УДК 612.111:612.126.31:577.352.4:546:172.6
И.В. Петрова, О.А. Трубачева, С.В. Гусакова
РОЛЬ ОКСИДА АЗОТА В РЕГУЛЯЦИИ Са2+-ЗАВИСИМОЙ К+-ПРОНИЦАЕМОСТИ МЕМБРАНЫ ЭРИТРОЦИТОВ ЧЕЛОВЕКА
Работа выполнена при финансовой поддержке ФЦП (проект № П445).
Изучено влияние оксида азота на Са2+-зависимую К+-проницаемость мембраны эритроцитов человека. Исследования проводились с помощью метода регистрации мембранного потенциала в суспензии эритроцитов по изменениям рН среды инкубации в присутствии протонофора. Активность Са2+-активируемых калиевых каналов оценивалась по амплитуде гиперполяризацион-ного ответа и скорости его развития. Обнаружено, что донор оксида азота нитропруссид натрия оказывает необычное действие на Са2+-активируемые калиевые каналы эритроцитов, возможно, из-за развития некоторых побочных эффектов. Предуктор N0 Ь-аргинин увеличивает Са2+-зависимую К+-проницаемость мембраны эритроцитов. К такому же эффекту приводит и увеличение внутриклеточной концентрации цГМФ с помощью дибутирил-цГМФ или ингибиторов фосфодиэстеразы.
Ключевые слова: оксид азота; эритроциты; Са2+-активируемые К+-каналы.
Широко известна роль оксида азота как эндогенного вазодилататора, нейротрансмиттера, агента, участвующего в иммунном ответе. Кроме этого, оксид азота влияет на гипотоническую устойчивость эритроцитов, регулирует перенос ими кислорода [1, 2], воздействует на деформируемость красных клеток крови [3], а также на эриптоз - программируемую гибель эритроцитов [4].
Мембрана эритроцитов содержит Са2+-акти-
вируемые К+-каналы средней проводимости, или ОаМоБ-каналы, которые играют определенную роль в эриптозе [5]. Не исключено их участие в деформируемости клеток: Са2-индуцируемое снижение деформируемости эритроцитов устраняется при выравнивании градиента ионов калия [6].
Вопрос об участии оксида азота в регуляции Са2+-активируемых К+-каналов эритроцитов остается открытым. Не исключено, что эффекты оксида азота, связанные с деформируемостью эритроцитов или продолжительностью их жизни, опосредованы его влиянием на Са2-зависимую К+-проницаемость мембраны красных клеток крови.
Целью настоящего исследования явилось изучение вклада оксида азота в регуляцию Са2+-зависимой К+-проницаемости мембраны эритроцитов здоровых доноров.
Материалы и методы исследования
В работе использовалась кровь 27 практически здоровых добровольцев в возрасте от 20 до 45 лет обоего пола.
Кровь забиралась из локтевой вены утром натощак в пробирки с гепарином (25 ед/мл крови). После центрифугирования (1000g, 5 мин, 4°С) плазму и клетки белой крови удаляли, а эритроциты дважды промывали 3 частями изоосмотического раствора №С1 (150 мМ), содержащего 5 мМ №-фосфатный буфер (рН 7,4), при тех же условиях центрифугирования.
Для исследования Са2-активируемых калиевых каналов был применен метод регистрации мембранного потенциала в суспензии эритроцитов по изменениям рН среды инкубации в присутствии протонофора, основанный на том, что в этих условиях распределение протонов зависит от мембранного потенциала [7]. Эксперименты проводились по следующему плану. Для получения гиперполяризационного ответа к 4,75 мл среды инкубации (среда №), содержащей 150 мМ №С1,
1 мМ KCl, 1мМ MgCl2, 10 мМ глюкозы и 10 мкМ СаС12, добавляли 0,25 мл упакованных эритроцитов. Через 5 мин инкубации при 37°С и постоянном перемешивании добавляли протонофор карбонилцианид-m-хлорфенилгидразон (С1-ССР Sigma) до конечной концентрации 20 мкМ и спустя 2 мин - 0,5 мкМ Са2+-ионофора А23187 (Sigma). Добавление кальциевого ионофора А23187 к суспензии клеток, содержащей хлорид кальция, приводило к выходу ионов калия и развитию гиперполяризационного ответа мембраны эритроцитов, что находило свое отражение в изменении рН суспензии.
Защелачивание среды инкубации соответствовало гиперполяризации мембраны, а восстановление рН -возвращению мембранного потенциала к исходному значению. При анализе полученных данных использовались следующие параметры (рис. 1). АБ - амплитуда гиперполяризационного ответа, значение мембранного потенциала, соответствующие максимальному уровню гиперполяризации мембраны в ответ на добавление А23187 (мВ); V1 - скорость защелачивания среды инкубации, отражающая скорость гиперполяризации (мэкв ОН-/мин-л клеток); V2 - скорость закисле-ния среды инкубации, отражающая скорость восстановления мембранного потенциала (мэкв Н+/мин-л клеток). Амплитуда гиперполяризационного ответа и скорость его развития (V1) характеризуют Са2+-зависимую К+-проницаемость, а скорость восстановления мембранного потенциала (V2) - активность Са2+-АТФазы [7].
Статистическая обработка. Анализ данных проводили при помощи программы STATISTICA 6.0 for Windows фирмы Statsoft. Фактические данные представлены в виде «среднее арифметическое ± ошибка среднего» (X±m). Для определения характера распределения полученных данных использовали критерий нормальности Колмогорова-Смирнова. Сформированные выборки не подчинялись закону нормального распределения, поэтому для проверки статистических гипотез были использованы непараметрические критерии [8]. Для проверки гипотезы об однородности двух независимых выборок использовался U-критерий Манна-Уитни. Для проверки однородности парных или зависимых выборок был использован Т-критерий Вилкок-сона [9]. Различия считали достоверными при уровне значимости р<0,05.
Рис. 1. Типичная кинетика изменения рН в суспензии эритроцитов человека в ответ на добавление 0,5 мкМ А23187 в присутствии 10 мкМ СаСЬ и 20 мкМ С1-ССР (представлена как иллюстрация метода расчета параметров гиперполяризационного ответа эритроцитов)
Результаты исследования и обсуждение
Для изучения влияния оксида азота в экспериментальной практике широко используются нитросоединения - доноры NO. В проведенных экспериментах был применен нитропруссид натрия (НП, Sigma).
Добавление в среду инкубации эритроцитов НП в концентрациях от 10-8 до 10-6 М не вызывало измене-
ний амплитуды гиперполяризационного ответа роцитов (рис. 2).
эрит-
Увеличение концентрации НП в среде инкубации эритроцитов до 10-5 М приводило к достоверному снижению амплитуды гиперполяризационного ответа (рис. 2). Кроме того, снижались и скорость развития гиперполяризации, и скорость восстановления мембранного потенциала. Увеличение концентрации нитропруссида натрия в среде инкубации до 10-410-3 М полностью подавляло развитие гиперполяризационного ответа эритроцитов (на рис. 2 не указано).
£
О
S
о
100
80
а
и
о
м
К
&
ч
о
а
60
40
Г
20
<
-8
-7 -6
Ьд(концентрации нитропруссида натрия), М
-5
Рис. 2. Изменение амплитуды гиперполяризационного ответа эритроцитов человека в присутствии различных концентраций нитропруссида натрия. За 100% приняты значения ответа в отсутствии нитропруссида натрия (контроль).
* Статистически значимые отличия от контрольных значений (р<0,05)
Имеются данные о стимуляции нитропруссидом натрия калиевой проводимости мембраны ряда клеток, в первую очередь гладкомышечных, что связывают с действием оксида азота, донором которого нитропрус-сид натрия является. В проведенных нами экспериментах был получен противоположный результат. Каковы
же причины неожиданного влияния нитропруссида натрия на Са2-активируемые калиевые каналы мембраны эритроцитов?
Следует отметить, что относительно донорной способности нитропруссида натрия не существует единой точки зрения. Некоторые авторы считают, что
*
0
НП спонтанно освобождает оксид азота [10], который легко проникает внутрь клеток и оказывает свое регуляторное действие. Согласно другой точке зрения, НП подвергается изменениям, в которых участвует мембранносвязанная НАДН-дегидрогеназа [11]. Кроме того, нитропруссид натрия освобождает не только N0, но и ионы цианида С№, причем концентрация последних пропорциональна концентрации НП [12]. Мембрана эритроцитов содержит некоторые фрагменты электронно-транспортной цепи, в частности НАДН-дегидрогеназу, цитохром с [13-15], которые могут включаться в регуляцию Са2+-активируемых калиевых каналов эритроцитов [13]. Установлено, что ионы СК- могут выступать в роли ингибитора цитохрома с [16].
Возможно, полученные эффекты НП обусловлены его декомпозицией с участием фрагментов электроннотранспортной цепи, имеющихся в мембране эритроцитов и ингибирующим влиянием ионов цианида.
Чтобы избежать NO-независимых эффектов нитро-пруссида натрия, мы использовали другой подход для увеличения концентрации оксида азота, связанный с естественным предуктором NO L-аргинином.
Известно, что эритроциты содержат NO-синтазу -фермент, образующий оксид азота из L-аргинина [17, 18].
Инкубация эритроцитов с L-аргинином (10-6 М) вызывала достоверное повышение амплитуды и скорости развития ГО эритроцитов (рис. 3).
Ингибирование NO-синтазы с помощью L-NMMA (Sigma) (24 10-5 M) достоверно снижало амплитуду гиперполяризационного ответа (рис. 3).
Таким образом, в проведенных экспериментах установлено, что внутриклеточная продукция NO с помощью L-аргинина увеличивала Са2 -зависимую калиевую проницаемость мембраны эритроцитов. Подтверждением этому являются сведения, что L-аргинин снижает гипотонический гемолиз красных клеток крови вследствие активации выхода ионов калия [19].
Рис. 3. Амплитуда гиперполяризационного ответа эритроцитов человека в присутствии Ь-аргинина, дибутирил-цГМФ, изобутилметилксантина, запринаста и Ь^ММА. За 100% приняты значения гиперполяризационного ответа в отсутствии перечисленных агентов (контроль). * Статистически значимые отличия от контрольных значений (р<0,05)
В работах по изучению участия NO в регуляции №+/Н+-обмена и К+-СГ-котранспорта показан цГМФ-зависимый эффект оксида азота [20-22].
Для выяснения цГМФ-зависимого действия оксида азота обычно применяют ингибитор растворимой гуа-нилатциклазы - метиленовый синий. Однако проведенные эксперименты показали, что метиленовый синий сам изменяет параметры гиперполяризационного ответа: в концентрации 1мкМ он увеличивал амплитуду и скорость развития гиперполяризации, что свидетельствует о его влиянии на Са2+-активируемую калиевую проницаемость эритроцитов.
В связи с этим были проведены эксперименты с агентами, увеличивающими внутриклеточную концентрацию цГМФ: дибутирил-цГМФ (10-4 М) (Sigma) -проникающим в клетки аналогом цГМФ и ингибиторами фосфодиэстераз - изобутилметилксантином (10-4 М) и запринастом (10-4 М) (100 мкМ) (Sigma) [20]. Инкубация эритроцитов со всеми перечисленными веществами
приводила к достоверному повышению амплитуды гиперполяризационного ответа (рис. 3). Скорость развития ГО достоверно увеличивалась при действии изобутилметилксантина и запринаста. Результаты исследования показали, что Ь-аргинин, дибутирил-цГМФ и ингибиторы фосфодиэстераз действуют однонаправленно, увеличивая активность Са2+-активируемых калиевых каналов. Это позволяет предположить наличие цГМФ-опосре-дованного действия оксида азота на каналы.
Таким образом, в настоящем исследовании обнаружено, что донор оксида азота нитропруссид натрия оказывает необычное действие на К+(Са2+)-каналы эритроцитов, возможно, из-за развития некоторых побочных эффектов. Стимуляция внутриклеточной продукции оксида азота с помощью Ь-аргинина вызывает повышение Са2+-зависимой К+-проницаемости мембраны эритроцитов человека. К такому же эффекту приводит и увеличение внутриклеточной концентрации цГМФ.
ЛИТЕРАТУРА
1. Клещев А.Л., Демидов М.Л., Седов К.Р. Биохимические аспекты действия нитропруссида натрия // Экспериментальная и клиническая фарма-
кология. 1994. Т. 133, № 1. С. 39-43.
2. Kon K., Maeda N., Shiga T. Effect of nitric oxide on the oxygen transport of human erythrocytes // Toxicol. Environ Health. 1977. Vol. 5, № 2.
P. 1109-1113.
3. Bor-Kucukatay M., Wenby R.B., Meiselman H.J., Baskurt O.K. Effects of nitric oxide on red blood cell deformability // Amer. J. Physiol. 2005.
Vol. 284. P. 1577-1584.
4. Nicolay J.P., Liebig G., Niemoeller O.M. et al. Inhibition of suicidal erythrocyte death by nitric oxide // Pflügers Archiv European Journal of Physiol-
ogy. 2008. Vol. 456, № 2. P. 293-305.
5. Lang K.S., Lang P.A., Huber S.M., Wieder T. Mechanisms and significance of eryptosis // Antioxid Redox Signal. 2006. Vol. 8, № 8. P. 1183-1192.
6. Dodson R.A., Hinds T.R., Vincenzi F.F. Effects of calcium and A23187 on deformability and volume of human red blood cells // Blood cells. 1987.
Vol. 12. P. 555-561.
7. Орлов С.Н., Петрова И.В., Покудин Н.И. и др. Са2+-активируемые калиевые каналы эритроцитов, исследованные методом регистрации Са2+-
индуцированных изменений мембранного потенциала // Биологические мембраны. 1992. Т. 9, № 9. С. 885-903.
8. Гланц С. Медико-биологическая статистика. М.: Практика, 1999. 459 с.
9. Боровиков В.П., Боровиков И.П. Статистика. Статистический анализ и обработка данных в среде Windows. М., 1998. 591 с.
10. Ignarro L.J., Napoli C., Loscalzo J. Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide // Ibid.-2002. Vol. 90, № 1. P. 21-28.
11. Mohazzab H.K.M., Kaminski P.M., Agarwal R., Wolin M.S. Potential role of a membrane-bound NADH oxidoreductase in nitric oxide release and arterial relaxation to nitroprusside // Circ Res. 1999. № 5. P. 220-228.
12. Lockwood A., Patka J., Rabinovich M. et al. Sodium nitroprusside-associated cyanide toxicity in adult patients fact or fiction? A critical review of the
evidence and clinical relevance // Open Access Journal of Clinical Trials. 2010. № 2. P. 133-148.
13. Alvarez J., Garcia-Sancho J., Herreros B. Effect of electron donors on Ca2+-dependent K+-transport in one - step inside - out vesicles from human
erythrocyte membrane // Biochim. et biophys. acta. 1984. Vol. 771. P. 23-27.
14. KennettE.C., KuchellP.W. Redox reactions and electron transfer across the red cell membrane // IUBMB Lifte. 2003. Vol. 55, № 7. P. 375-385.
15. Matteucci E., Giampietro O. Electron pathways through erythrocyte plasma membrane in human physiology and pathology: potential redox biomarker? // Biomark Insights. 2007. Vol. 17, № 2. P. 321-329.
16. Leavesley B.H., Heather B., Prabhakaran K. et al. Interaction of cyanide and nitric oxide with cytochrome c oxidase: implications for acute cyanide toxicity // 2008. Toxicol. Sci. Vol. 101, № 1. P. 101-111.
17. Kleinbongard P., Schulz R., Rassaf T. et al. Red blood cells express a functional endothelial nitric oxide synthase // Blood. 2006. Vol. 107, № 7. P. 2943-2951.
18. Suhr F., Porten S., Hertrich T., Brixius K. Intensive exercise induces changes of endothelial nitric oxide synthase pattern in human erythrocytes // Exp. Biol. Med. 2009. Vol. 20, № 2. P. 95-103.
19. Caramelo C., Riesco A., Outeirino J. et al. Effects of nitric oxide on red blood cells: changes in erythrocyte resistance to hypotonic hemolysis and potassium efflux by experimental maneuvers that decrease nitric oxide // Biochem Biophys Res Commun. 1994. Vol. 199, № 2. P. 447-454.
20. Petrov V., Lijnen P. Regulation of human erythrocyte Na+/H+-exchange by soluble and particulate guanylate cyclase // Am. J. Physiol. Cell Physiol.
1996. Vol. 271. Р. 1556-1564.
21. Adragna N.C., Lauf P.K. Role of nitrite, a nitric oxide derivative, in K-Cl-cotransport activation of low-potassium sheep red blood cells // J. Membr.
Boil. 1998. Vol. 166. P. 157-167.
22. Adragna N.C., White R.E., Orlov S.N., Lauf P.K. K-CL cotransport vascular smooth muscle and erythrocytes: possible implication in vasodilatation //
Am. J. Physiol Cell. Physiol. 2000. Vol. 278 (2). P. 381-390.
Статья представлена научной редакцией «Биология» 22 февраля 2011 г.