Научная статья на тему 'Семантическая обработка информации в современных фактографических системах'

Семантическая обработка информации в современных фактографических системах Текст научной статьи по специальности «Компьютерные и информационные науки»

CC BY
794
355
Поделиться

Аннотация научной статьи по компьютерным и информационным наукам, автор научной работы — Зуенко А. А., Фридман А. Я.

Рассматривается проблема интеллектуализации баз данных в современных фактографических системах. Анализируются достоинства и недостатки реляционных систем управления базами данных, а также рассматриваются основные тенденции их развития. Проведенный анализ показывает, что интеграция баз данных и баз знаний на основе реляционной алгебры в принципе невозможна, и требуется новый математический аппарат для решения обозначенной проблемы. В качестве такого аппарата в статье предлагается алгебра кортежей, которая позволяет представлять данные и знания в виде системы многоместных отношений, а также дает возможность реализовывать процедуры логического вывода. Библиогр.14.

Похожие темы научных работ по компьютерным и информационным наукам , автор научной работы — Зуенко А. А., Фридман А. Я.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Semantic Data Processing in Modern Factographic Systems

The article examines the problem of developing intelligent databases in modern factographic systems. Merits and demerits of relational database management systems are analyzed, and new basic trends are studied as well. The analysis reveals that integration of databases and knowledge bases within relational algebra is essentially impossible, and new mathematical system is needed to solve the stated problem. Therefore the authors propose n-tuple algebra that serves to represent data and knowledge as a system of multiplace relations, as well as to realize logical inference procedures. Ref. – 14.

Текст научной работы на тему «Семантическая обработка информации в современных фактографических системах»

Сйик ночных іидив 2011

СЕМАНТИЧЕСКАЯ ОБРАБОТКА ИНФОРМАЦИИ В СОВРЕМЕННЫХ ФАКТОГРАФИЧЕСКИХ СИСТЕМАХ

А.А. Зуенко, А.Я. Фридман

Введение

Большинство фактографических систем используют для хранения и обработки данных реляционные СУБД (РСУБД), а также их расширения. Популярность реляционной модели данных обусловлена следующими причинами:

1. Понятность пользователю, не имеющему особых навыков в программировании.

2. Возможность присоединения новых элементов данных, записей, связей без изменения соответствующих подсхем и, следовательно, прикладных программ.

3. Максимальная гибкость при обработке незапланированных запросов с терминалов.

Но, пожалуй, главная причина успеха РСУБД состоит в том, что они базируются на строгом математическом аппарате - реляционной алгебре [1]. Несмотря на несомненные преимущества РСУБД для задач обработки данных, все попытки наделить эти системы интеллектуальными способностями, такими как дедуктивный вывод и управление данными на основе экспертных знаний о предметной области, до сих пор не имели коммерческого успеха. Осознавая недостатки своей реляционной модели в части представления семантики предметной области, Э. Кодд предложил расширенную реляционную модель (RM/T), в рамках которой были типизированы сущности и отношения между ними, введены новые правила ссылочной целостности. Однако модель RM/T также оказалась не приспособлена для представления основных структур знаний и "встраивания" процедур логического вывода.

По мнению авторов, сложившаяся ситуация обусловлена отсутствием единого аппарата для обработки данных и знаний. Другими словами, требуется более мощная алгебраическая система, чем реляционная алгебра, которая бы позволила c единых позиций представлять и анализировать табличные данные и экспертные знания.

В настоящей работе подробно рассмотрены современные тенденции в СУБД на основе реляционной модели данных, их достоинства и недостатки, а также одно из возможных расширений реляционной алгебры на задачу обработки знаний - алгебра кортежей.

Реляционные СУБД

В реляционных БД основными объектами управления являются файлы, организованные в виде таблиц. Эти таблицы (отношения) состоят из

множества элементарных кортежей. Для реализации запросов над файлами или представлениями БД используется реляционная алгебра со своим набором операций. Пять из этих операций - основные: проекция, объединение, прямое произведение, разность и селекция. Остальные операции реляционной алгебры реализуются как комбинации основных.

Как правило, РСУБД не позволяют добавлять новые типы данных, то есть набор типов данных в РСУБД заранее определен и фиксирован. Классические РСУБД не поддерживают композитных атрибутов (домены таких атрибутов содержат пользовательские типы данных, составленные из предопределенного набора элементарных типов), несмотря на то, что они не противоречат реляционной модели.

Ильная сторона реляционных СУБД заключается в том, что в них встроен язык запросов SQL, реализующий операции проекции и соединения отношений и предоставляющий необходимые средства для выполнения незапланированных запросов. Запросы к базе данных возвращают результаты в виде таблиц, которые тоже могут выступать как объект запросов.

РСУБД, в отличие от иерархических и сетевых СУБД, позволяют организовывать связи между таблицами в любой момент обработки [2]. В каждой таблице БД имеется, как правило, хотя бы одно поле, служащее ссылкой для другой таблицы. В терминологии РСУБД такие поля называются полями внешних ключей. С помощью внешних ключей можно связывать любые таблицы БД на любом этапе работы. Кроме того, на основе внешних ключей реализуется механизм, обеспечивающий ссылочную целостность данных.

С появлением РСУБД связывают возникновение двухзвенной архитектуры распределенных приложений “клиент-сервер” (например, [3]), поскольку РСУБД ориентированы на многопользовательскую обработку данных.

К основным недостаткам РСУБД относят то, что их семантическая составляющая развита слабо. Это, с одной стороны, затрудняет использование РСУБД в системах поддержки принятия решений и в предметных областях, имеющих сложно структурированные данные, где требуются дополнительные средства представления семантики данных. С другой стороны, программирование алгоритмов выборки данных на языке SQL порождает громоздкие

конструкции. В работе [4] приведен пример

реализации в реляционном стиле запроса “Определить все прямоугольники, которые покрывают некоторую область заданного квадрата” (впервые предложенный Стоунбрейкером). Этот пример иллюстрирует, что запросы к реляционной базе данных обладают довольно низкой степенью наглядности. Последнее препятствует анализу их смысла.

Перечисленные недостатки привели к появлению направления семантического моделирования и широкому использованию объектного подхода при организации хранения и обработки информации БД.

Объектно-ориентированный подход [5] был создан для решения задачи повышения уровня абстракции данных и стал фактическим стандартом разработки программного обеспечения. В объектноориентированных языках программирования (ОО-ЯП) предметная область описывается в виде совокупности экземпляров различных типов, которые определяются программистом. ООЯП поддерживают три парадигмы:

1) инкапсуляция данных;

2) наследование;

3) полиморфизм.

Разработчики современных СУБД стремятся тем или иным способом реализовать объектные парадигмы, расширяя возможности базовых моделей данных. При этом возникает вопрос о целесообразности применения объектно-ориентированного подхода при организации хранения данных. Несмотря на то, что области языков программирования и управления базами данных имеют много общего, в некоторых весьма важных аспектах они отличаются. В частности, по определению прикладная программа предназначена для решения заранее определенного набора специфических задач, а базы данных - для решения задач, формулировка которых может быть не известна в момент создания базы данных. Инкапсулированным объектам при разработке прикладной программы, очевидно, необходима некоторая доля —разумности”, поскольку это позволяет сократить код управления этими объектами, повысить эффективность работы программиста, улучшить сопровождение программы и т.д. Для баз данных использование в чистом виде объектно-ориентированного подхода зачастую может оказаться вредным, поскольку ограничивает возможность выполнения незапланированных запросов. Причина в том, что ООП обеспечивает инкапсуляцию данных и задает жестко регламентированные интерфейсы для объектов, тем самым наследуя недостатки иерархической (сетевой) модели данных.

Далее рассматриваются особенности различных расширений реляционного похода. Исследуются их возможности в представлении семантических ограничений предметной области и организации на их основе интеллектуальных процедур.

Совместное использование реляционного и объектно-ориентированного подходов

В зависимости от того, каким образом реализуются парадигмы объектно-ориентированного программирования, среди современных СУБД можно выделить три основных направления:

• постреляционные;

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

• объектно-ориентированные (ООСУБД);

• объектно-реляционные (ОРСУБД).

Первое и третье направление появились в результате развития реляционного подхода. Второе направление представляет собой логическое продолжение иерархического и сетевого подходов к представлению БД.

Постреляционные СУБД - результат эволюции РСУБД. Они позволяют создавать пользовательские типы данных (с некоторыми ограничениями) и таблицы с композитными столбцами. В качестве домена столбца может выступать таблица, а точнее - тип данных, соответствующий структуре таблицы и создаваемый одновременно с таблицей. Композитные типы создаются на основе некоторого базового множества элементарных типов, априорно поддерживаемых СУБД. Современные постреляционные СУБД (например, PostgreSql 8.02 [6]) не позволяют напрямую (средствами языка SQL или его объектных расширений) создавать массивы для хранения произвольных структур, несмотря на то, что сами пользовательские типы данных определяются без особого труда. Создание массивов пользовательских типов средствами таких СУБД требует описания на одном из объектно-ориентированных языков (чаще всего на С++ [5, 8]) самого массива, а также операторов преобразования массива в строку и обратно. Постреля-ционные СУБД позволяют хранить функции обработки данных, которые используют в качестве параметров определяемые пользователем типы. В PostgreSql поддерживается возможность множественного наследования таблиц, которая вызывает ряд проблем (например, уникальность значений ключевых полей таблиц-наследниц). Проблемы возникают из-за неадекватности отображения “объектный класс

- таблица”, характерного для постреляционных СУБД [4]. Реляционную таблицу нельзя считать аналогом объектного класса, несмотря на то, что она тоже описывается набором атрибутов, по следующим причинам:

1. Таблица, в отличие от объектного класса, является коллекцией однотипных объектов. В связи с этим, таблица должна иметь ключевой атрибут, который не характерен для объектного класса.

2. Таблица не имеет методов. Конечно, можно описать функции, работающие с данной таблицей. Но между вызовами “table.method(3)” и “procedure(table,3)” нельзя ставить знак равенства, поскольку разрушается инкапсуляция объектного класса - ключевая парадигма ООП.

Другими словами, более корректно отображение —динамический массив - таблица”.

Постреляционные СУБД не поддерживают полиморфного поведения объектов, лежащих в одной иерархии наследования. Более того, если таблица содержит поле базового типа, то добавление объекта дочернего типа приводит к усечению последнего.

Объектно-ориентированные СУБД (ООСУБД) [4] предназначены для постоянного хранения объектов ООЯП, в них обеспечивается та или иная форма настройки по адресам. Эти продукты не имели коммерческого успеха, поскольку требовали преобразования существующих данных в формат СУБД. ООСУБД изначально интегрированы с ООЯП. Например, в системе GemStone применяется язык представления данных OPAL. Таким образом, в код приложения нет необходимости встраивать дополнительные конструкции типа SQL. ООСУБД входят в состав компилятора, который обрабатывает исходный текст и автоматически создает в БД структуры для хранения объектов. Объект сохраняется в БД при вызове специального метода. Основной недостаток ООСУБД, который они унаследовали от иерархических СУБД, - невозможность осуществления незапланированных запросов к БД без изменения её структуры (добавления новых структур данных или методов), а значит, изменения и самой программы. Кроме того, если с одной и той же БД работают приложения, количество которых заранее не определено, то появление нового приложения требует перекомпиляции уже имеющихся.

Объектно-реляционные СУБД (например, Oracle 9i [7]), наряду с хранением реляционных данных, обеспечивают постоянное хранение объектов. Такие системы используют отображение “объектный класс

- домен” и поддерживают создание пользовательских типов данных. Это позволяет создавать композитные атрибуты, применять парадигмы наследования и полиморфизма. Так, если поле таблицы имеет базовый тип, то в нем может содержаться также и объект любого дочернего типа. Методы типа описываются в его теле, что поддерживает инкапсуляцию данных. Методы могут описывать преобразования к другим типам, что обеспечивает поддержку приведения типов на уровне доменов. Множественное наследование в современных ОРСУБД не поддерживается, хотя не исключается в будущем.

Помимо объектных расширений, ОРСУБД поддерживают все реляционные операторы. Поэтому ОРСУБД свободны от недостатков ООСУБД и поддерживают следующие возможности:

• незапланированные запросы;

• каскадное удаление (ссылочная целостность);

• поиск указателей и идентификаторов объектов скрыт от пользователя;

• использование преимуществ инкапсуляции для внутренней структуры отношений.

Поскольку ОРСУБД, по сути, реализуют реляционную модель с дополнительной поддержкой пользовательских типов на уровне доменов, то они наследуют все основные недостатки этой модели, связанные с семантикой и реализацией интеллектуальных процедур.

"Расширенные"реляционные модели данных как способ представления семантики

Исследования в области семантического моделирования были вызваны необходимостью создания системного подхода к решению проблемы проектирования баз данных. Для представления семантики данных разработаны различные "расширенные" данные, которые включают как неформальные семантические понятия, так и формальную модель для их интерпретации. Общий подход к семантическому моделированию содержит четыре этапа [4]:

1. Выявление некоторого множества семантических понятий, которые могут использоваться при неформальном описании рассматриваемой проблемы реального мира.

2. Введение набора соответствующих формальных объектов, которые могут использоваться для представления семантических понятий.

3. Установление набора формальных общих правил целостности, предназначенных для работы с такими объектами.

4. Определение набора формальных операторов, предназначенных для манипулирования этими объектами.

Наиболее популярны расширенные модели ER и RM/T [4, 9, 10]. ER-модель, по сути, есть неформальное дополнение базовой реляционной модели, она получила широкое распространение за счет использования диаграммной техники. С помощью диаграмм можно декларативно задавать, в частности, ограничения целостности. Семантическими понятиями ER-модели являются: объекты (сущности), свойства, отношения (связи), подтипы и супертипы. Объекты разделяются на правильные (сильные) и слабые. Слабым объектом называется тот, который находится в зависимости от некоторого другого объекта и не может без него существовать. Отношения могут иметь тип один-к-одному, один-ко-многим, многие-к-одному и многие-ко-многим. В модели определены типы таблиц, соответствующие перечисленным понятиям.

Механизм реализации расширений в КМ/Т, напротив, низкоуровневый: вводятся формальные объекты, в частности, бинарные и тернарные графовые отношения, правила целостности и операторы. Это делает модель более мощной и гибкой, но вместе с тем более сложной и ориентированной в первую очередь на программистов, а не на пользователей. В КМ/Т не делается никаких различий между объектами и отношениями, она содержит несколько специальных операторов, в основном, для работы с графовыми отношениями в дополне-

ние к операторам базовой реляционной модели. Объекты (включая отношения) представлены Е-отношениями и Р-отношениями - особыми видами отношений общего типа степени п. Е-отношения используются для указания объектов, а Р-отношения -для указания свойств этих объектов. В модели RM/T имеются и другие аналоги семантических концепций ER-модели. Кроме того, в RM/T предусмотрена поддержка различных типов агрегации данных. Минимальной атомарной смысловой единицей является бинарное отношение. Единицы молекулярной семантики могут быть более крупными, чем отдельные парные отношения, что позволяет, по-видимому, все конкурирующие подходы транслировать в эту среду [10].

Применение расширенных моделей при организации доступа к базам данных позволяет формулировать запрос с использованием семантики данных, повышая их уровень абстракции. Однако расширенные модели не ориентированы на семантический анализ запросов. Они не обладают развитыми средствами для задания ограничений, отличных от правил целостности.

Описанные расширения реляционной алгебры (расширенные модели данных, СУБД на основе объектно-ориентированного подхода и т.д.) получены либо путем введения сложных доменов, либо посредством добавления к пяти базовым реляционным операциям некоторого набора вспомогательных операций, которые, в принципе, могут быть выражены через базовые. В этом смысле все перечисленные ранее расширения изоморфны реляционной алгебре. Заметим, что большинство операций реляционной алгебры заимствовано из алгебры множеств. Однако в рамках реляционной алгебры не определены операции алгебры множеств над отношениями, заданными в различных схемах, а также не определена операция взятия дополнения. Другими словами, реляционная алгебра не может рассматриваться как полноценный аналог алгебры множеств для случая, когда в качестве множеств берутся отношения (множества элементарных кортежей). В то же время, известно, что не только данные, но и многие структуры знаний, используемые в формальных системах, представимы в виде отношений (графы, семантические сети, предикаты и т.п.). С другой стороны, установлено, что многие формальные системы (например, силлогистика Аристотеля, исчисление высказываний и т.д.) могут быть выражены на языке алгебры множеств.

Следовательно, в качестве базовой структуры для унификации обработки данных и знаний целесообразно выбрать отношение, причем требуется принципиально новый, по сравнению с реляционной алгеброй, математический аппарат, обеспечивающий изоморфизм с алгеброй множеств. Далее рассматривается такой математический аппарат - алгебра кортежей (АК).

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Расширение реляционной алгебры на задачу обработки знаний

Алгебра кортежей [11, 12] реализует общую теорию многоместных отношений, ориентированную на решение задач логического анализа (проверка правильности следствия, анализ гипотез и т. д.). За счет введения простых операций с атрибутами отношений удалось существенно расширить область применения этой алгебры по сравнению с реляционной.

Во-первых, операции алгебры множеств обобщены на случай, когда отношения заданы в различных декартовых произведениях. Для приведения произвольной совокупности отношений к единой схеме используются фиктивные компоненты. В результате удалось найти точные соответствия между операциями и структурами теории отношений и логическими операциями, включая квантификацию и логический вывод. Например, в логике обобщенным операциям объединения и пересечения соответствуют операции дизъюнкции и конъюнкции.

Во-вторых, разработаны новые математические структуры (С-кортежи, С-системы, .О-кортежи, Б-системы), позволяющие сжато представлять многоместные отношения за счет перехода от элементарных кортежей к кортежам, компонентами которых являются не отдельные элементы, а множества. Это дает возможность обойтись меньшими объемами памяти при хранении данных и знаний и значительно сократить вычислительные затраты на осуществление действий над отношениями.

В-третьих, исследованы матричные свойства структур АК. Анализ этих свойств предоставляет дополнительные резервы уменьшения трудоемкости процедур логического вывода. В частности, в Б-системах, которые в математической логике соответствуют конъюнктивным нормальным формам (КНФ), выделены специфические подструктуры -бесконфликтные и монотонные блоки, позволившие выявить новые структурные и статистические классы КНФ с полиномиально распознаваемым свойством выполнимости.

Подробное описание основ АК и ее приложений можно найти в [13, 14]. Здесь лишь кратко ознакомимся с основными понятиями АК.

В АК определены 4 структуры (С-кортеж, С-система, Б-кортеж, Б-система) табличного или матрицеподобного типа. Эти структуры носят обобщенное название АК-объекты. Каждая такая структура компактно представляет некоторое множество элементарных кортежей. Например, рассмотрим структуру С-кортежа. Запись [ХУЦ = [А В С] оз-

начает, что С-кортеж [А В С] соотносится со схемой отношения |А')/|. при этом АсХ; Вс¥; СсТ. и

Н] |А')7| = АхВхС. Если атрибут в схеме отношения выделен жирным шрифтом, то он трактуется не как отдельный атрибут, а как множество атрибутов. Компоненты АК-объектов являются подмножествами домена соответствующего атрии-

бута. Среди компонент особую роль играют две фиктивные компоненты: * - полная компонента, т.е. множество, равное домену некоторого атрибута, которая используется в С-кортежах и С-системах; 0

- пустое множество - используется в Б-кортежах и Б-системах.

С-система - это таблица, строки которой есть однотипные С-кортежи; она представляет отношение, равное объединению соответствующих декартовых произведений. Например, С-система

{а, й} {а, Ь}

К2[У7\ =

{а} {Ь, с}

= ({я, с!}х{а, й})и({<^}х

{Ь, с}).

Б-кортежи и Б-системы - это дополнения соответственно С-кортежей и С-систем. Они записываются в виде матриц, ограниченных перевернутыми скобками. Дополнение С-системы (С-кортежа) - Б-система (Б-кортеж) той же размерности, в которой каждая компонента равна дополнению соответствующей компоненты в исходной С-системе (С-кортеже).

С АК-объектами, заданными в одной схеме, можно выполнять любые операции алгебры множеств. Для выполнения операций с АК-объектами, имеющими разные схемы отношений, требуются операции с атрибутами. К ним относятся:

1) переименование атрибутов;

2) перестановка атрибутов;

3) обращение отношений;

4) добавление фиктивного атрибута (+А/г);

5) элиминация атрибута (-А/г). Подробно остановимся на двух последних операциях.

При добавлении фиктивного атрибута в схему отношения добавляется имя нового атрибута, а в АК-объект добавляется новый столбец с фиктивными компонентами (в С-кортежи и в С-системы -фиктивные компоненты а в Б-кортежи и Б-системы - фиктивные компоненты “0”). Эта операция соответствует правилу обобщения в логике.

При элиминации атрибута из АК-объекта удаляется столбец, а из его схемы отношения - соответствующий атрибут. Доказано, что элиминация атрибута Л' из С-кортежей и С-систем соответствует навешиванию квантора Эх в соответствующую логическую формулу, а элиминация того же атрибута из Б-кортежей и Б-систем - навешиванию квантора Ух.

Назовем операции алгебры множеств с АК-объектами с предварительным добавлением недостающих фиктивных атрибутов обобщенными операциями и отношениями алгебры множеств в АК и обозначим их соответственно

' Ео ' ~а ИТ-Д-

Первые две операции полностью соответствуют логическим операциям л и V. Отношение в АК соответствует отношению выводимости в исчислении предикатов. Отношение =а означает равенство структур при условии, что они приведены к одной

схеме отношения путем добавления атрибутов. Это обстоятельство позволяет использовать принципиально новый подход к построению процедур логического вывода и проверок выводимости (см. [11]).

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Разработанная алгебра кортежей и ее методы:

• позволяют унифицировано обрабатывать данные и знания, представленные в виде совокупности многоместных отношений с различными схемами;

• ускоряют выполнение процедур логического вывода при решении стандартных задач теории формальных систем за счет: 1) удобства распараллеливания вычислений, 2) использования матричных свойств отношений, а также новых структурных и статистических классов КНФ с полиномиально распознаваемым свойством выполнимости;

• дают возможность по-новому организовывать процедуры логического вывода.

Заключение

Интеллектуализация хранилищ информации в настоящее время составляет актуальную проблему в силу необходимости осуществлять поиск релевантной информации в возрастающих потоках данных. Фактографические информационные системы, где стандартом являются реляционные СУБД, отстают в этом отношении от систем обработки документов. Наметившийся разрыв, по мнению авторов, обусловлен тем, что реляционная алгебра малопригодна для задач логического анализа. Следовательно, требуется более мощная алгебраическая система, обладающая преимуществами реляционной алгебры в области распараллеливания вычислений, а также возможностью представления и реализации методов логического вывода.

В отличие от подхода, принятого в дедуктивных базах данных, где интеграция реляционных СУБД с системами логического вывода обеспечивается путем представления данных и знаний на языке исчисления предикатов, в настоящей работе рассматривается подход к унификации обработки данных и знаний на основе их представления в виде системы многоместных отношений (АК-объектов). Новый математический аппарат - алгебра кортежей - позволяет анализировать внутреннюю структуру отношений и содержит специфические методы, способствующие уменьшению трудоемкости процедур логического вывода. Кроме того, в рамках рассмотренной алгебры кортежей разработаны новые способы организации интеллектуальных процедур.

Таким образом, АК создает единую методологическую основу для обработки данных и знаний, представленных в виде многоместных отношений, и может рассматриваться как расши-рение реляционной алгебры на задачу обработки знаний.

Литература

1. Codd, E.F. A relational model of data for large shared data banks. / E.F. Codd // Comm. ACM. -1970. - V.13. - № 6. - Р. 377-387.

2. Мартин, Дж. Организация баз данных в вычислительных системах / Дж. Мартин. - М.: Мир, 1980.

- 664 с.

3. Олифер, В.Г. Сетевые операционные системы / В.Г. Олифер, Н.А. Олифер. - СПб.: Питер, 2003. -539 с.

4. Дейт, К. Дж. Введение в системы баз данных / К. Дж. Дейт:- 6-е издание: Пер. с англ. - M.; СПб.: Издательский дом —Вильямс”, 2000.

- 848 c.

5. Буч, Г. Объектно-ориентированный анализ и проектирование: с примерами приложений на C++. / Г. Буч. - СПб. - М.: Бином, Невский диалект, 1998. - 560 с.

6. Документация по PostgreSQL 8.0.1. Всемирная группа разработчиков PostgreSQL. Частичный перевод с английского. - Режим доступа: http://resurection.ru/doc/postgres.

7. Кайт, Т. Oracle для профессионалов / Т. Кайт. - М.

- СПб., Киев: торгово - издательский дом

“Diasoft”, 2003.

8. Страуструп, Б. Язык программирования C++. / Б. Страуструп. - 3-е изд. : Пер. с англ. - СПб., М.: Бином, Невский диалект, 1999. - 991 с.

9. Цаленко, М.Ш. Моделирование семантики в базах данных. /М.Ш. Цаленко. - М.: Наука, 1989. -288 с. - 848 c.

10. Codd, E.F. Extending the Database Relational Model to Capture More Meaning /E.F. Codd // ACM Transactions on Database Systems. - Vol. 4. - № 4, December 1979. - Р.397-434.

11. Kulik, B. Logical Analysis of Intelligence Systems by Algebraic Method / B. Kulik, A. Fridman, A. Zuenko // Sybernetics and Systems 2010: Proceedings of Twentieth European Meeting on Cybernetics and Systems Research (EMCSR 2010). -Vienna, Austria, 2010. - Р.198-203.

(ISBN 3-85206-178-8).

12. Kulik, B.A. Algebraic Method of Intelligent Data and Knowledge Processing / Boris A. Kulik, Alexander Ya. Fridman, Alexander A. Zuenko // Proceedings of First Russia and Pacific Conference on Computer Technology and Applications. - Vladivostok, 6 - 9 September, 2010. - Р.130-135. (ISBN 978-09803267-3-4).

13. Зуенко, А.А. Примеры применения алгебры кортежей в интеллектуальном анализе данных / А.А. Зуенко, Б.А. Кулик, А.Я. Фридман // Труды Двенадцатой национальной конф. по искусственному интеллекту с междунар. участием КИИ-2010 (20-24 сент. 2010 г., г. Тверь. конф. -Т.3. - М.: Физматлит, 2010. - С.279-287.

14. Зуенко, А.А. Развитие алгебры кортежей для логического анализа баз данных с использова-нием двуместных предикатов / А.А. Зуенко, А.Я. Фридман // Известия РАН. Теория и системы управления. - 2009. - №2. - С.95-103.