<D tn
en CD
"o
>
CM o CM
SAFETY IN RESIDENTIAL BUILDINGS EVACUATION FROM RESIDENTIAL BUILDINGS WITHOUT FIRE ESCAPE STAIRS
Radoje B. Jevtic
cc Secondary School of Electrical Engineering "Nikola Tesla",
^ Nis, Republic of Serbia,
z> e-mail: [email protected],
g ORCID iD: https://orcid.org/0000-0002-0179-1321
< DOI: 10.5937/vojtehg69-28170; https://doi.org/10.5937/vojtehg69-28170
FIELD: Fire protection o ARTICLE TYPE: Original scientific paper
E
Abstract:
^ Introduction/purpose: Safety in high residential buildings presents a very
important and always actual task. In case of some unforeseen and dangerous occurrences, their residents must be evacuated. Fire, earthquakes, and terrorism are only some of such situations. The speed of evacuation from high residential buildings depends on many different
< factors. A particularly difficult and complex evacuation task concerns (¡5 buildings without fire escape stairs.
Methods: The modeling method was used in this paper. Based on a real object - a residential building, an appropriate simulation model was J realized in appropriate simulation software.
o Results: The results of this paper have shown that, out of four scenarios,
the fastest evacuation was for the evacuation speed of 1.75 m/s. The first two scenarios did not report any jams, unlike the third and fourth scenario; in the third scenario, the occupants' speeds were 0.75 m/s and 1.25 m/s while in the fourth scenario, the simulated occupants' speeds were from 0.75 m/s to 1.75 m/s.
Conclusion:The usage of appropriate simulation software enables fast, precise, safe and cheap calculation of evacuation times and it can significantly improve evacuation procedures and evacuation strategies.
Key words: evacuation, building, human, simulation.
Introduction
An evacuation presents the most important measurement for population protection. This measurement generally comprises a planned and organized relocation of humans, animals, material properties, state
authorities etc., from an endangered area to a safe area. Depending on a £ vulnerability degree and current damage, evacuation can be temporary or permanent. The reasons for evacuation can be different: fire, earthquake, floods, terrorism, nuclear disaster, tsunami, whirlwind, etc. Namely, it is important to note that there are differences between evacuation, displacement, and relocation of population.
Residential buildings present specific objects for evacuation, mostly because of a huge number of residents of different age. Besides this important factor, there are also other factors such as building construction and location, possibilities for fire fighters to approach the site, presence or absence of evacuation stairs, presence or absence of an escape rescue system, behavior of residents under stress, etc. For example, in the United States, in the period from 2007 to 2011, fire units had 15400 interventions because of fire in high buildings. These fires caused 46 victims, 530 civil injuries and more than 200 million dollars of damage, on the year level. It is interesting to note that 45 % of all fires ro were caused in apartments; 3 % of all fires were caused in hotels; 2 % of all fires were caused in offices, and 1 % of all fires was caused in elderly care objects (Mumovic, 2019).
One very important event related to safety evacuation in high 2 buildings was, unfortunately, the terrorist's attacks on the World Trade Centre in New York, on 11 September 2001. According to analyses, the io evacuations of 87 % of all occupants were realized in less than two hours. However, evacuation times were pretty different and complex to explain. Because of that reason, many different experts agreed that safety in high buildings would be much improved with a better understanding and analysis of human behavior in panic and stress situations. In addition, several very important factors influenced occupant behavior in general. Taking into account demographic characteristics, it was noted that 58 % of all occupants were male with an average age of 44; 90 % of all occupants were well educated, 56 % of all occupants lived outside New York while 32 % of all occupants lived in the neighborhood. Health and injury status of occupants were also important - it was noted that 23 % of all occupants reported some medical problem. Familiarity with the building and installed fire safety measurements were very poor - ^ it was confirmed that only 20 % of all occupants were introduced with proper actions after the alarm sounded (Gershon et al, 2011).
Regardless of building construction characteristics, evacuation from residential buildings can be realized in several ways: first, by stairs, and then by elevators or their combinations. Modern residential buildings built in recent times have several new and modern ways for evacuation, such
£Z
33 '5
.Q
O
<u
M—
CO OT
<u
СП CD
О >
CM о CM
ОС ш
0£ ZD
о
о _|
<
О
х о ш
I>-
СС <
(Л <
-J
О ■О
X ш н
о
о
&
as special security equipment, transport helicopters or some new construction solutions (connections between buildings or similar). In many cases, evacuation by stairs presents the only possible way for evacuation. Many high buildings have standard staircases and emergency stairs, many not. The realization of staircases demands detailed research about many factors, such as the position of the staircase, the material the stairs are made of, the staircase dimensions (width, riser and tread dimensions), stairs fire resistance, etc. (Pauls, 2005).
Although in the last twenty years fire protection systems and evacuation systems have significantly improved, accidents in high residential buildings have occurred. As an example, fires in residential buildings are presented in Figure 1 (a and b).
a)
b)
Figure 1 - Huge fire in a residential building in Sao Paolo, Brazil, in 2018 (a) (Fos Media, 2018) and a huge fire in the residential building Grenfell Tower in London, UK, in 2017 (b)
(Hartley-Parkinson, 2019) Рис. 1 - Крупный пожар в жилом здании в г. Сан-Паулу, Бразилия (а) (Fos Media, 2018) и крупный пожар в здании Гоенфелл-тауэр в Лондоне, ОК, 2017 (б) (Hartley-
Parkinson, 2019)
Слика 1 - Велики пожар у стамбено] згради у Сао Паолу, Бразил, (a) (Fos Media, 2018) и велики пожар у стамбено] згради у Grenfell Tower-у у Лондону, УК, 2017(б)
(Hartley-Parkinson, 2019)
The usage of elevators for evacuation is questionable for many different reasons: the lack of power supply, collapse capabilities, the
possibilities of dangerous gases penetration (especially carbon monoxide (CO)), the lack of space, etc. Because of the noted reasons, many different evacuation approaches do not recommend elevators usage for evacuation (Glavinic & Raskovic, 2016).
The occupant behavior under stress and panic presents a very complex factor hard to define and predict. It is almost impossible to predict occupants' behavior in stress situations, no matter how educated or familiar with safety precautions they are. Occupants are, in normal | conditions, aware and ready to find the best options, even in the cases when they should aid someone (help someone with disabilities, help children, etc.). However, are they able to do all this in the presence of smoke, flame, heat, crashes, explosions or other stress situations? A different age of occupants is also important and brings new moments of complexity and unpredictability (Ronchi & Nilsson, 2013), (Jevtic, 2016).
It is obvious that successful evacuation in an accident, especially from a complex object such as a residential building, must be realized in the early stage of the accident. Of course, it implies the timely detection of an accident or a disaster. Because of that, it is important to predict, as closely as possible, all potential evacuation scenarios and situations. One of the best ways to predict evacuation situations and calculate time needed for evacuation is the usage of simulation software. The usage of simulation software and the analysis of potential evacuation scenarios for different evacuation factors present a new, effective, safe, and "all in" approach in building architecture. Powerful computers enable detailed analyses of evacuation by simulation and prediction of almost all potential scenarios. The given facts show that this topic has a great importance, primarily in the protection of human lives. On the other hand, a timely and well-planned evacuation enables a fast evacuation of occupants and a fast approach of fire fighters, which can significantly decrease damage to material properties. This paper was written to show the prediction of evacuation scenarios and the calculation of evacuation times in the case of a building without emergency stairs, using adequate simulation software.
£Z
33 '5
.Q
O
<u
M—
CO OT
Pathfinder simulation software *
■o
A successful and safely realized evacuation as well as saving lives | and material properties can be significantly improved by using simulation J software. The reasons for simulation software usage lie in the fact that such usage is, above all, safe and economically cost-effective. In addition, it has potentials to predict many different evacuation scenarios
<D </)
O) CO
"o
>
CM o CM
of
UJ
a.
Z) O
o <
o
X
o
LU
H
^
OH <
H
<
CD >o
X LU H
O
O >
&
and calculations of evacuation times. There is a number of simulation software for evacuation on the market. One of them is Pathfinder. This simulation software is based on human movement. Until today, several different versions of this program have been developed. This powerful simulator enables a graphical user interface for simulation design and execution. It is possible to simulate human movements through objects, in elevators, on stairs, etc. The Pathfinder environment presents a 3D triangulated mesh designed to match the real dimensions of a building model. This software can support two different simulation ways: the steering mode and the SFPE mode. In addition, this software has a very important ability to import files from different programs such as FDS, 3D Cad and PyroSim, what enables much faster drawing of a simulation model and the usage of the existent simulation models with minor remakes. The Pathfinder version used for this paper was 2020 version (Thunderhead, 2014).
Simulation model
The object simulated in this paper was the building in the Bulevar Nemanjica Street, with numbers from 58 to 64. This object actually presents four buildings connected in one. The object has four exits/entrances without emergency stairs. The main advantage of such objects is in their great stability in case of earthquakes. Every building has the basement, the ground floor, ten floors and a roof terrace. The buildings are connected via terraces. The connected terraces serve for evacuation in case that residents cannot get out through the entrance/exit.
Every building, taken separately, has two elevators, vault rooms, a loft and four flats on every floor started from the ground floor to the tenth floor. This means that every building, taken separately, has forty-four flats, i.e. there are one hundred and seventy six flats in total. There are two different flat types per floor, one with an approximate surface of 66 m2 and one with an approximate surface of 50 m2. Every building separately has two different elevators: one with a total capacity of four persons and one with a total capacity of six persons. The elevators have different speeds. These speeds were measured, and, for a smaller elevator type, the speed was 1. 1 m/s, while the speed of a bigger elevator was 0.92 m/s. The maximum distance between the floors is approximately 2. 6 m, which means that the total height of the object is approximately 36-38 m (measured from the ground to the elevator machine room on the top of the building). Related to this object, a proper
Simulation results
simulation model with all its real dimensions was constructed in Pathfinder software.
The positions of the residents were per floors and in flats, based on the resident lists. Because of visibility, the HIDE function from Pathfinder was used. This means that only some elements were visible, such as stairs, doors, elevators, etc. The total number of residents was 699, which was confirmed from the resident lists for every of four buildings separately (179 residents in the entrance/exit with number 58, 168 | residents in the entrance/exit with number 60, 169 residents in the entrance/exit with number 62, and 183 residents in the entrance/exit with number 64).
After the construction of the simulation model, it was decided to simulate four different scenarios. The first simulation scenario included all entrances/exits opened, with enabled and disabled elevators. The second simulation scenario included one entrance/exit blocked while other three entrances/exits were open (all potential 9 cases), with enabled and disabled elevators. The third simulation scenario included two entrances/exits blocked while other two entrances/exits were open (all potential 12 cases), with enabled and disabled elevators. The fourth simulation scenario was based on three entrances/exits blocked while one entrance/exit was open (all potential 8 cases), with enabled and disabled elevators. Each of four scenarios was realized for different speeds of occupants: 0.75 m/s, 1 m/s, 1.25 m/s, and 1.5 m/s and 1.75 m/s (Jevtic, 2018), (Jevtic, 2019a).
The residential building in Bulevar Nemanjica Street, from 58 to 64, Nis, is presented in Figure 2 (a), while the appropriate Pathfinder simulation model of the residential building in Bulevar Nemanjica Street is presented in Figure 2 (b).
g
ni dil
iu b
o
e id si
e
The complete simulation results are presented from Table 1 to Table 30. The simulation results for the first scenario are presented in Tables 1 and 2. The simulation results for the second scenario are presented in $ Tables from 3 to 10. The simulation results for the third scenario are ^ presented in Tables from 11 to 22. The simulation results for the fourth -o scenario are presented in Tables from 23 to 30. All simulations of the | evacuation were realized on a laptop Honor MagicBook 15 with AMD Ryzen 5 3500U processor at 3.7 GHz and 6 MB of CASH memory and 8 GB DDR4 2667 MHz. It is desirable to possess a strong hardware configuration for any kind of computer simulation.
a) b)
Figure 2 - Building in Bulevar Nemanjica Street, from 58 to 64 (a) and the Pathfinder
simulation model of the residential building in Bulevar Nemanjica Street (b) Рис. 2 - Здание на Бульваре Неманича с 58 по 64 (а) и имитационная модель в жилом здании Pathfinder на Бульваре Неманича (б) Слика 2 - Зграда у Булевару НемаъиЪа, од броjа 58 до 64 (a), и симулациони модел у Pathfinder-у стамбене зграде у Булевару НемаъиЬа (б)
Table 1 — Simulation results in seconds for the first scenario, with elevators enabled and for the occupants' speeds from 0.75 m/s, 1 m/s, 1.25 m/s, 1.5 m/s, and 1.75 m/s Таблица 1 - Результаты симуляции, выраженные в секундах по первому сценарию, с лифтами, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5
м/с и 1.75 м/с
Табела 1 - Симулациони резултати у секундама за први сценарио, са лифтовима и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s, 1,5 m/s и 1,75 m/s
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 133 183 230 286 332 365
Time for speed of occupants 1 m/s 0 105.7 141.6 183.4 221 256 293
Time for speed of occupants 1.25 m/s 0 84 127 159 197 234 256
Time for speed of occupants 1.5 m/s 0 72.2 105.8 148 176 209 236
Time for speed of occupants 1.75 m/s 0 50 79 123 140 180 209
Table 2 — Simulation results in seconds for the first scenario, with elevators disabled and for the occupants' speeds from 0.75 m/s, 1 m/s, 1.25 m/s, 1.5 m/s, and 1.75 m/s Таблица 2 - Результаты симуляции, выраженные в секундах по первому сценарию, без лифта, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5
м/с и 1.75 м/с
Табела 2 - Симулациони резултати у секундама за први сценарио, без лифтова и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s, 1,5 m/s и 1,75 m/s
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 145 203 255 313 351 442
Time for speed of occupants 1 m/s 0 123 177.6 219.4 257 292 334
Time for speed of occupants 1.25 m/s 0 113 156 188 226 263 288
Time for speed of occupants 1.5 m/s 0 95.2 128.8 171 199 232 267.6
Time for speed of occupants 1.75 m/s 0 74 88.7 133 150 187 232
oo h-
оэ
<л 'ro
<Л
<u
ro о
(Л
<u <u
£Z
Ъ '5
.Q
"ro
<U "O <л Ф
E о
о
ro ^
о
ro >
<u
(Л
.Q
IS
с <u
"O <л <u
<u
4—
ro Ю
a:
■o <u
Table 3 — Simulation results in seconds for the second scenario, with elevators enabled and the first entrance/exit blocked and for the occupants' speeds from 0.75 m/s, 1 m/s,
1.25 m/s, 1.5 m/s, and 1.75 m/s Таблица 3 - Результаты симуляции, выраженные в секундах по второму сценарию, с лифтами и первым заблокированным входом/выходом, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с Табела 3 - Симулациони резултати у секундама за други сценарио, са лифтовима и са првим блокираним улазомЛизлазом и за брзине станара: 0,75 m/s,
1 m/s, 1,25 m/s, 1,5 m/s и 1,75 m/s
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 190 225 291 398 562 796
Time for speed of occupants 1 m/s 0 160 195 254 342 501 627
Time for speed of occupants 1.25 m/s 0 134 165 231 311 472 554
Time for speed of occupants 1.5 m/s 0 118 136 201 284 420 499
Time for speed of occupants 1.75 m/s 0 100 120 172 235 367 434
<u
(Л
9 6
"(5 >
2 0 2
a: УУ 0£ ZD О
о <
о
X
о ш
i-
^
Q1 <
(Л <
-J
О >о
X ш н
о
о >
о
Table 4 — Simulation results in seconds for the second scenario, with elevators enabled and the second entrance/exit blocked and for the occupants' speeds from 0.75 m/s, 1 m/s, 1.25 m/s, 1.5 m/s, and 1.75 m/s Таблица 4 - Результаты симуляции, выраженные в секундах по второму сценарию, с лифтами и вторым заблокированным входом/выходом, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с Табела 4 - Симулациони резултати у секундама за други сценарио, са лифтовима и са другим блокираним улазомЛизлазом, и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s, 1,5 m/s и 1,75 m/s
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 184 213 275 380 546 772
Time for speed of occupants 1 m/s 0 155 184 239 320 487 600
Time for speed of occupants 1.25 m/s 0 128 155 218 295 455 530
Time for speed of occupants 1.5 m/s 0 113 126 190 266 406 468
Time for speed of occupants 1.75 m/s 0 95 110 166.4 221 351 422
Table 5 — Simulation results in seconds for the second scenario, with elevators enabled and the third entrance/exit blocked and for the occupants' speeds from 0.75 m/s, 1 m/s,
1.25 m/s, 1.5 m/s, and 1.75 m/s Таблица 5 - Результаты симуляции, выраженные в секундах по второму сценарию, с лифтами и третьим заблокированным входом/выходом, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с Табела 5 - Симулациони резултати у секундама за други сценарио, са лифтовима и са треПим блокираним улазомЛизлазом, и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s, 1,5 m/s и 1,75 m/s
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 199 225 290 397 566 789
Time for speed of occupants 1 m/s 0 167 199 253 336 506 615
Time for speed of occupants 1.25 m/s 0 136 174 234 311 475 543
Time for speed of occupants 1.5 m/s 0 122 150 202 280 422 480
Time for speed of occupants 1.75m/s 0 104 132 180 235 369 432
Table 6 — Simulation results in seconds for the second scenario, with elevators enabled and the fourth entrance/exit blocked and for the occupants' speeds from 0.75 m/s, 1 m/s,
1.25 m/s, 1.5 m/s, and 1.75 m/s Таблица 6 - Результаты симуляции, выраженные в секундах по второму сценарию, с лифтами и четвертым заблокированным входом/выходом, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с Табела 6 - Симулациони резултати у секундама за други сценарио, са лифтовима и са четвртим блокираним улазом/излазом, и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s, 1,5 m/s и 1,75 m/s
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 210 239 306 415 588 811
Time for speed of occupants 1 m/s 0 178 213 269 354 526 639
Time for speed of occupants 1.25 m/s 0 147 185 250 330 496 566
Time for speed of occupants 1.5 m/s 0 135 164 217 297 444 503
Time for speed of occupants 1.75 m/s 0 116 144 194 253 390 457
oo h-
оэ
<л 'ro
(Л
<u
ro о
(Л
<u <u
£Z
Ъ '5
.Q
"ro
<U "O <л Ф
E о
о
ro ^
о
ro >
<u
(Л
.Q
IS
с <u "o <л <u
<u
4—
ГО Ю
cd
■(J <U
Table 7 — Simulation results in seconds for the second scenario, with elevators disabled and the first entrance/exit blocked and for the occupants' speeds from 0.75 m/s, 1 m/s,
1.25 m/s, 1.5 m/s, and 1.75 m/s Таблица 7 - Результаты симуляции, выраженные в секундах по второму сценарию, без лифта и с первым заблокированным входом/выходом, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с Табела 7 - Симулациони резултати у секундама за други сценарио, без лифтова и са првим блокираним улазом/излазом, и за брзине станара: 0,75 m/s, 1 m/s, 1,25
m/s, 1,5 m/s и 1,75 m/s
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 270 306 372 480 642 873
Time for speed of occupants 1 m/s 0 240 278 337 420 582 700
Time for speed of occupants 1.25 m/s 0 215 248 315 390 553 634.9
Time for speed of occupants 1.5 m/s 0 199 217 281.3 363 499 579.5
Time for speed of occupants 1.75 m/s 0 181 200 250 313 447 515
<u
(Л
9 6
"(5 >
2 0 2
a: УУ 0£ ZD О
о <
о
X
о ш
i-
^
Q1 <
(Л <
-J
О >о
X ш н
о
о >
о
Table 8 — Simulation results in seconds for the second scenario, with elevators disabled and the second entrance/exit blocked and for the occupants' speeds from 0.75 m/s, 1 m/s, 1.25 m/s, 1.5 m/s, and 1.75 m/s Таблица 8 - Результаты симуляции, выраженные в секундах по второму сценарию, без лифта и со вторым заблокированным входом/выходом, учитывая
скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с Табела 8 - Симулациони резултати у секундама за други сценарио, без лифтова и са другим блокираним улазомЛизлазом, и за брзине станара: 0,75 m/s, 1 m/s, 1,25
m/s, 1,5 m/s и 1,75 m/s
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 220 250 313.6 418.4 580 812
Time for speed of occupants 1 m/s 0 193.4 223 280.9 361.6 528.2 642
Time for speed of occupants 1.25 m/s 0 162 192 260 330 493 569
Time for speed of occupants 1.5 m/s 0 152 168 229.5 302 443 525
Time for speed of occupants 1.75 m/s 0 133.7 149 205.3 260 390.4 460
Table 9 — Simulation results in seconds for the second scenario, with elevators disabled and the third entrance/exit blocked and for the occupants' speeds from 0.75 m/s, 1 m/s,
1.25 m/s, 1.5 m/s, and 1.75 m/s Таблица 9 - Результаты симуляции, выраженные в секундах по второму сценарию, без лифта и с третьим заблокированным входом/выходом, учитывая
скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с Табела 9 - Симулациони резултати у секундама за други сценарио, без лифтова и са треПим блокираним улазомЛизлазом, и за брзине станара: 0,75 m/s, 1 m/s,
1,25 m/s, 1,5 m/s и 1,75 m/s
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 264.4 295 357.4 462 620 856
Time for speed of occupants 1 m/s 0 237.6 267.6 324.4 402 567 684
Time for speed of occupants 1.25 m/s 0 206.6 237.6 303 370.4 537 613
Time for speed of occupants 1.5 m/s 0 197.4 224.6 276.4 345 481 569
Time for speed of occupants 1.75 m/s 0 149 198.5 248.6 305 434 503.5
Table 10 — Simulation results in seconds for the second scenario, with elevators disabled and the fourth entrance/exit blocked and for the occupants' speeds from 0.75 m/s, 1 m/s,
1.25 m/s, 1.5 m/s, and 1.75 m/s Таблица 10 - Результаты симуляции, выраженные в секундах по второму сценарию, без лифта и с четвертым заблокированным входом/выходом,
учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с Табела 10 - Симулациони резултати у секундама за други сценарио, без лифтова и са четвртим блокираним улазом/излазом, и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s, 1,5 m/s и 1,75 m/s
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 292 330 393 494 657 893
Time for speed of occupants 1 m/s 0 274 304 361 439 603 720.2
Time for speed of occupants 1.25 m/s 0 243 273 340 405.3 573.5 649
Time for speed of occupants 1.5 m/s 0 214 258 314.4 382 525.6 606
Time for speed of occupants 1.75 m/s 0 195 234 284.4 341 471.5 541.5
oo
4 !±
<л 'ro
<Л
<u
ro о
(Л
<u <u
£Z
Ъ '5
.Q
"ro
<U "O <л Ф
E о
о
ro ^
о
ro >
<u
(Л
.Q
IS
с <u "o <л <u
<u
4—
ГО Ю
od
■(J <U
Table 11 — Simulation results in seconds for the third scenario, with elevators enabled and the first and the second entrances/exits blocked and for the occupants' speeds from 0.75 m/s, 1 m/s, 1.25 m/s, 1.5 m/s, and 1.75 m/s Таблица 11 - Результаты симуляции, выраженные в секундах по третьему сценарию, с лифтами и с первым и вторым заблокированными входами/выходами, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и
1.75 м/с
Табела 11 - Симулациони резултати у секундама за треПи сценарио, са лифтовима и са првим и другим блокираним улазима/излазима , и за брзине
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 314 357 416 517 679 915
Time for speed of occupants 1 m/s 0 296 325 384 460 624 742
Time for speed of occupants 1.25 m/s 0 264 294.6 360.9 426.7 595.2 671
Time for speed of occupants 1.5 m/s 0 235.2 278.7 336 402 547.7 627
Time for speed of occupants 1.75 m/s 0 216 254 304 361 494 565
<u
(Л
9 6
"(5 >
2 0 2
a: УУ 0£ ZD О
о <
о
X
о ш
i-
^
Q1 <
(Л <
-J
О >о
X ш н
о
о >
о
Table 12 — Simulation results in seconds for the third scenario, with elevators enabled and the first and the third entrances/exits blocked and for the occupants' speeds from 0.75 m/s, 1 m/s, 1.25 m/s, 1.5 m/s, and 1.75 m/s Таблица 12 - Результаты симуляции, выраженные в секундах по третьему сценарию, с лифтами и с первым и третьим заблокированными входами/выходами, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с Табела 12 - Симулациони резултати у секундама за треПи сценарио, са лифтовима и са првим и треПим блокираним улазимаЛизлазима, и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s, 1,5 m/s и 1,75 m/s
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 326 369 428 529 691 927
Time for speed of occupants 1 m/s 0 308 337 396 472 636 754
Time for speed of occupants 1.25 m/s 0 276 306.6 373.4 439 607.2 683
Time for speed of occupants 1.5 m/s 0 248 290.7 348 414 560.2 639
Time for speed of occupants 1.75 m/s 0 228 266 316 373 506 577
Table 13 — Simulation results in seconds for the third scenario, with elevators enabled and the first and the fourth entrances/exits blocked and for the occupants' speeds from 0.75 m/s, 1 m/s, 1.25 m/s, 1.5 m/s, and 1.75 m/s Таблица 13 - Результаты симуляции, выраженные в секундах по третьему сценарию, с лифтами и с первым и четвертым заблокированными входами/выходами, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и
1.75 м/с
Табела 13 - Симулациони резултати у секундама за треПи сценарио, са лифтовима и са првим и четвртим блокираним улазимаЛизлазима, и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s, 1,5 m/s и 1,75 m/s
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 353 397 453 558.4 718.3 952.9
Time for speed of occupants 1 m/s 0 334.4 364 423 500 661.6 782.1
Time for speed of occupants 1.25 m/s 0 304 331 401.8 465 635.6 709
Time for speed of occupants 1.5 m/s 0 274 318.3 374 440 591 665
Time for speed of occupants 1.75 m/s 0 254.7 292 342 400.5 532 605
Table 14 — Simulation results in seconds for the third scenario, with elevators enabled and the second and the third entrances/exits blocked and for the occupants' speeds from 0.75 m/s, 1 m/s, 1.25 m/s, 1.5 m/s, and 1.75 m/s Таблица 14 - Результаты симуляции, выраженные в секундах по третьему сценарию, с лифтами и со вторым и третьим заблокированными входами/выходами, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и
1.75 м/с
Табела 14 - Симулациони резултати у секундама за треПи сценарио, са лифтовима и са другим и треПим блокираним улазима/излазима, и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s, 1,5 m/s и 1,75 m/s
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 298 340 400 500 663 899
Time for speed of occupants 1 m/s 0 281 310 369 445 609 727
Time for speed of occupants 1.25 m/s 0 249 279.6 345.9 411.7 579.8 656
Time for speed of occupants 1.5 m/s 0 220.2 263.7 320.5 387 531.2 612
Time for speed of occupants 1.75 m/s 0 201 240.4 290.2 345.5 479 550
oo
4 !±
<л 'ro
<Л
<u
ro о
(Л
<u <u
£Z
Ъ '5
.Q
"ro
<U "O <л Ф
E о
о
ro ^
о
ro >
<u
(Л
.Q
IS
с <u
"O <л <u
<u
4—
ro Ю
od
■o <u
Table 15 — Simulation results in seconds for the third scenario, with elevators enabled and the second and the fourth entrances/exits blocked and for the occupants' speeds from 0.75m/s, 1 m/s, 1.25m/s, 1.5m/s, and 1.75 m/s Таблица 15 - Результаты симуляции, выраженные в секундах по третьему сценарию, с лифтами и со вторым и четвертым заблокированными входами/выходами,
учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с Табела 15 - Симулациони резултати у секундама за треПи сценарио, са лифтовима и са другим и четвртим блокираним улазима/излазима, и за брзине
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 337 380 439 541.5 702 938
Time for speed of occupants 1 m/s 0 319 348 407 483 647 765
Time for speed of occupants 1.25 m/s 0 287 317.6 385.7 450 618.2 694
Time for speed of occupants 1.5 m/s 0 259 302 359 426.2 574 650
Time for speed of occupants 1.75 m/s 0 239 278.3 327 384 517 588
<u
(Л
9 6
"(5 >
2 0 2
a: УУ 0£ ZD О
о <
о
X
о ш
i-
^
Q1 <
(Л <
-J
О >о
X ш н
о
о >
о
Table 16 — Simulation results in seconds for the third scenario, with elevators enabled and the third and the fourth entrances/exits blocked and for the occupants' speeds from
0.75 m/s, 1 m/s, 1.25 m/s, 1.5 m/s, and 1.75 m/s Таблица 16 - Результаты симуляции, выраженные в секундах по третьему сценарию, с лифтами и с третьим и четвертым заблокированными входами/выходами,
учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с Табела 16 - Симулациони резултати у секундама за треПи сценарио, са лифтовима и са треПим и четвртим блокираним улазимаЛизлазима, и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s, 1,5 m/s и 1,75 m/s
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 346 390.5 448 551 711 947
Time for speed of occupants 1 m/s 0 328 358.4 416 493 656 775.3
Time for speed of occupants 1.25 m/s 0 297.4 325 394 459 628 703
Time for speed of occupants 1.5 m/s 0 268 311 368 434 584.3 659
Time for speed of occupants 1.75 m/s 0 248 286 335.8 393 526 598.3
Table 17 — Simulation results in seconds for the third scenario, with elevators disabled and the first and the second entrances/exits blocked and for the occupants' speeds from 0.75 m/s, 1 m/s, 1.25 m/s, 1.5 m/s, and 1.75 m/s Таблица 17 - Результаты симуляции, выраженные в секундах по третьему сценарию, без лифта и с первым и вторым заблокированными входами/выходами, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с Табела 17 - Симулациони резултати у секундама за треПи сценарио, без лифтова и са првим и другим блокираним улазимаЛизлазима, и за брзине
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 366 410.4 570 569 731 966
Time for speed of occupants 1 m/s 0 348 377.5 436 511.9 676 794
Time for speed of occupants 1.25 m/s 0 316 346.6 413.34 479 648 723
Time for speed of occupants 1.5 m/s 0 288 331.6 388 454 600 679
Time for speed of occupants 1.75 m/s 0 268 306 356.11 413 546 617
Table 18 — Simulation results in seconds for the third scenario, with elevators disabled and the first and the third entrances/exits blocked and for the occupants' speeds from 0.75 m/s, 1 m/s, 1.25 m/s, 1.5 m/s, and 1.75 m/s Таблица 18 - Результаты симуляции, выраженные в секундах по третьему сценарию, без лифта и с первым и третьимм заблокированными входами/выходами, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с Табела 18 - Симулациони резултати у секундама за треПи сценарио, без лифтова и са првим и треПим блокираним улазима/излазима, и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s, 1,5 m/s и 1,75 m/s
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 377.45 420 479 580 742 977
Time for speed of occupants 1 m/s 0 359 388 447 523 687.4 805
Time for speed of occupants 1.25 m/s 0 327 358 424.4 425 659 734.7
Time for speed of occupants 1.5 m/s 0 299.11 341.7 399 465 611.2 691.3
Time for speed of occupants 1.75 m/s 0 279 316.7 367 424 557 628
oo
4 !±
<л 'ro
<Л ф
ro о
(Л ф
Ф
£Z
Ъ '5
.Q
"ro
Ф "О <л Ф
E о
о +-<
ro ^
о
ro >
Ф (Л
.Q
li с Ф "О <л Ф
Ф
4—
ro Ю
od
■(J Ф
Table 19 — Simulation results in seconds for the third scenario, with elevators disabled and the first and the fourth entrances/exits blocked and for the occupants' speeds from
0.75 m/s, 1 m/s, 1.25 m/s, 1.5 m/s, and 1.75 m/s Таблица 19 - Результаты симуляции, выраженные в секундах по третьему сценарию, без лифта и с первым и четвертым заблокированными входами/выходами, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с Табела 19 - Симулациони резултати у секундама за треПи сценарио, без лифтова и са првим и четвртим блокираним улазима/излазима, и за брзине
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 403.4 447 503 608.4 768.3 1003
Time for speed of occupants 1 m/s 0 384.4 414.56 473 550 711.6 832.1
Time for speed of occupants 1.25 m/s 0 354 383.1 451.8 516.67 685.6 759
Time for speed of occupants 1.5 m/s 0 325 368.3 424 491.34 641 715
Time for speed of occupants 1.75 m/s 0 304.7 342 392.5 450.5 582 655.33
<u
(Л
9 6
"(5 >
2 0 2
a: УУ 0£ ZD О
о <
о
X
о ш
i-
^
Q1 <
(Л <
-J
О >о
X ш н
о
о >
о
Table 20 — Simulation results in seconds for the third scenario, with elevators disabled and the second and the third entrances/exits blocked and for the occupants' speeds from
0.75 m/s, 1 m/s, 1.25 m/s, 1.5 m/s, and 1.75 m/s Таблица 20 - Результаты симуляции, выраженные в секундах по третьему сценарию, без лифта и со вторым и третьим заблокированными входами/выходами, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с Табела 20 - Симулациони резултати у секундама за треПи сценарио, без лифтова и са другим и треПим блокираним улазима/излазима, и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s, 1,5 m/s и 1,75 m/s
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 347 390.66 449 549 711.71 948.2
Time for speed of occupants 1 m/s 0 330.34 359.67 418 493.98 658 777
Time for speed of occupants 1.25 m/s 0 298 328.6 394.9 461.5 628.8 705.29
Time for speed of occupants 1.5 m/s 0 269.2 312.7 369.5 436 580.2 661
Time for speed of occupants 1.75 m/s 0 251.12 289.4 339.2 394.5 529.45 599
Table 21 — Simulation results in seconds for the third scenario, with elevators disabled and the second and the fourth entrances/exits blocked and for the occupants' speeds from 0.75m/s, 1 m/s, 1.25m/s, 1.5m/s, and 1.75 m/s Таблица 21 - Результаты симуляции, выраженные в секундах по третьему сценарию, без лифта и со вторым и четвертым заблокированными входами/выходами, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с Табела 21 - Симулациони резултати у секундама за треПи сценарио, без лифтова и са другим и четвртим блокираним улазима/излазима, и за брзине
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 383 428 487 590 750 989
Time for speed of occupants 1 m/s 0 368 396 455 531 695 813
Time for speed of occupants 1.25 m/s 0 335.7 364 434.29 498 667 742
Time for speed of occupants 1.5 m/s 0 307.56 350 407 474.2 622 698
Time for speed of occupants 1.75 m/s 0 287.2 326.3 376.06 432.22 566.45 636
Table 22 — Simulation results in seconds for the third scenario, with elevators disabled and the third and the fourth entrances/exits blocked and for the occupants' speeds from
0.75 m/s, 1 m/s, 1.25 m/s, 1.5 m/s, and 1.75 m/s Таблица 22 - Результаты симуляции, выраженные в секундах по третьему сценарию, без лифта и с третьим и четвертым заблокированными входами/выходами,
учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с Табела 22 - Симулациони резултати у секундама за треПи сценарио, без лифтова и са треПим и четвртим блокираним улазимаЛизлазима, и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s, 1,5 m/s и 1,75 m/s
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 393.23 438 496.6 599.3 758 995.27
Time for speed of occupants 1 m/s 0 374.9 405.37 463.78 541.12 703 822.3
Time for speed of occupants 1.25 m/s 0 344.4 372.3 441 506 674.88 750.31
Time for speed of occupants 1.5 m/s 0 317 358 415 481 631.3 707.3
Time for speed of occupants 1.75 m/s 0 296.6 335 382.8 440 573 645.3
oo
4 !±
<л 'ro
<Л
<u
ro о
(Л
<u <u
£Z
Ъ '5
.Q
"ro
<U "O <л Ф
E о
Table 23 — Simulation results in seconds for the fourth scenario, with elevators enabled
and the first entrance/exit opened, while the second, the third and the fourth entrances/exits are blocked, and for the occupants' speeds from 0.75 m/s, 1 m/s, 1.25
m/s, 1.5 m/s, and 1.75 m/s Таблица 23 - Результаты симуляции, выраженные в секундах по четвертому сценарию, с лифтами и с первым открытым входом/выходом, в то время как второй, третий и четвертый входы/выходы заблокированы, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с Табела 23 - Симулациони резултати у секундама за четврти сценарио, са лифтовима и са првим отвореним улазомЛизлазом, док су други, треПи и четврти улазиЛизлази блокирани, и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s,
1,5 m/s и 1,75 m/s
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 443.6 678.3 915.9 1150.7 1388.3 1623
Time for speed of occupants 1 m/s 0 322 496.5 672 846.3 1021.8 1198.3
Time for speed of occupants 1.25 m/s 0 310 470 620 780 834 992
Time for speed of occupants 1.5 m/s 0 304 432.6 594 700 800 900
Time for speed of occupants 1.75 m/s 0 274 373.4 474.9 585.5 689 794
о
ro ^
о
ro >
<u
(Л
.Q
IS
с <u
"O <л <u
<u
4—
ro Ю
od
■o <u
<u
(Л
9 6
"(5 >
2 0 2
a: УУ 0£ ZD О
о <
о
X
о ш
i-
^
Q1 <
(Л <
-J
О >о
X ш н
о
о >
о
and the second entrance/exit opened, while the first, the third and the fourth entrances/exits are blocked, and for the occupants' speeds from 0.75 m/s, 1 m/s, 1.25
m/s, 1.5 m/s, and 1.75 m/s Таблица 24 - Результаты симуляции, выраженные в секундах по четвертому сценарию, с лифтами и со вторым открытым входом/выходом в то время как первый, третий и четвертый входы/выходы заблокированы, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с Табела 24 - Симулациони резултати у секундама за четврти сценарио, са лифтовима и са другим отвореним улазом/излазом, док су први, треПи и четврти улази/излази блокирани, и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s,
1,5 m/s и 1,75 m/s
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 483.2 718.8 949.6 1183 1414.3 1646.5
Time for speed of occupants 1 m/s 0 335 515 694 869 1044.6 1220.3
Time for speed of occupants 1.25 m/s 0 286 426.4 566.8 707.8 849.1 988.6
Time for speed of occupants 1.5 m/s 0 263 404.5 531.6 651.7 772.6 890.3
Time for speed of occupants 1.75 m/s 0 242.3 355.2 463.2 569.8 675.7 780.2
Table 25 — Simulation results in seconds for the fourth scenario, with elevators enabled
and the third entrance/exit opened, while the first, the second and the fourth entrances/exits are blocked, and for the occupants' speeds from 0.75 m/s, 1 m/s, 1.25
m/s, 1.5 m/s, and 1.75 m/s Таблица 25 - Результаты симуляции, выраженные в секундах по четвертому сценарию, с лифтами и с третьим открытым входом/выходом, в то время как первый, второй и четвертый входы/выходы заблокированы, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с Табела 25 - Симулациони резултати у секундама за четврти сценарио, са лифтовима и са треПим отвореним улазом/излазом, док су први, други и четврти улази/излази блокирани, и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s, _1,5 m/s и 1,75 m/s_
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 443.7 680 917.6 1152.5 1390.2 1623.6
Time for speed of occupants 1 m/s 0 336.6 510 686 861.6 1036.5 1204.7
Time for speed of occupants 1.25 m/s 0 264.8 400 540.8 681.4 823.4 962.8
Time for speed of occupants 1.5 m/s 0 247.4 387.5 519.6 641.4 763.7 884.5
Time for speed of occupants 1.75 m/s 0 241.3 351.7 460 565.3 669.6 800
and the fourth entrance/exit opened, while the first, the second and the third entrances/exits are blocked, and for the occupants' speeds from 0.75 m/s, 1 m/s, 1.25
m/s, 1.5 m/s, and 1.75 m/s Таблица 26 - Результаты симуляции, выраженные в секундах по четвертому сценарию, с лифтами и с четвертым открытым входом/выходом, в то время как первый, второй и третий входы/выходы заблокированы, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1. 5 м/с и 1.75 м/с Табела 26 - Симулациони резултати у секундама за четврти сценарио, са лифтовима и са четвртим отвореним улазомЛизлазом, док су први, други и треПи улазиЛизлази блокирани, и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s, 1,5
m/s и 1,75 m/s
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 446 677 910 1145 1376.9 1603.6
Time for speed of occupants 1 m/s 0 332 509.6 709 857.6 1032.1 1206
Time for speed of occupants 1.25 m/s 0 320 487 683 832 992 1132
Time for speed of occupants 1.5 m/s 0 302 457 588.4 714.5 836.6 953.7
Time for speed of occupants 1.75 m/s 0 295.4 406.7 539.5 648.6 754.7 860
oo
4 !±
<л 'ro
<Л
<u
ro о
(Л
<u <u
£Z
Ъ '5
.Q
"ro
<U "О <л Ф
E о
о
ro ^
о
ro >
<u
(Л
.Q
li с <u
"О <л <u
<u
4—
ro Ю
a:
■(J
<u
Table 27 — Simulation results in seconds for the fourth scenario, with elevators disabled
and the first entrance/exit opened, while the second, the third and the fourth entrances/exits are blocked, and for the occupants' speeds from 0.75 m/s, 1 m/s, 1.25
m/s, 1.5 m/s, and 1.75 m/s Таблица 27 - Результаты симуляции, выраженные в секундах по четвертому сценарию, без лифта и с первым открытым входом/выходом, в то время как второй, третий и четвертый входы/выходы заблокированы, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с Табела 27 - Симулациони резултати у секундама за четврти сценарио, без лифтова и са првим отвореним улазомЛизлазом, док су други, треПи и четврти улазиЛизлази блокирани, и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s, 1,5 m/s и
1,75 m/s
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 550.3 787 1021.9 1257.4 1493.5 1729.3
Time for speed of occupants 1 m/s 0 428 602 778.5 953 1126.9 1302
Time for speed of occupants 1.25 m/s 0 416.1 576 726.54 885.3 940 1099.3
Time for speed of occupants 1.5 m/s 0 410.32 538 701.5 806.4 906.2 1006
Time for speed of occupants 1.75 m/s 0 380.5 480 580.9 693.4 795 900.02
<u
(Л
9 6
"(5 >
2 0 2
a: УУ 0£ ZD О
о <
о
X
о ш
i-
^
Q1 <
(Л <
-J
О >о
X ш н
о
о >
о
and the second entrance/exit opened, while the first, the third and the fourth entrances/exits are blocked, and for the occupants' speeds from 0.75 m/s, 1 m/s, 1.25
m/s, 1.5 m/s, and 1.75 m/s Таблица 28 - Результаты симуляции, выраженные в секундах по четвертому сценарию, без лифта и со вторым открытым входом/выходом, в то время как первый, третий и четвертый входы/выходы заблокированы, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с Табела 28 - Симулациони резултати u секундама за четврти сценарио, без лифтова и са другим отвореним улазомЛизлазом, док су први, треПи и четврти улазиЛизлази блокирани, и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s, 1,5 m/s и
1,75 m/s
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 547 781 1019.9 1255 1493 1727
Time for speed of occupants 1 m/s 0 426.2 600 776 951 1126 1303.5
Time for speed of occupants 1.25 m/s 0 413.34 574.7 723.4 882.4 938.4 1096.71
Time for speed of occupants 1.5 m/s 0 408 539.17 699.8 804 904 1003.4
Time for speed of occupants 1.75 m/s 0 378 476.6 579 890 793 898
Table 29 — Simulation results in seconds for the fourth scenario, with elevators disabled
and the third entrance/exit opened, while the first, the second and the fourth entrances/exits are blocked, and for the occupants' speeds from 0.75 m/s, 1 m/s, 1.25
m/s, 1.5 m/s, and 1.75 m/s Таблица 29 - Результаты симуляции, выраженные в секундах по четвертому сценарию, без лифта и с третьим открытым входом/выходом, в то время как первый, второй и четвертый входы/выходы заблокированы, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с Табела 29 - Симулациони резултати у секундама за четврти сценарио, без лифтова и са треПим отвореним улазомЛизлазом, док су први, други и четврти улазиЛизлази блокирани, и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s, 1,5 m/s и
1,75 m/s
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 545.02 781.4 1018.6 1254 1492 1725
Time for speed of occupants 1 m/s 0 438 612.11 787 963.9 1137 1305
Time for speed of occupants 1.25 m/s 0 365.16 500.31 643.2 787 925 1064.8
Time for speed of occupants 1.5 m/s 0 349 489 621.7 743 867.5 986
Time for speed of occupants 1.75 m/s 0 343.6 453 561 667.8 771 902.3
and the fourth entrance/exit opened, while the first, the second and the third entrances/exits are blocked, and for the occupants' speeds from 0.75 m/s, 1 m/s, 1.25
m/s, 1.5 m/s, and 1.75 m/s Таблица 30 - Результаты симуляции, выраженные в секундах по четвертому сценарию, без лифта и с четвертым открытым входом/выходом, в то время как первый, второй и третий входы/выходы заблокированы, учитывая скорость
жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с Табела 30 - Симулациони резултати у секундама за четврти сценарио, без лифтова и са четвртим отвореним улазомЛизлазом, док су први, други и треПи улазиЛизлази блокирани, и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s, 1,5 m/s и
1,75 m/s
Number of occupants 669 500 400 300 200 100 0
Time for speed of occupants 0.75 m/s 0 543.6 776.7 1009 1243 1476 1702
Time for speed of occupants 1 m/s 0 431.31 608.29 808.3 955 1130 1306.8
Time for speed of occupants 1.25 m/s 0 417.23 587.6 782 931 1091 1231.4
Time for speed of occupants 1.5 m/s 0 401.5 556.9 688 811.3 936.24 1053
Time for speed of occupants 1.75 m/s 0 394 504.75 636.18 746 850.53 959
oo h-
00 <Л
'ro
<Л
ф
ro о
(Л
ф ф
£Z
ъ
'5
.Q
"ro
ф
"O <л Ф
E о
о +-<
ro ^
о
ro >
Ф (Л
.Q
IS
с Ф "о
<л ф
Ф
4—
ro Ю
od
■(J Ф
Results analysis
The realized simulation results for the first scenario (Tables 1 and 2) have shown that the elevators usage increases the evacuation of the complete object. The fastest evacuation time was for the occupants' speed of 1.75 m/s and the elevators enabled (209 seconds, in Table 1), while the slowest evacuation time was for the occupants' speed of 0.75 m/s and the elevators disabled (442 seconds, in Table 2). In this scenario, the occupants left the building via their own entrance/exit. There were no jams for simulated occupants' speeds.
The realized simulation results for the second scenario (Tables from 3 to 10) have shown that the fastest evacuation time was realized when the occupants' speed was 1.75 m/s, the second entrance/exit blocked and the elevators enabled (422 seconds, in Table 4). The slowest evacuation time was realized when the occupants' speed was 0.75 m/s, the fourth entrance/exit blocked and the elevators disabled (893 seconds, in Table 10). In this scenario, the occupants from the building with the blocked entrance/exit had to use the building roof terraces to reach the
CN О CN
К. Ш
О о
—I
<
о
X
0 ш Icc
1
CO <
CD 2:
X ш 1-
o
о >
&
nearest stairs that lead to the open entrance/exit. There were no jams for the simulated occupants' speeds. Some simulation scenes from the second scenario are presented in Figure 3 (a and b).
a)
b)
Figure 3. Simulation scene for the second scenario where the first entrance/exit was blocked and the elevators were enabled and for the occupants' speeds of 1 m/s (a) and the simulation scene for the second scenario where the fourth entrance/exit was blocked and the elevators were disabled and for the occupants' speeds of 0.75 m/s (b) Рис. 3 — Имитационные сцены по второму сценарию, в котором первый вход/выход заблокирован и есть лифты, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с (а), и имитационные сцены по второму сценарию, в котором четвертый вход/выход заблокирован и нет лифта, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с (б)
Слика 3 — Симулационе сцене из другог сценари]а где ]е први улазЛизлаз блокиран и са лифтовима и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s, 1,5 m/s и 1,75 m/s (а), и симулационе сцене из другог сценарща где ¡е четврти улазЛизлаз блокиран и без лифтова, и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s, 1,5 m/s и 1,75 m/s (б)
The realized simulation results for the third scenario (Tables from 11 to 22) have shown that the fastest evacuation time was realized when the occupants' speed was 1.75 m/s, the second and the third entrances/exits blocked and the elevators enabled (550 seconds, in Table 14). The slowest evacuation time was realized when the occupants' speed was 0.75 m/s, with the first and the fourth entrances/exits blocked and the elevators disabled (1003 seconds, in Table 19). In this scenario, the occupants from the buildings with the blocked entrances/exits had to use the building roof terraces to reach the nearest stairs that lead to the open entrance/exit. The simulations showed that jams can occur, mostly for
the occupants' speed of 0.75 m/s and 1.25 m/s. Some simulation scenes from the third scenario are presented in Figure 4 (a and b).
a) b)
Figure 4 — Simulation scene for the third scenario where the first and the second entrances/exits were blocked and the elevators were enabled and for the occupants' speeds of 1.25 m/s (a) and a simulation scene for the third scenario where the third and the fourth entrances/exits were blocked and the elevators were disabled and for the occupants' speeds of 1.5 m/s (b)
Рис. 4 — Имитационные сцены по третьему сценарию, в котором первый и второй входы/выходы заблокированы и есть лифты, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с (а) и имитационные сцены по
третьему сценарию, в котором третий и четвертый входы/выходы заблокированы и нет лифта, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25
м/с, 1.5 м/с и 1.75 м/с (б) Слика 4 — Симулационе сцене из треЬег сценар^а где су први и други улазиЛизлази блокирани и са лифтовима и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s, 1,5 m/s и 1,75 m/s (а), и симулационе сцене из треЪег сценар^а, где су треЬи и четврти улазиЛизлази блокирани и без лифтова, и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s, 1,5 m/s и 1,75 m/s (б)
The realized simulation results for the fourth scenario (Tables from 23 to 30) have shown that the fastest evacuation time was realized when the occupants' speed was 1.75 m/s, the first entrance/exit opened and the second, the third and the fourth entrances/exits blocked and the elevators enabled (794 seconds, in Table 23). The slowest evacuation time was realized when the occupants' speed was 0.75 m/s; with the first entrance/exit opened, and with the second, the third and the fourth entrances/exits blocked and the elevators disabled (1729.3 seconds, in
00
cp cp
.2 "go
(D cp
(П <D
3 О
(О
та с
.Q
С <D
■g
(О
ш
Е
2 ч— С О
го
о
го >
<и
(/} та с
-Q
С Ф
■д
(О
£ го
(Л
oi
-и >
ф
CD (Л
CD CD
О >
CN О CN
of
Ш
C£ ZD О О
_l
<
о z
X
о
Ш
I—
^
cz <
(D
о
sz о z x
Ш
О >
О
Table 27). In this scenario, the occupants with the blocked entrances/exits had to use the building roof terraces to reach the nearest stairs that lead to the single open entrance/exit. The simulations showed that jams can occur, mostly for the occupants' speed of 0.75 m/s. The simulations showed that jams in this scenario can occur and that these jams can be significant, for every occupants' speed from 0.75 m/s to 1.75 m/s. Some simulation scenes from the fourth scenario are presented in Figure 5 (a and b).
a) b)
Figure 5 - Simulation scene for the fourth scenario where the fourth entrance/exit was
opened while other entrances/exits were blocked, the elevators enabled and for the occupants' speeds of 0.75 m/s (a) and a simulation scene for the fourth scenario where the second entrance/exit was opened while other entrances/exits were blocked, the elevators disabled and for the occupants' speeds of 1.75 m/s (b) Рис. 5 - Имитационные сцены по четвертому сценарию, в котором четвертый вход/выход открыт, а остальные входы/выходы заблокированы и есть лифты, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с (а) и имитационные сцены входы/выходы заблокированы и нет лифта, учитывая скорость жильцов: 0.75 м/с, 1 м/с, 1.25 м/с, 1.5 м/с и 1.75 м/с (б) Слика 5 - Симулационе сцене из четвртог сценар^а где jе четврти улаз/излаз отворен, док су остали улази/излази блокирани, са лифтовима и за брзине станара: 0,75 m/s, 1 m/s, 1,25 m/s, 1,5 m/s и 1,75 m/s (а), и симулациони улази/излази блокирани, без лифтова, и за брзине станара: 0,75 m/s, 1 m/s, 1,25
m/s, 1,5 m/s и 1,75 m/s (б)
The realized simulations have shown that times needed for an evacuation increased depending on the number of blocked entrances/exits and on whether the elevators were used or not. In reality,
many of potential evacuation situations imply that elevators are not used and that was the main reason why every of four scenarios was analysed with enabled and disabled elevators. The factors that are important for elevators usage are, most frequently, the floor level where occupants are located and the acceptable waiting time. Experience and research have shown that higher locations in residential buildings are more likely to imply elevator usage than usage of ordinary or emergency stairs. It is also important to note that the acceptable waiting time increases | according to the height of the floor level (Kinateder et al, 2014).
One very important factor that has a great influence on the evacuation time is panic. Panic causes fearful and chaotic behaviour which is, most frequently, demonstrated with an increase of speed of occupants. This speed increment results in crowds and jams that can be very unpredictable and very hard to solve. It means that the evacuation time can be significantly extended, which the simulation results proved.
It is also important to note that, in reality, every occupant has his/her ro own speed, while in the simulation all occupants had the same speed. Also, in reality, occupants' personal characteristics are very different and can affect the overall evacuation time and cause problems in the crowd m (Kady & Davis, 2009), (Jevtic, 2019b). 2
Disccussion
ni
iu b
The usage of simulation software for simulating the evacuation in high-rise buildings is becoming more frequent and more extensive. The main reasons for that are: increase of safety in order to protect as many human lives as possible; increasingly frequent construction of high-rise buildings with a huge number of occupants; prediction and determination of optimal evacuation routes; prediction of potential occupants' behaviors, etc.
There are many residential buildings with and without emergency stairs. Very often, emergency stairs in residential buildings can be useless because of many reasons (fire, earthquake, smoke, jams, etc.) so that the only way to the exit is via ordinary stairs and elevators. As it has been noted before, the usage of elevators in many crises that need evacuation, such as fires or earthquakes, is not recommended. It does not mean that elevators should not be used at all but that there is a significant risk if they are used. This is a very important reason why evacuation simulations should be considered for cases with and without elevators usage. In some situations that can occur in high residential buildings or other objects with a significant presence of immobile
<D </)
O) CO
"o
>
CM o CM
of
UJ
a.
Z) O
o <
o
X
o
LU
H
^
OH <
H
<
CD >o
X LU H
O
O >
&
persons, it is almost impossible to realize evacuation without elevators usage. The obtained results confirmed that the evacuation times were shorter in the cases where the elevators were enabled.
One very important factor in every evacuation is a so-called „human factor". This factor presents a very complex factor in sense of prediction and calculation. For example, people will not behave in the same way individually and in a group. During evacuation, parents will always tend to run towards their children which can significantly complicate the evacuation. Frequently, occupants in high residential buildings in disaster cases show apathetic behavior and non-acceptance of obvious facts. Taking ino account many important factors related to occupants in simulations (occupants physical dimensions, occupants' reduction factor, occupant comfort distance, occupants slow factor, speed, and many others) presents a very important task that demands knowledge from different sciences and disciplines.
The obtained simulation results were in the range of the obtained simulation results in similar cases. It is a very good and accurate way to compare the obtained simulation results with calculated results and experimental results, since it is not always possible to carry out such experiments in reality (Ding et al, 2017), (Poon, 1994), (Kasereka et al, 2018), (Rozo et al, 2019), (Xing & Tang, 2012).
Conclusion
The results obtained in this paper have shown the maximum evacuation times in a building without emergency stairs with and without elevators usage. In reality, it is unlikely that, for example, all three entrances/exits are blocked, maybe only in case of a huge fire or a huge earthquake. However, it is very important to predict as many evacuation scenarios as possible and calculate adequate evacuation times.
Calculation of evacuation time and prediction of the best evacuation route presents a very complex and responsible task. Very often, it is almost impossible to predict every potential situation than can occur during evacuation. Because of that reason, usage of simulation software presents a very good, effective, cheap, and safe way for predicting potential evacuation situations in many different objects, which gives this topic great importance and motivation in order to save human lives and material properties. The main contributions of this paper are in its potential to determine optimal evacuation routes and calculate evacuation times in high buildings with or without emergency stairs, taking into consideration the influence of many different mentioned
factors that can affect the evacuation progress and complete the £ evacuation epilogue.
Future investigations will relate to a simulation of evacuation with the presence of immobile persons of varying degrees of immobility, a simulation of evacuation via spiral staircases, a simulation of evacuation under different conditions, etc.
The usage of simulation software for the prediction and calculation of optimal evacuation routes can significantly improve the procedures and strategies of evacuation from some specific objects such as residential buildings.
References
£Z 32
'5
.Q
Ding, N., Chen, T. & Zhang, H. 2017. Simulation of high-rise building evacuation considering fatigue factor based on cellular automata: A case study in China. Building Simulation, 10(3), pp.407-418. Available at: 1 https://doi.org/10.1007/s12273-016-0337-9.
-Fos Media. 2018. Pozar ogromnih razmjera u centru Sao Paula, ima zrtava. Fos Media, 1 May [online]. Available at: https://fosmedia.me/svijet/globus/u-centru-sao-paula-gore-zgrade-ima-zrtava- rom foto (in Serbian) [Accessed: 21 August 2020]. f
Gershon, R.R.M., Magda, L.A., Riley, H.E.M. & Sherman, M.F. 2011. The World Trade Center evacuation study: Factors associated with initiation and length of time for evacuation. Fire and materials, 36(5-6), pp.481-500. Available at: https://doi.org/10.1002/fam.1080.
Glavinic, P. & Raskovic B. 2016. Prirucnik za pripremu kandidata za & polaganje strucnog ispita iz oblasti zastite od pozara. Belgrade: Meritus tim (in Serbian). ISBN: 978-86-917589-91.
Hartley-Parkinson, R. 2019. Grenfell Tower fire report finds far more people could have survived disaster. Metro, 29 October [online]. Available at: https://metro.co.uk/2019/10/29/london-fire-brigade-serious-shortcomings-response-grenfell-disaster-11001429/ [Accessed: 21 August 2020].
Jevtic, R.B. 2016. Simulation of evacuation situations in order to protect human lives and material property. NBP. Nauka, bezbednost, policija, 21(2), pp.35-48. Available at: https://doi.org/10.5937/nbp1602035J. $
Jevtic, R.B. 2018. Fire and evacuation in high residential buildings. Facta Universitatis, Series: Working and living environmental protection, 15(2), pp.123-
cc
o
134. Available at: https://doi.org/10.22190/FUWLEP1802123J. =«=
Jevtic, R.B. 2019a. Simulation of fire as a form of safety and protection of -human lives and material assets. Facta Universitatis, Series: Working and living environmental protection, 16(3), pp.171-184. Available at: https://doi.org/10.22190/FUWLEP1903171J.
<D
</) tfí
CD CD
"o
>
CM o CM
of
UJ
a.
Z) O O
_l
<
o
X
o
UJ
H
^
OH <
H
<
CD >o
X UJ H
O
O >
&
Jevtic, R.B. 2019b. Sanitary objects evacuation with presence of immobile occupants. Zdravstvena zastita, 48(1), pp.61-68. Available at: https://doi.org/10.5937/ZZ1901061J.
Kady, R.A. & Davis, J. 2009. The effect of occupant characteristics on crawling speed in evacuation. Fire Safety Journal, 44(4), pp.451-457. Available at: https://doi.org/10.1016/j.firesaf.2008.09.010.
Kasereka, S., Kasoro, N., Kyamakya, K., Doungmo Goufo, E-F., Chokki, A.P. & Yengo, M.V. 2018. Agent-Based Modelling and Simulation for evacuation of people from a building in case of fire. Procedia Computer Science, 130, pp.10-17. Available at: https://doi.org/10.1016/j.procs.2018.04.006.
Kinateder, M.T., Omori, H. & Kuligowski, E.D. 2014. The Use of Elevators for Evacuation in Fire Emergencies in International Buildings. Gaithersburg, Maryland: National Institute of Standards and Technology. Available at: https://doi.org/10.6028/NIST.TN.1825.
Mumovic, N. 2019. Evakuacija iz stambenih objekata u vanrednim situacijama izazvanim pozarima. MA thesis. Belgrade: University of Belgrade -Faculty of Security Studies (in Serbian).
Pauls, J.L. 2005. Evacuation of Large High-Rise Buildings: Reassessing Procedures and Exit Stairway Requirements in Codes and Standards. In: Proceedings of the 7th Conference of the Council of Tall Buildings and Urban Habitat, New York, USA, pp.16-19.
Poon, L.S. 1994. EvacSim: A Simulation Model of Occupants with Behavioural Attributes in Emergency Evacuation of High-Rise Building Fires. In: Kashiwagi, T. (Ed.) Fire Safety Science-Proceedings of the Fourth International Symposium, Ottawa, Ontario, Canada, pp.681-692, July 13-17 [online]. Available at: https://iafss.org/publications/fss/4/view [Accessed: 21 August 2020].
Ronchi, E. & Nilsson, D. 2013. Fire evacuation in high-rise buildings: a review of human behaviour and modelling research. Fire Science Reviews, 2(art.number:7). Available at: https://doi.org/10.1186/2193-0414-2-7.
Rozo, K.R., Arellana, J., Santander-Mercado, A. & Jubiz-Diaz, M. 2019. Modelling building emergency evacuation plans considering the dynamic behaviour of pedestrians using agent-based simulation. Safety Science, 113, pp.276-284. Available at: https://doi.org/10.1016/j.ssci.2018.11.028.
-Thunderhead. 2014. Pathfinder User Manual. Manhattan, KS, USA: Thunderhead Engineering [online]. Available at:
https://www.thunderheadeng.com/wp-
content/uploads/downloads/2014/10/users_guide.pdf [Accessed: 21 August 2020]
Xing, Z. & Tang, Y. 2012. Simulation of Fire and Evacuation in High-Rise Building. Procedia Engineering, 45, pp.705-709. Available at: https://doi.org/10.1016/j.proeng.2012.08.227.
ПОЖАРНАЯ БЕЗОПАСНОСТЬ ЖИЛЫХ ЗДАНИЙ - ЭВАКУАЦИЯ ¡5
ИЗ ЖИЛЫХ ЗДАНИЙ БЕЗ ПОЖАРНОЙ ЛЕСТНИЦЫ
оо
Радое Б. Евтич ?
Электротехнический техникум «Никола Тесла», &
г. Ниш, Республика Сербия
РУБРИКА ГРНТИ: 67.00.00 СТРОИТЕЛЬСТВО. АРХИТЕКТУРА: ф
67.53.33 Противопожарная защита зданий и ^
сооружений ВИД СТАТЬИ: оригинальная научная статья
о
о
Резюме:
Введение/цель: Безопасность в высотных жилых зданиях является очень важной и всегда актуальной задачей. В случае возникновения непредвиденных и опасных происшествий, жильцов необходимо эвакуировать. Пожары, землетрясения и терроризм - лишь некоторые из таких ситуаций. Скорость эвакуации из высотных жилых зданий зависит от множества различных факторов. Эвакуация во многом усложняется, если в зданиях нет пожарных лестниц.
Методы: В данной статье применялся метод моделирования. На основе реального объекта - жилого здания была создана 2 соответствующая имитационная модель с помощью соответствующей имитационной программы. ^
Результаты: Результаты исследования показали, что из четырех сценариев наиболее быстрая эвакуация была при ф скорости жильцов 1,75 м / с. В первых двух сценариях не было « выявлено ни одного затора, в отличие от третьего и четвертого сценариев; в третьем сценарии скорости жильцов составляли 0,75 м /си 1,25 м / с, а в четвертом сценарии смоделированные скорости жильцов составляли от 0,75 м/с до 1,75 м / с.
Выводы: Применение соответствующего программного обеспечения для моделирования позволяет быстро, точно, безопасно и дешево рассчитать время эвакуации и может значительно улучшить процесс и стратегию эвакуации. го
Ключевые слова: эвакуация, здание, люди, моделирование. ^
ф
"О
<л ф
ф
•о
БЕЗБЕДНОСТ У СТАМБЕНИМ ЗГРАДАМА - ЕВАКУАЦША ^
СТАМБЕНЕ ЗГРАДЕ БЕЗ ПОЖАРНИХ СТЕПЕНИЦА ^
Радоне Б. иевти^
Електротехничка школа „Никола Тесла", Ниш, Република Срби]а
ОБЛАСТ: заштита од пожара ВРСТА ЧЛАНКА: оригинални научни рад
ф (Л
v>
О) СО
"о
>
ГМ О ГМ
(£ ш
а. з О
О _|
< о
X
о ш
н
^
ОН <
н
(Л <
CD >о
X ш н
о
О >
Ф
Сажетак:
Увод/цил,: Безбедност у високим стамбеним зградама представка веома важан задатак. У случа}у неке непредви/ене и опасне по}аве, станари тих зграда мора]у бити евакуисани. Пожар, земъотрес и терористичке акци]е само су неке од таквих ситуаци]а. Брзина евакуаци]е из високе стамбене зграде зависи од много различитих фактора. Задатак евакуаци]е jе посебно тежак и компликован уколико зграда нема пожарне степенице.
Методе: У овом раду коришЯена ¡е метода моделоваша. На основу реалног об}екта - стамбене зграде, реализован }е одговара}уЯи симулациони модел у одговара]уЯем симулационом софтверу. Резултати: Резултати овог рада показали су да jе на]бржа евакуаци}а остварена за сваки од четири сценари}а при брзини станара од 1,75 m/s, с тим да за прва два сценари]а нису забележени засто}и, али су за треЯи и четврти сценарио засто}и уочени.Наиме, у треЯем сценари}у до засто}а jе дошло при брзини станара од 0,75 m/s и 1,25 m/s, а у четвртом сценарщу за све симулиране брзине станара од 0,75m/s до 1,75m/s.
Закъучак: Употреба одговара]уЯег симулационог софтвера омогуЯава брзо, прецизно, безбедно и ]ефтино израчунаваше евакуационих времена и може знатно побоъшати евакуационе процедуре и евакуациону стратеги]у.
Къучне речи: евакуаци}а, зграда, станари, симулаци}а.
Paper received on / Дата получения работы / Датум приема чланка: 28.08.2020. Manuscript corrections submitted on / Дата получения исправленной версии работы / Датум достав^а^а исправки рукописа: 02.11.2020.
Paper accepted for publishing on / Дата окончательного согласования работы / Датум коначног прихвата^а чланка за об]ав^ива^е: 04.11.2020.
© 2021 The Author. Published by Vojnotehnicki glasnik / Military Technical Courier (www.vtg.mod.gov.rs, втг.мо.упр.срб). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/rs/).
© 2021 Автор. Опубликовано в «Военно-технический вестник / Vojnotehnicki glasnik / Military Technical Courier» (www.vtg.mod.gov.rs, втг.мо.упр.срб). Данная статья в открытом доступе и распространяется в соответствии с лицензией «Creative Commons» (http://creativecommons.org/licenses/by/3.0/rs/).
© 2021 Аутор. Обjавио Воjнотехнички гласник / Vojnotehnicki glasnik / Military Technical Courier (www.vtg.mod.gov.rs, втг.мо.упр.срб). Ово jе чланак отвореног приступа и дистрибуира се у складу са Creative Commons licencom (http://creativecommons.org/licenses/by/3.0/rs/).