АГРОНОМИЯ
УДК 635.654:631.527.5
А.В. Обухова, Л.В. Омельянюк, Н.А. Поползухина
СЕЛЕКЦИОННО-ГЕНЕТИЧЕСКАЯ ОЦЕНКА ИСХОДНЫХ ФОРМ И ГИБРИДОВ ГОРОХА ПО ПРИЗНАКАМ ПРОДУКТИВНОСТИ И НОДУЛЯЦИИ
Ключевые слова: Pisum sativum L., исходный образец, диаллельные гибриды первого поколения, корреляционная зависимость, число и масса азотфиксирую-щих клубеньков.
Введение
Горох — основная зернобобовая культура в нашей стране, широко используется в качестве источника пищевого и кормового растительного белка. Как и другие бобовые, она обладает уникальной способностью вступать в симбиоз с клубеньковыми бактериями и фиксировать молекулярный азот из атмосферы, восстанавливая его до аммония [1]. В последние годы возрос интерес к микробиологической фиксации атмосферного азота в земледелии и растениеводстве, обусловленный главенствующей ролью этого процесса в азотном балансе биосферы Земли [2]. По данным многочисленных опытов ученых, содержание сим-биотически связанного азота атмосферы в фитомассе растений варьирует в пределах 29-95% от общего накопления количества азота, фиксируемого той или иной культурой. Это связано и с биологическими особенностями объектов исследований, и с почвенно-климатическими условиями, и с применяемыми методами проведения экспериментов [3, 4].
Регистрационные параметры новых сортов бобовых очень редко включают признаки, связанные с корневой системой и ноду-ляцией (образованием азотфиксирующих клубеньков). Сейчас очевидно, что растительный геном, участвующий в симбиозе микроорганизмов, регулирует развитие и функционирование клубеньков. Число клубеньков, их размеры, морфология и ультраструктура определяются генотипом растения [5].
В результате наших исследований выявлено, что донорами для селекции являются образцы с усатым типом листа (а^: на увеличение числа и массы семян с растения — Л 37/03, Омский 9; на крупносемянность — Благовест, Л 37/03; на мелкосемянность — Омский 9, Л 646/08. Наиболее ценный для селекции образец — Омский 9, имеющий высокую комбинационную способность по комплексу хозяйственно-ценных признаков [6].
Цель работы — изучить исходный материал для селекции сортов, сочетающих в себе высокую продуктивность с повышенной симбиотической азотфиксацией. В связи с этим были поставлены следующие задачи: на основе изучения исходных образцов и их диаллельных гибридов F1 выделить источники по хозяйственно-ценным показателям корневой системы (длина и масса корня, число
и масса азотфиксирующих клубеньков); выявить корреляционную зависимость продуктивности с другими элементами структуры урожая и признаками нодуляции.
Объекты и методы исследования
Объектом исследований послужили 5 родительских образцов гороха посевного с усатым типом листа (а^: Омский 9, Благовест, Л 37/03, Девиз, Л 646/08 и 20 диал-лельных гибридов первого ^,) поколения. Образцы Благовест и Л 37/03 по результатам ранее проведенных нами исследований рекомендованы как источники повышенной азотфиксации [6-8].
Экспериментальная часть работы проводилась на полях лаборатории селекции зернобобовых культур ГНУ СибНИИСХ Россельхозакадемии в течение 20102011 гг., различающихся по гидротермическому обеспечению вегетационного периода (май-август): первый год по погодным условиям был более благоприятен, чем второй. Количество осадков в 2010 г. составило 113 мм (54% от нормы). Пик засухи в
2010 г. наблюдался в июле — за месяц выпало 20 мм осадков (32% от нормы), и в первую декаду августа, когда осадков практически не было. Среднемесячная температура воздуха превышала среднемноголетнее значение в июне и августе, соответственно, на 0,7°С и 3,8°С. Май и июль отличались недостатком тепла — среднемесячная температура воздуха в мае составила 11,3°С (ниже средней многолетней на
0,9°С), а в июле была 17,8°С (ниже нормы на 1,6°С). В 2011 г. метеорологические условия в мае-августе в целом были близки к среднемноголетним показателям: выпало
206 мм осадков (102% от среднемноголетнего значения). Но распределение атмосферной влаги было неравномерным. Май-июнь были засушливыми, а июль-август — достаточно увлажненными. За эти периоды выпало осадков, соответственно, 59,1 мм (65,8% от нормы) и 146,4 мм (123,4% от нормы). Весь июнь температура воздуха была выше средней многолетней и составила 19,3°С (+1,4°С от нормы), а также во вторую декаду августа — 18,8°С (+1,7°С). В остальные периоды температура воздуха была ниже средней многолетней. Важно также отметить резкое колебание температуры воздуха и в течение суток.
Посев проводился вручную: в 2010 г. — 20 мая, 2011 г. — 18 мая. Предшественник
— яровая пшеница после кукурузы. Изучаемый селекционный материал размещался по методу рендомизированных блоков в четырех повторностях. Блок составляли гибриды F1 и общая для них материнская форма. Площадь питания растений 10х40 см.
Делянки убраны вручную, исключая краевые растения. Анализ структуры урожая проведен по 9 признакам у 25 растений из каждой повторности. Учет количества и массы азотфиксирующих клубеньков проводили по методике Г.С. Посыпанова в период конец бутанизации — начало цветения [9]. Для статистической обработки данных использовали методы дисперсионного и корреляционного анализов в изложении Б.А. Доспехова с использованием прикладных программ Microsoft Excel [10].
Результаты исследования и их обсуждение
Реакция образцов гороха на изменение погодных условий проявилась в существенных различиях по признакам нодуляции. В 2011 г. средняя по опыту масса клубеньков на корне (0,03 г/раст.) уменьшилась на 66,7% по сравнению с 2010 г. (0,09 г/раст.); среднее число клубеньков на корне — на 18,9% (с 15,7 до
12.7 шт/раст.). Наибольшей изменчивостью по массе азотфиксирующих клубеньков с растения характеризовалась линия Л 37/03, которая была лидером по этому показателю в 2010 г. (0,05 г/раст), а также выделялась по продуктивности растений. При этом число клубеньков по годам у нее было сравнительно стабильным — соответственно,
11.8 и 9,7 шт/раст. (табл. 1). Для остальных исходных форм была отмечена достаточно высокая масса клубеньков в условиях
2011 г. Наибольшее количество клубеньков в среднем за годы исследований было отмечено у сорта Омский 9 и линии Л 646/08. Наиболее высокой массой клубеньков характеризовались линия Л 64/08 и сорт Девиз.
В среднем за годы исследований гибриды превзошли своих родителей как по количеству, так и по массе сформировавшихся клубеньков, за исключением гибридов, созданных с использованием сорта Омский 9, у которых масса клубеньков была ниже, чем у этой родительской формы. Следует отметить, что в 2010 г. это преимущество было существенным. В условиях же 2011 г. отмечено превышение родителей над гибридами по признакам нодуляции. Лишь гибриды, полученные с участием линии Л 37/03, сформировали более эффективный, чем родительские формы, симбиотический аппарат. Среди потомков F, следует отметить комбинацию Л 646/08 х Девиз, которая стабильно отличалась крупными клубеньками с высокой массой (0,24 и
0,08 г/раст.), клубеньки формировались как на главном (3,0 4,3 шт/раст.), так и на боковых корнях (13,7; 11,7 шт/раст.). В
2010 г. по массе клубеньков с растения выделился гибрид Л 646/08 х Омский 9
(0,29 г/раст.), причем клубеньки в основном располагались на боковых корешках (42,5 шт/раст.).
У родительских образцов в нашем опыте максимальным развитием корневой системы отличилась линия 646/08: длина корня (13,84 см), сырая масса (1,82 г/раст.); а минимальной — Девиз (10,92 см; 1,03 г/раст.). Корреляционная связь была стабильно средней положительной между признаками: длина корня и масса корня (сырая и сухая), масса клубеньков с растения и сырая масса корня, сухая масса корня и число клубеньков на главном корне (г = 0,35 ч 0,62) (табл. 2). У исходных форм установлена сильная положительная связь, независимо от условий выращивания, между сырой и сухой массой корня (соответственно, г = 0,87 и 0,83), в то же время у гибридов F1 эта связь была слабее (г = 0,64 и 0,66).
Общее число клубеньков с растения у всех генотипов определялось их количеством на боковых корнях (г = 0,86^0,99). Масса клубеньков у исходных образцов стабильно зависела от сырой массы корня (соответственно, г = 0,62 в 2010 г. и г = 0,55 в 2011 г.) и от числа клубеньков с боковых корней (г = 0,37 и 0,61). У гомозиготных и гетерозиготных форм также выявлена стабильная прямолинейная связь средней силы массы клубеньков с их общим числом на корне (г = 0,31^0,64).
В результате анализа полученных данных выявлено, что продуктивность растений, независимо от происхождения, определялась в первую очередь числом семян с растения
— корреляционная связь высокая положительная (г = 0,85^0,89). Сила влияния остальных элементов структуры урожая на результирующий признак зависела от условий выращивания и генотипов. У родитель-
ских форм масса семян с растения имела стабильную среднюю положительную корреляционную связь с длиной стебля (г = 0,64 и 0,61). Следует отметить ослабление зависимости между этими признаками в 2010 г. у гибридов первого поколения (г = 0,20). Условия выращивания изменили тесноту взаимодействия продуктивности с числом узлов до первого боба у исходных образцов (2010 г. — г = 0,55; 2011 г. — г = -0,12). Гибриды характеризовались слабой корреляционной связью; с числом продуктивных узлов в 2011 г. у родительских форм отмечена высокая положительная связь (г = 0,74), а в 2010 г. — средняя (соответственно, г = 0,44 и 0,51). Сила связи массы семян с числом бобов на главном стебле и с растения в 2011 г. у Р и F1 была высокой (соответственно, г = 0,71 и 0,80), в 2010 г. — средней (г = 0,32 и 0,52). Нами выявлена средняя связь продуктивности семян с их крупностью (г = 0,41^0,43), но в 2010 г. у исходных образцов эта зависимость была очень низкой (г = 0,16).
В оба года исследований наблюдалась высокая положительная корреляционная связь между хозяйственно-ценными признаками: число продуктивных узлов с главного стебля и с растения (г = 0,73-^0,93), число продуктивных узлов и число бобов с растения (г = 0,82^0,95), число бобов с растения и на главном стебле (г = 0,71^0,95).
До недавнего времени существовало мнение, что у сорта нельзя одновременно повысить продуктивность и активность азотфиксации, поскольку в этих процессах используется один и тот же источник энергии — продукты фотосинтеза, так как элементы питания расходуются как на формирование вегетативной массы, так и на образование клубеньков [1].
Таблица 1
Масса и число клубеньков у исходных форм (Р) и гибридов (F1)
Образец 2010 г. 2011 г. В среднем за 2010-2011 гг.
Р F і Р Р
Масса клубеньков с растения, г
Омский 9 0,01 0,11 0,04 0,01 0,03 0,06
Благовест 0,01 0,09 0,04 0,02 0,03 0,05
Л 37/03 0,05 0,08 0,01 0,05 0,03 0,06
Девиз 0,03 0,12 0,04 0,03 0,04 0,07
Л 646/08 0,03 0,15 0,06 0,04 0,05 0,10
НСРо5 0,004 - 0,006 - 0,005 -
Число клубеньков с растения, шт.
Омский 9 22,8 20,6 31,0 11,4 26,9 16,0
Благовест 4,2 16,2 12,0 10,5 8,1 13,3
Л 37/03 11,8 14,3 9,7 14,3 10,8 14,3
Девиз 7,0 14,0 14,0 11,7 10,5 12,9
Л 646/08 7,0 19,8 12,5 11,8 16,3 15,8
НСРо5 1,98 - 2,37 - 2,18 -
Таблица 2
Корреляционная связь (г*) массы клубеньков с признаками корня и числом клубеньков
у исходных форм (Р) и гибридов (F1)
Факториальный признак 2010 г. 2011 г.
P F, P F і
Длина корня 0,28 0,13 0,42 -0,14
Масса корня, сырая 0,62 0,26 0,55 0,30
Масса корня, сухая 0,57 0,25 0,22 0,36
Число клубеньков на главном корне -0,18 0,20 0,49 0,18
Число клубеньков с боковых корней 0,37 0,28 0,61 0,64
Число клубеньков с корня 0,33 0,31 0,63 0,64
* Критерий существенности r = 0,18.
Таблица 3
Корреляционная зависимость между массой семян с растения (у) и признаками нодуляции (х) у исходных форм и гибридов Ft
Генотип Год Корреляционная зависимость
прямолинейная криволинейная
r П уравнение
Факториальный признак — масса клубеньков с растения, г
P 2010 -0,11 0,82 у = 15994 х2 — 985,75 х + 28,38
2011 -0,52 0,74 у = -75,64 х + 10,77
F1 2010 0,01 0,71 у = 573,30х2 — 161,73 х + 27,75
2011 -0,40 0,42 у = 139,17 х2 — 35,88 х + 9,59
Факториальный признак — число клубеньков с растения, шт.
P 2010 0,34 0,61 у = 0,03 х2 — 0,52 х + 17,08
2011 0,20 0,64 у = 0,03 х2 — 1,16 х + 17,09
F1 2010 0,21 0,60 у = 0,02 х2 — 0,90 х + 27,63
2011 -0,07 0,11 у = 0,004 х2 — 0,10 х + 9,33
Критерий значимости r = 0,25.
Достоверной прямолинейной корреляционной связи между семенной продуктивностью и признаками нодуляции (количеством и массой клубеньков) у растений гороха в нашем опыте в основном не установлено, однако на основе построения точечных графиков и линий тренда обнаружена криволинейная зависимость, выраженная полиномиальными уравнениями второй степени (табл. 3).
В неблагоприятном 2011 г. как у родительских форм, так и у гибридов первого поколения отмечена отрицательная прямолинейная связь между массой семян и количеством клубеньков (соответственно, r = -0,52; r = -0,40). В тех же погодных условиях у гибридных образцов не выявлено связи между продуктивностью растения и числом клубеньков (г = -0,07; п = 0,11). Это говорит об индивидуальной реакции гетерозиготных растений на ухудшение гидротермического обеспечения. Влияние числа клубеньков на урожайность в 2010 г. у исходных образцов имеет положительную прямолинейную направленность (г = 0,34), однако величина коэффициента криволинейной зависимости была значительно выше (П = 0,61).
Выводы
1. Характер проявления признаков корневой системы и нодуляции (число и масса
азотфиксирующих клубеньков) зависел от условий выращивания и генотипов.
2. Теснота и направление корреляционной зависимости между признаками определялись как условиями выращивания, так и изучавшимися генотипами. У гомозиготных и гетерозиготных образцов выявлена стабильная прямолинейная связь средней силы между массой клубеньков и общим числом клубеньков на корне, высокая — между числом клубеньков с растения и их числом на боковых корнях.
3. Достоверной прямой корреляционной связи между семенной продуктивностью и нодуляцией у растений гороха в нашем опыте в основном не установлено, однако обнаружена криволинейная зависимость.
4. Масса семян с растения определялась всеми основными элементами структуры урожая, но наиболее сильная и стабильная связь выявлена с числом семян с растения.
5. В благоприятных гидротермических условиях возможно сочетание повышенной продуктивности и признаков нодуляции. Выявлены источники повышенной нодуляции — линии Л 37/03 и Л 646/08. Необходимо также отметить, что Л 37/03 является донором высокой семенной продуктивности, а Л 646/08 — донором признаков коротко-стебельности. При включении линии Л 646/08 в гибридизацию необходимо под-
ходить индивидуально к выбору пары для скрещивания. Среди изученных гибридов F,, полученных с использованием этой короткостебельной формы, следует отметить высокопродуктивные комбинации — Л 646/08 х Девиз и Л 646/08 х Омский 9, которые характеризовались высокой массой азотфиксирующих клубеньков с растения.
Библиографический список
1. Сидорова К.К. и др. Селекция кормового гороха (Pisum sativum L.) на повышение азотфиксации с использованием симбиотических мутантов // Сельскохозяйственная биология. — 2012. — № 1. — С. 105-109.
2. Бузмаков В.В. Производство биологи-
чески чистой продукции растениеводства // Аграрная наука. — 1999. — № 12. —
С. 6-10.
3. Юркин С.Н. и др. Источники азота для растений: обзор // Сельское хозяйство за рубежом. — 1976. — № 3. — С. 2-6.
4. Шиян П.И., Черепанова В.П., Якименко В.Н. Изучение размеров симбиотической фиксации азота клевером и горохом // Агрохимия. — 1980. — № 3. — С. 12-17.
5. Сидорова К.К., Шумный В.К. Генетика симбиотической азотфиксации и основы селекции самоопыляющихся бобовых культур
// Генетика. — 1999. — Т. 35. — № 11. — С. 1550-1557.
6. Обухова А.В., Омельянюк Л.В., По-ползухина Н.А. Комбинационная способность гороха посевного в системе диал-лельных скрещиваний по элементам семенной продуктивности // Вестник Алтайского аграрного университета. — 2012. — № 12. — С. 14-17.
7. Озякова Е.Н. Урожайность и особен-
ности формирования симбиотического аппарата у сортообразцов зернобобовых культур в южной лесостепи Западной Сибири: автореф. дис. ... канд. с.-х. наук:
06.01.05. — Тюмень, 2009. — 19 с.
8. Озякова Е.Н. и др. Сравнительное изучение сортов гороха посевного на способность к азотфиксации в условиях Сибирского Прииртышья // Вестник Бурятской государственной сельскохозяйственной академии им. В.Р. Филиппова. — 2008. — № 2.
— С. 59-64.
9. Посыпанов Г.С. Методы изучения био-
логической фиксации азота воздуха: справочное пособие. — М.: Агропромиздат,
1991. — 300 с.
10. Доспехов Б.А. Методика полевого
опыта. — М.: Агропромиздат, 1985. —
352 с.
+ + +
УДК 615.322:577.16:577.152.1
Ю.В. Рогожин, В.В. Рогожин
ТЕХНОЛОГИЯ ПРЕДПОСЕВНОГО УФ-ОБЛУЧЕНИЯ ЗЕРЕН ПШЕНИЦЫ
Ключевые слова: зерна пшеницы, ультрафиолетовое облучение, антиоксиданты, малоновый диальдегид, перекисное окисление липидов, прорастание зерен пшеницы.
Введение
В живых организмах существует физиологически нормальный уровень свободнорадикальных процессов и перекисного окисления липидов, необходимый для регулирования липидного состава и проницаемо-
сти мембран и ряда биосинтетических процессов [1]. Контроль за уровнем ПОЛ в семенах осуществляют антиоксиданты (АО), являющиеся ингибиторами процессов свободнорадикального окисления [2].
Набухание и прорастание семян всегда сопровождаются активированием оксидаз-ных процессов, возрастанием дыхательной активности митохондрий. УФ-облучение семян может инициировать возрастание пере-кисного окисления липидов (ПОЛ), регули-