Научная статья на тему 'Расчет модулей Юнга, сдвига и объемного сжатия полимерных нанокомпозитов при описании наночастиц с межфазными границами в рамках модели ядро–оболочка'

Расчет модулей Юнга, сдвига и объемного сжатия полимерных нанокомпозитов при описании наночастиц с межфазными границами в рамках модели ядро–оболочка Текст научной статьи по специальности «Нанотехнологии»

CC BY
135
39
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Физическая мезомеханика
WOS
Scopus
ВАК
RSCI
Область наук
Ключевые слова
полимерные нанокомпозиты / модуль / межфазные свойства / polymer particulate nanocomposites / modulus / interphase properties

Аннотация научной статьи по нанотехнологиям, автор научной работы — Yasser Zare, Kyong Yop Rhee

Предложена простая методология для изучения влияния межфазных характеристик на модули Юнга, сдвига и объемного сжатия полимерных нанокомпозитов, содержащих сферические наночастицы SiO2 и CaCO3. Каждая наночастица с прилегающей межфазной границей представлена в виде ядра с оболочкой. Для таких частиц рассчитаны модули сдвига и объемного сжатия. С помощью простых уравнений предсказаны различные модули композита, содержащего полимерную матрицу и представленные частицы. Отсутствие межфазных областей между полимерной матрицей и наночастицами приводит к заниженным значениям модулей нанокомпозитов, однако результаты расчетов хорошо согласуются с экспериментальными данными для соответствующих значений толщины и модулей межфазных областей. Коэффициент Пуассона полимерной матрицы m оказывает разное влияние на модули Юнга, сдвига и объемного сжатия нанокомпозитов. Изменение m слабо влияет на модуль сдвига, но существенно изменяет модуль объемного сжатия. Межфазные области большой толщины и с большими значениями модулей оказывают положительное влияние на модули Юнга, сдвига и объемного сжатия нанокомпозитов. Согласно представленным результатам, свойства полимерной матрицы, наночастиц и межфазных границ обуславливают широкий разброс значений модуля объемного сжатия, однако незначительно влияют на модули Юнга и сдвига нанокомпозитов.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

A core–shell structure for interphase regions surrounding nanoparticles to predict the shear, bulk and Young’s moduli of polymer particulate nanocomposites

A simple methodology is suggested to examine the roles of interphase characteristics in the shear, bulk and Young’s moduli of polymer nanocomposites containing spherical nanoparticles such as SiO2 and CaCO3. A core–shell structure is presumed for nanoparticles and surrounding interphase, and then the shear and bulk moduli of supposed particles are calculated. Subsequently, simple equations predict the different moduli of a composite containing a polymer matrix and supposed particles. The absence of interphase regions between the polymer matrix and nanoparticles underestimates the moduli of nanocomposites, but the calculations show good agreement with the experimental data assuming the proper levels for thickness and moduli of interphase regions. The Poisson ratio of polymer matrix m differently affects the shear, bulk and Young’s moduli of nanocomposites. The variation of m unimportantly changes the shear modulus, while m significantly affects the bulk modulus. Thick and high-modulus interphase regions cause the positive effects on the shear, bulk and Young’s moduli of nanocomposites. According to the present results, the properties of the polymer matrix, nanoparticles and interphase introduce a wide variation in the bulk modulus, while cause moderate and slight changes in the Young’s and shear moduli of nanocomposites, respectively.

Текст научной работы на тему «Расчет модулей Юнга, сдвига и объемного сжатия полимерных нанокомпозитов при описании наночастиц с межфазными границами в рамках модели ядро–оболочка»

УДК 539.32

Расчет модулей Юнга, сдвига и объемного сжатия полимерных нанокомпозитов при описании наночастиц с межфазными границами в рамках модели ядро-оболочка

Y. Zare1, K.Y. Rhee2

1 Исламский университет Азад, Тегеран, Иран 2 Университет Кёнхи, Сеул, 446-701, Южная Корея

Предложена простая методология для изучения влияния межфазных характеристик на модули Юнга, сдвига и объемного сжатия полимерныж нанокомпозитов, содержащих сферические наночастицы SiO2 и СаСОз. Каждая наночастица с прилегающей межфазной границей представлена в виде ядра с оболочкой. Для таких частиц рассчитаны модули сдвига и объемного сжатия. С помощью простыж уравнений предсказаны различные модули композита, содержащего полимерную матрицу и представленные частицы. Отсутствие межфазныж областей между полимерной матрицей и наночастицами приводит к заниженным значениям модулей нанокомпозитов, однако результаты расчетов хорошо согласуются с экспериментальными данными для соответствующих значений толщины и модулей межфазныж областей. Коэффициент Пуассона полимерной матрицы vm оказывает разное влияние на модули Юнга, сдвига и объемного сжатия нанокомпозитов. Изменение vm слабо влияет на модуль сдвига, но существенно изменяет модуль объемного сжатия. Межфазные области большой толщины и с большими значениями модулей оказывают положительное влияние на модули Юнга, сдвига и объемного сжатия нанокомпозитов. Согласно представленным результатам, свойства полимерной матрицы, наночастиц и межфазных границ обуславливают широкий разброс значений модуля объемного сжатия, однако незначительно влияют на модули Юнга и сдвига нанокомпозитов.

Ключевые слова: полимерные нанокомпозиты, модуль, межфазные свойства

DOI 10.24411/1683-805X-2019-12010

A core-shell structure for interphase regions surrounding nanoparticles to predict the shear, bulk and Young's moduli of polymer particulate

nanocomposites

Y. Zare1 and K.Y. Rhee2

1 Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin, 446-701, Republic of Korea

A simple methodology is suggested to examine the roles of interphase characteristics in the shear, bulk and Young's moduli of polymer nanocomposites containing spherical nanoparticles such as SiO2 and CaCO3. A core-shell structure is presumed for nanoparticles and surrounding interphase, and then the shear and bulk moduli of supposed particles are calculated. Subsequently, simple equations predict the different moduli of a composite containing a polymer matrix and supposed particles. The absence of interphase regions between the polymer matrix and nanoparticles underestimates the moduli of nanocomposites, but the calculations show good agreement with the experimental data assuming the proper levels for thickness and moduli of interphase regions. The Poisson ratio of polymer matrix vm differently affects the shear, bulk and Young's moduli of nanocomposites. The variation of vm unimportantly changes the shear modulus, while vm significantly affects the bulk modulus. Thick and high-modulus interphase regions cause the positive effects on the shear, bulk and Young's moduli of nanocomposites. According to the present results, the properties of the polymer matrix, nanoparticles and interphase introduce a wide variation in the bulk modulus, while cause moderate and slight changes in the Young's and shear moduli of nanocomposites, respectively.

Keywords: polymer particulate nanocomposites, modulus, interphase properties

© Zare Y., Rhee K.Y., 2019

1. Introduction

The properties of polymer nanocomposites depend on different parameters such as content, modulus, aspect ratio, arrangement, dispersion and agglomeration of nano-particles, as well as the strength of interfacial adhesion between polymer and nanofiller phases [1-9]. The researchers have tried to manipulate these parameters to obtain acceptable properties in polymer nanocomposites. Among the mentioned parameters, the interfacial adhesion/interaction between polymer matrix and nanofiller significantly affect the behavior of polymer nanocomposites, due to the significant surface area of nanoparticles and the strong interfacial adhesion at nanoscale [10-12]. However, the conventional models for composites such as Halpin-Tsai cannot consider the interfacial adhesion/interaction between polymer and nanoparticles and cannot present accurate predictions for Young's modulus of polymer nanocomposites [13].

The large specific surface area of nanoparticles and the strong interfacial adhesion cause the formation of a different phase between polymer matrix and filler phases—interphase [14-16]. The effect of the interphase on the mechanical properties of polymer nanocomposites is considerable, due to the extraordinary interfacial area at the poly-mer-nanoparticles interface. Many researchers have studied the interphase properties and their influences on the mechanical properties of polymer nanocomposites such as Young's modulus and tensile/yield strength by modeling methods [17-19]. The experimental results of Young's modulus and tensile strength can be used in these models to calculate the interphase properties.

The previous studies developed micromechanical models by direct adding another phase (interphase) to them. This assumption may load to error in calculating the modulus and strength, due to inappropriate considering the interphase surrounding nanoparticles. Moreover, the previous studies mainly focused on the interphase by modeling the Young's modulus and tensile/yield strength of polymer nanocomposites. Therefore, the effects of the interphase on the shear and bulk moduli of polymer nanocomposites have been disregarded in recent years.

2. Methods

In this paper, a core-shell structure is assumed for nanoparticles and interphase (Fig. 1) and its shear and bulk moduli are calculated by a proper model. Subsequently, the core-shell particles are supposed in the polymer matrix (Fig. 1) and the moduli of the composite are predicted by the same model. The predictions of the present method are compared with the experimental data of Young's modulus and the results are presented focusing on the interphase. The effects of several parameters attributed to the polymer matrix, nanoparticles and interphase on the various moduli of polymer nanocomposites are discussed.

Berryman [20] suggested a self-consistent method to estimate the effective elastic constants for inhomogeneous composites containing ellipsoidal inclusions using elastic-wave scattering theory. According to this method, the shear G and bulk K moduli of composites with spherical inclusions are presented as

Q%

G - Gm + (Gf - Gm)

K - Km + (Kf - Km)

G + F

q — _ m m

1 -% + Q%

P^f

1 -% + P%

P-

Fm -

Gf + Fm Km + 4/3 Gf Kf + 4/3 Gf '

Gm/6(9Km + 8Gm)

(1)

(2)

(3)

(4)

(5)

Km + 2Gm

where subscripts m and f show the matrix and filler, respectively, 9 is volume fraction.

To assume the interphase, the nanoparticles and surrounding interphase are supposed as core-shell particles at the first step. The G and K for these particles are calculated by the Berryman approach assuming the interphase as the matrix (Fig. 1) by

Gp = Gi + (Gf - Gi) x

x_Q%/(% + 9i)_

1 - %/(% + 9i) + Q%/(% + 9i)

(6)

Fig. 1. The core-shell structure of nanoparticles and interphase in the proposed method and the composite containing the core-shell particles (color online)

Kp = Ki + (Kf - Ki)X

X

2 =

1 -%/(%+Pf (%+9i)' G + F

Gf + Fi

p = Ki + 4/3 Gf Kf + 4/3 Gf

(7)

(8) (9)

F=

(10)

_ G^6(9Kj + SGj) Ki + 2Gi '

where the subscript i shows the interphase. The volume fraction of the interphase for composites containing spherical nanoparticles [21] can be calculated by

=%

r + r

-1

(11)

where r and ri are the radius of nanoparticles and interphase thickness, respectively. ri _ 0 results in ^ _ 0, indicating the absence of interphase in nanocomposite.

At the next step, the composite comprising the core-shell particles in the polymer matrix is considered and the moduli are predicted by the Berryman method assuming the core-shell particles as the filler phase (see Fig. 1) by

G _ Gm + (Gp - Gm)"--~

1

K = Km + ( Kp - Km )

+ 9i)+Q(% + 9i) P(% + 9i) 1 -(% +9i)+P (% +9i)'

(12) (13)

P =

Km + 4/3 Gp

Kp + 4/3Gp'

Q-

Gm + Fm

Gp + Fm'

(14)

(15)

The Young's modulus E can be generally determined for an isotropic solid as

e _-9KG_. (16)

3K + G

Assuming the matrix, filler, interphase and composite as isotropic elastic solids, K and G can be determined by

E

K

G=

3 - 6v

E

(17)

(18)

2 + 2v

where v is the Poisson ratio. The perfectly bonded interfaces of nanoparticles and interphase and matrix and interphase are supposed in the proposed method, and the imperfect bondings are revealed by the interphase properties.

3. Results and discussion

3.1. Evaluation of model by experimental results

Equation (16) calculates the Young's modulus in several samples assuming the absence and presence of interphase. The calculations are compared with the experimental data.

6.5-

O

5.0-

4.5

■ Experimental

-±-rx = 0

Proper interphase

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

■ Jtr

-▲

k^------

0.0 0.5 1.0 1.5 Si02, vol. %

2.0

4.5- ■ Experimental l£

4.0- -•- Proper interphase

<3 §3.5-

3.0-

2.51

2 3 4 CaCQ3, vol. %

3.5" 3.4

<3

PH

O3.3-

3.2-

3.1

■ Experimental

-A-r—0

-•-Proper interphase

■ ____

Ph

O

2.8 2.6 2.4 2.22.0

0

0.0 0.2 0.4 0.6 0.8 1.0 Si02, vol. %

■ Experimental \d_

rx = 0

-•- Proper interphase

4 6 8 CaCQ3, vol. °/c

10 12

Fig. 2. Comparison between experimental results and predictions of Young's modulus by the proposed method in the absence and presence of interphase for PEEK/SiO2 [22] (a), PS/SiO2 [23] (b), PA66/CaCO3 [13] (c) and PVC/CaCO3 [24] samples (d)

Figure 2 illustrates the experimental data and the predictions of Young's modulus for four samples including PEEK/SiO2 [22], PS/SiO2 [23], PA66/CaCO3 [13] and PVC/CaCO3 [24]. The (r, Em) values for these samples were reported as (6.5, 4.5), (8, 3.12), (19, 2.4) and (40, 2.12) (nm, GPa, respectively). The Ef is also considered as 80 and 26 GPa for SiO2 and CaCO3 nanoparticles, respectively. Moreover, v f is assumed as 0.17 [25] and 0.27 [13] for SiO2 and CaCO3. As observed in Fig. 2, the calculations in the absence of interphase r; = 0 are below the experimental data demonstrating that the absence of interphase underestimates the modulus. As a result, the interphase should be assumed in the nanocomposites, due to the high interfacial area and strong interfacial interaction between the polymer matrix and nanoparticles. The interphase occupies a large fraction of nanocomposites (even higher than nano-particles in some cases), which significantly affects the mechanical properties [26-28].

The present methodology for the shear and bulk moduli of nanocomposites accurately predicts the modulus for the reported samples. The calculations show good agreement with the experimental data by considering a proper interphase thickness and modulus as shown in Fig. 2. The highest value of r; should be smaller than the gyration radius of polymer macromolecules Rg, E; varies from the Young's modulus of polymer matrix Em to nanofiller modulus Ef. Thus, E; should be obtained between Em and Ef levels. The best values of (r;, E;) are calculated as (6, 22), (17, 65), (35, 25) and (3, 5) (nm, GPa) for PEEK/SiO2, PS/ SiO2, PA66/CaCO3 and PVC/CaCO3 samples, respectively. As observed, the interphase properties are obtained in the permitted ranges confirming the correctness of the proposed method assuming the interphase. The different values for the interphase properties in the reported samples indicate various levels of interfacial properties as a function of the miscibility between polymer matrix and nanoparticles, dispersion level of nanoparticles, etc. [29, 30].

3.2. Effects of component properties

The effects of component (matrix, nanofiller and interphase) properties on the predicted moduli are discussed.

Figure 3 shows the effects of % and r on different moduli of polymer particulate nanocomposite by contour plots at Em = 3 GPa, Ef = 50 GPa, vm = 0.4, vf = 0.25, r; = 10 nm and E; = 30 GPa. The illustrations for moduli indicate that the % and r parameters have similar effects on the shear, bulk and Young's moduli of polymer nano-composites. The high concentration of nanofiller and the smallest level of nanoparticle radius yield the best moduli. On the other hand, the worst calculations are reported by a low concentration of large nanoparticles. The high content of nanoparticles in the nanocomposite causes a high stiffening effect, which significantly reinforces the polymer ma-

trix. Smaller nanoparticles introduce a larger interfacial area between polymer matrix and nanoparticles, which improves the mechanical involvement of polymer chains to nanoparticles and increases the reinforcement of the polymer matrix. Accordingly, the effects of the nanoparticle content and size on the predicted moduli are logical, which confirm the correctness of the proposed method.

Figure 4 depicts the effects of the vm and vf factors on the various moduli of polymer nanocomposite based on the suggested method at % = 0.02, r = 20 nm, Em = 3 GPa, Ef = 50 GPa, r = 10 nm and E; = 30 GPa.

0.01 0.02 0.03 0.04 9f

Fig. 3. Contour plots for the dependence of shear (a), bulk (b) and Young's moduli (c) (all in GPa unit) on 9f and r parameters at Em = 3 GPa, Ef = 50 GPa, vm = 0.4, vf = 0.25, r; = 10 nm and E; = 30 GPa (color online)

It is observed (Fig. 4) that the vf parameter does not affect the shear and bulk moduli and these moduli only depend on the vm parameter, where a high vm induces the low and high levels for G and K, respectively. Therefore, vm differently governs the shear and bulk moduli of nanocomposites at the same values of other parameters. However, the variation of vm from 0.3 to 0.45 insignificantly changes the shear modulus, while considerably affects the bulk modulus. As observed in Fig. 4, c, both vm and vf factors affect the values of Young's modulus based on the present method. The best level of Young's modulus

is obtained by low vm and high vf values. Moreover, vm > 0.37 causes a low Young's modulus at different vf. As a result, vm and vf dissimilarly control the values of Young's modulus in polymer particulate nanocomposites. However, the Young's modulus slightly varies from 3.41 to 3.44 GPa by variation of these parameters, demonstrating the negligible effects of vm and vf on E. So, vm and vf parameters only cause a high influence on the bulk modulus of nanocomposites, while the shear and Young's moduli remain approximately constant at different levels of these factors.

Ef, GPa

Ef, GPa

Ef, GPa

0.30

0.35

0.40

Fig. 4. Shear (a), bulk (b) and Young's moduli (c) of nanocomposites (all in GPa unit) as a function of vm and vf factors at 9f = 0.02, r = 20 nm, Em = 3 GPa, Ef = 50 GPa, r; = 10 nm and E; = 30 GPa (color online)

Fig. 5. Contour plots for the dependence of shear (a), bulk (b) and Young's moduli (c) of nanocomposite (all in GPa unit) on Em and Ef parameters at 9f = 0.02, r = 20 nm, vm = 0.4, vf = 0.25, r; = 10 nm and E; = 30 GPa (color online)

v

E-v GPa | 3025 . 2015105 1

m

V

1.50 1.45 1.40 1.35 1.30 1.25 1.20 1.15

Fig. 6. The roles of r and Ei in shear (a), bulk (b) and Young's moduli (c) of polymer nanocomposites (all in GPa unit) according to the suggested method at 9f = 0.02, r = 20 nm, Em = 3 GPa, Ef = 50 GPa, v m = 0.4 and vf = 0.25 (color online)

Figure 5 also shows the effects of the Young's moduli of polymer matrix and nanoparticles on the different moduli of nanocomposites at % = 0.02, r = 20 nm, v m = 0.4, vf = = 0.25, r = 10 nm and Ei = 30 GPa. It is shown that Ef insignificantly changes the different moduli, but Em mainly affects the moduli of nanocomposites. The high modulus of polymer matrix causes a high modulus for polymer nanocomposite. The possible reason for the unimportant effect of Ef on the moduli of nanocomposites may be its high level compared to Em. Although the Young's modu-

lus of nanoparticles is assumed to reach 200 GPa in Fig. 5, the Young's modulus of nanocomposites improves to 4.4 GPa at the best condition with Em = 4 GPa.

The previous researches have reported that some phenomena such as aggregation/agglomeration of nanoparticles, weak interfacial adhesion and unsuitable condition for production of samples may make a poor improvement in the Young's modulus of nanocomposites [31-33]. Accordingly, the insignificant effect of Ef on the moduli of nanocomposites is logical based on the mentioned explanations. However, the variation of the shear modulus by Em and Ef parameters is negligible (Fig. 5, a), while the highest variation is observed in the bulk modulus (Fig. 5, b). Hence, Em and Ef parameters cause high differences in the bulk and Young's moduli of polymer nanocomposites.

Figure 6 illustrates the influences of the interphase properties including r and Ei on the shear, bulk and Young's moduli of polymer nanocomposites according to the suggested method at % = 0.02, r = 20 nm, Em = 3 GPa, Ef = 50 GPa, vm = 0.4 and vf = 0.25. The r and Ei parameters show relatively similar effects on the moduli of polymer nanocomposites. The best moduli are achieved by the highest levels of r and E;, whereas their small levels decrease the moduli. So, the interphase thickness and modulus have positive roles in the moduli of polymer nano-composites. These evidences are reasonable, because the interphase reinforces the polymer nanocomposites beside the nanoparticles. Clearly, a more-content and stiffer interphase produces a stiffer nanocomposite, because the interphase is commonly stiffer than the polymer matrix. The literature reports also indicated that the thickness and modulus of interphase positively improve the moduli of polymer nanocomposites [34-36]. The rational outputs of the proposed methodology for the effects of the interphase properties on the moduli prove the correctness of the currently proposed method. However, the most effects of ri and Ei are observed on the bulk modulus (Fig. 6, b), while the shear modulus (Fig. 6, a) is slightly affected by these parameters. As a result, the bulk modulus considerably relates to the interphase properties, while the shear modulus shows very low dependence on them. Generally, the bulk modulus demonstrates a wide variation by the properties of polymer matrix, nanoparticles and interphase based on the current approach. Furthermore, the shear modulus slightly changes depending on the properties of nanocomposite components.

4. Conclusions

In this paper, a core-shell structure was assumed for nanoparticles and interphase, and its shear and bulk moduli were calculated by the Berryman model. These core-shell particles were supposed as filler in the polymer matrix (see Fig. 1), and the moduli of the composite were predicted by the same model. The calculations of the proposed method

in the absence of interphase were below the experimental data demonstrating that the absence of interphase underestimates the moduli. Nevertheless, the Young's modulus calculations showed fine agreement with the experimental data by proper levels of the interphase properties. The best moduli of polymer nanocomposite were obtained by the high concentration of the smallest nanoparticles. Also, vm differently governed the shear and bulk moduli of nano-composites at the same values of other parameters. However, the variation of vm insignificantly changed the shear modulus, while considerably affected the bulk modulus. The Young's modulus of nanoparticles does not change all moduli, and only Em changes the moduli of nanocom-posites. The variation of shear modulus by the Em and Ef parameters was negligible, while the highest variation was observed in the bulk modulus. The r and E; parameters also represented relatively similar influences on the moduli of polymer nanocomposites. The best moduli were logically achieved by the highest levels of r; and E;, because the interphase reinforces the polymer nanocomposite in addition to nanoparticles. According to the present method, the bulk modulus demonstrated a wide variation by the properties of polymer matrix, nanoparticles and interphase, while the Young's and shear moduli showed moderate and slight changes by the properties of nanocomposite components, respectively.

References

1. Sahami M, Kalaee M., Aghili A., Mazinani S., Yeganeh J.K. Physical and mechanical properties of chlorosulfonated PE (CSPE)/organoclay nanocomposites compatibilized with epoxidized natural rubber // J. Vinyl Additive Tech. - 2017. - V. 23. - P. 1.

2. Zare Y., Rhee K.Y. Evaluation and development of expanded equations based on Takayanagi model for tensile modulus of polymer nanocomposites assuming the formation of percolating networks // Phys. Mesomech. - 2018. - V. 21. - No. 4. - P. 351-357.

3. Badamshina E.R., Goldstein R.V., Ustinov K.B., Estrin Ya.l. Strength and fracture toughness of polyurethane elastomers modified with carbon nanotubes // Phys. Mesomech. - 2018. - V. 21. - No. 3. - P. 187192.

4. Zare Y., Garmabi H., Rhee K.Y. Structural and phase separation characterization of poly (lactic acid)/poly(ethylene oxide)/carbon nanotube nanocomposites by rheological examinations // Compos. Eng. B. -

2018. - V. 144. - P. 1-10.

5. Sadeghi A., Moeini R., Yeganeh J.K. Highly conductive PP/PET polymer blends with high electromagnetic interference shielding performances in the presence of thermally reduced graphene nano-sheets prepared through melt compounding // Polymer Compos. -

2019. - V. 40. - P. E1461-E1469.

6. Sanjari Shahrezaei M.A., Goharpey F., Khademzadeh Yeganeh J. Effect of selective localization of cellulose nanowhiskers on viscoelas-tic phase separation // Polymer Eng. Sci. - 2018. - V. 58. - No. 6. -P. 928-942.

7. Raiisi-Nia M.R., Aref-Azar A., Fasihi M. Acrylonitrile-butadiene rubber functionalization for the toughening modification of recycled poly (ethylene terephthalate) // J. Appl. Polymer Sci. - 2014. - V. 131. -P. 13.

8. Fasihi M., Targhi A.A., Bayat H. The simultaneous effect of nucleating and blowing agents on the cellular structure of polypropylene

foamed via the extrusion process // Polymers. - 2016. - V. 16. - No. 3. -P. 235-241.

9. Fasihi M., Mansouri H. Nonisothermal crystallization behavior of iso-tactic polypropylene/thermoplastic rubber blends // J. Macromolec. Sci. A. - 2017. - V. 54. - No. 12. - P. 951-955.

10. Zare Y., Rhee K.Y. Development of a model for electrical conductivity of polymer graphene nanocomposites assuming interphase and tunneling regions in conductive networks // Indust. Eng. Chem. Res. -2017. - V. 56. - P. 9107-9115.

11. Li H.-X., Zare Y., Rhee K.Y. The percolation threshold for tensile strength of polymer/CNT nanocomposites assuming filler network and interphase regions // Mater. Chem. Phys. - 2018. - V. 207. - P. 7683.

12. Zhu J.-M., Zare Y., Rhee K.Y. Analysis of the roles of interphase, waviness and agglomeration of CNT in the electrical conductivity and tensile modulus of polymer/CNT nanocomposites by theoretical approaches // Colloid. Surf. A. Phys. Eng. Aspects. - 2018. - V. 539. -P. 29-36.

13. Sisakht Mohsen R., Saied N.K., Ali Z., Hosein E.M., Hasan P. Theoretical and experimental determination of tensile properties of nano-sized and micron-sized CaCO3/PA66 composites // Polymer Compos. - 2009. - V. 30. - No. 3. - P. 274-280.

14. Mortazavi B., Bardon J., Ahzi S. Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study // Comput. Mater. Sci. - 2013. - V. 69. -P. 100-106.

15. Rafiee R., Pourazizi R. Influence of CNT functionalization on the interphase region between CNT and polymer // Comput. Mater. Sci. -2015. - V. 96. - P. 573-578.

16. Jahanmard P., Shojaei A. Mechanical properties and structure of solvent processed novolac resin/layered silicate: development of interphase region // RSC Advances. - 2015. - V. 5. - No. 98. - P. 8087580883.

17. Zare Y., Rhee K.Y., Park S.-J. Predictions of micromechanics models for interfacial/interphase parameters in polymer/metal nanocomposites // Int. J. Adhes. Adhesives. - 2017. - V. 79. - P. 111-116.

18. Razavi R., Zare Y., Rhee K.Y. A model for tensile strength of polymer/ carbon nanotubes nanocomposites assuming the percolation of interphase regions // Colloid. Surf. A. Physicochem. Eng. Aspects. - 2018. -V. 538. - P. 148-154.

19. Zare Y., Rhee K.Y. Dependence of Z parameter for tensile strength of multi-layered interphase in polymer nanocomposites to material and interphase properties // Nanoscale Res. Lett. - 2017. - V. 12. - No. 1.-P. 42.

20. Berryman J.G. Long-wavelength propagation in composite elastic media II. Ellipsoidal inclusions // J. Acoust. Soc. Am. - 1980. - V. 68. -No. 6. - P. 1820-1831.

21. Yanovsky Yu.G., Kozlov G.V., Karnet Yu.N. Fractal description of significant nano-effects in polymer composites with nanosized fillers. Aggregation, phase interaction, and reinforcement // Phys. Meso-mech. - 2013. - V. 16. - No. 1. - P. 9-22.

22. Zhang G., Schlarb A., Tria S., Elkedim O. Tensile and tribological behaviors of PEEK/nano-SiO2 composites compounded using a ball milling technique // Compos. Sci. Technol. - 2008. - V. 68. - No. 15.-P. 3073-3080.

23. Vaziri H.S., Abadyan M., Nouri M., Omaraei I.A., Sadredini Z., Ebrahimnia M. Investigation of the fracture mechanism and mechanical properties of polystyrene/silica nanocomposite in various silica contents // J. Mater. Sci. - 2011. - V. 46. - No. 17. - P. 56285638.

24. Zhang L., Luo M., Sun S., Ma J., Li C. Effect of surface structure of nano-CaCO3 particles on mechanical and rheological properties of PVC composites // J. Macromol. Sci. B. - 2010. - V. 49. - No. 5. -P. 970-982.

25. Fang W. Determination of the elastic modulus of thin film materials using self-deformed micromachined cantilevers // J. Micromech. Microeng. - 1999. - V. 9. - No. 3. - P. 230.

26. Zare Y., Rhee K.Y. Development and modification of conventional Ouali model for tensile modulus of polymer/carbon nanotubes nano-composites assuming the roles of dispersed and networked nanopar-ticles and surrounding interphases // J. Colloid Int. Sci. - 2017. -V. 506. - P. 283-290.

27. Zare Y., Rhee K.Y. Development of Hashin-Shtrikman model to determine the roles and properties of interphases in clay/CaCO3/PP ternary nanocomposite // Appl. Clay Sci. - 2017. - V. 137. - P. 176182.

28. Amraei J., Jam J.E., Arab B., Firouz-Abadi R.D. Modeling the interphase region in carbon nanotube-reinforced polymer nanocomposites // Polymer Compos. - 2019. - V. 40. - P. E1219-E1234.

29. Hemmati F., Garmabi H., Modarress H. Compatibilization mechanisms of nanoclays with different surface modifiers in UCST blends: Opposing effects on phase miscibility // Polymer. - 2014. - V. 55. -No. 25. - P. 6623-6633.

30. Rostami M, Mohseni M., Ranjbar Z. An attempt to quantitatively predict the interfacial adhesion of differently surface treated nanosilicas in a polyurethane coating matrix using tensile strength and DMTA analysis // Int. J. Adhes. Adhesives. - 2012. - V. 34. - P. 24-31.

31. Zare Y., Rhee K.Y. Prediction of tensile modulus in polymer nano-composites containing carbon nanotubes (CNT) above percolation

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

threshold by modification of conventional model // Current Appl. Phys. - 2017. - V. 17. - No. 6. - P. 873-879.

32. Zare Y., Fasihi M., Rhee K.Y. Efficiency of stress transfer between polymer matrix and nanoplatelets in clay/polymer nanocomposites // Appl. Clay Sci. - 2017. - V. 143. - P. 265-272.

33. Sharifzadeh E, Ghasemi I., Qarebagh A.N. Modeling of blend-based polymer nanocomposites using a knotted approximation of Young's modulus // Iran. Polymer J. - 2015. - V. 24. - No. 12. - P. 1039-1047.

34. Nikfar N., Zare Y., Rhee K.Y. Dependence of mechanical performances of polymer/carbon nanotubes nanocomposites on percolation threshold // Physica B. Condens. Matter. - 2018. - V. 533. - P. 69-75.

35. Hassanzadeh-Aghdam M., Mahmoodi M., Ansari R., Darvizeh A. Interphase influences on the mechanical behavior of carbon nanotube-shape memory polymer nanocomposites: A micromechanical approach // J. Int. Mater. Syst. Struct. - 2019. - V. 30. - P. 463-478. - doi 1045389X18812704.

36. Montazeri A., Naghdabadi R. Investigation of the interphase effects on the mechanical behavior of carbon nanotube polymer composites by multiscale modeling // J. Appl. Polymer Sci. - 2010. - V. 117. -No. 1. - P. 361-367.

Received 19.12.2018, revised 18.02.2019, accepted 18.02.2019

Сведения об авторах

Yasser Zare, PhD, Dr., Islamic Azad University, Iran, [email protected]

Kyong Yop Rhee, PhD, Prof., Kyung Hee University, Republic of Korea, [email protected]

i Надоели баннеры? Вы всегда можете отключить рекламу.