию 19.02.2019 г., после доработки 29.03.2019 г., принята к публикации 06.04.2019 г.

Сведения об авторах

Yasser Zare, PhD, Dr., Kyung Hee University, Republic of Korea, y.zare@aut.ac.ir Kyong Yop Rhee, PhD, Prof., Kyung Hee University, Republic of Korea, rheeky@khu.ac.kr

i Надоели баннеры? Вы всегда можете отключить рекламу.