10. Silini AR, Cargnoni A, Magatti M, Pianta S, Parolini O. The long path of human placenta, and its derivatives, in regenerative medicine. Front Bioeng Biotechnol. 2015 Oct 19;3:162. doi: 10.3389/fbioe.2015.00162.
11. Taskin O, Birincioglu M, Aydin A, Buhur A, Burak F, Yilmaz I, Wheeler JM. The effects of twisted ischaemic adnexa managed by detorsion on ovarian viability and histology: an ischaemia-reperfusion rodent model. Hum Reprod. 1998 0ct;13(10): 2823-7.
12. Xiao GY, Liu IH, Cheng CC, Chang CC, Lee YH, Cheng WT, et al. Amniotic fluid stem cells prevent follicle atresia and rescue fertility of mice with premature ovarian failure induced by chemotherapy PLoS One. 2014 Sep 8;9(9):e106538. doi: 10.1371/journal.pone.0106538.
13. Yildirim §, Topaloglu N, Tekin M3, Küfük A, Erdem H, Erba§ M, Yildirim A. Protective role of proanthocyanidin in experimental ovarian torsion. Med J Islam Repub Iran. 2015 Feb 23;29:185.
ВЛИЯНИЕ КРИОКОНСЕРВИРОВАННЫХ ЭКСПЛАНТОВ ПЛАЦЕНТЫ НА ВОССТАНОВЛЕНИЕ ЯИЧНИКОВ ПОСЛЕ ЛЕЧЕНИЯ ПЕРЕКРУТА Прокопюк В.Ю., Логинова О. О., Прокопюк А., Сомова Е.В.
В работе определяли влияние криоконсервированных экс-плантов плаценты на сохранность генеративных элементов яичников после перекрута. Перекрут моделировали на крысах линии Wistar путем наложения кетгутовых лигатур на 4 часа. Показано, что применение криоконсервированых эксплантов плаценты в сочетании с хирургическим лечением экспериментального перекрута яичников позволяет сохранить часть примордиальных фолликулов от гибели вследствие ишемических повреждений, и восстановить фолликулогенез.
Ключевые слова: перекрут яичников, плацента, криоконсервирование, крысы.
Стаття надшшла 27.12.2017 р.
EFFECT OF CRYOPRESERVED PLACENTAL EXPLANTS ON THE OVARY RESTORATION AFTER
TORSION TREATMENT Prokopiuk V.Yu., Lоginova O.O., Prokopiuk O., Somova E.
In the work the effect of cryopreserved placental expiants on the ovarian generative elements preservation after torsion treatment was defined. The ovarian torsion was modeled on the Wistar rats by the catgut ligation for 4 hours. It has been shown that the application of cryopreserved placental explants in combination with surgical treatment of experimental ovarian torsion allows to preserve part of the primordial follicles from death due to ischemic damage and restoring folliculogenesis. The uterus structure was restored independently of the therapy.
Key words: ovarian torsion, placenta, cryopreservation,
rats.
Рецензент Шеттько B.I.
DOI 10.26.724 / 2079-8334-2018-1-63-153-157 UDC 611.1/8:611.167423:614.8
RESPONSE OF HEMOMICROCIRCULATORY BED OF INTERNAL ORGANS ON VARIOUS EXTERNAL FACTORS EXPOSURE BASED ON THE MORPHOLOGICAL RESEARCH DATA
The analysis of recent scientific studies regarding the issues of morphological changes in the hemomicrocirculatory bed in response to various external factors exposure was carried out. Morphological research was carried out on 40 white male Wistar rats with body weight 240-260 grams, aged 8-10 months; 20 rats were exposed to acute stress (group 1), and 20 animals were included to the control group. The hemomicrocirculatory bed is extremely sensitive to the influence of various factors, which responds to the development of specific or nonspecific reactions. The similar morphological changes occur in the hemomicrocirculatory bed of various internal organs under the influence of acute stress, which indicates their nonspecificity.
Key words: hemomicrocirculatory bed, external factors, stress, rats.
The research work is a part RSW "Morphology of the neuro-vascular interrelations of the human head and neck organs in norm and under various external factors influence related to age aspect" state registration № 0113U001024.
The hemomicrocirculatory bed of the body is a system of small vessels formed by arterioles, capillaries, venules and arteriolovenular anastomoses. This functional complex of blood vessels, along with connective tissue, lymphatic capillaries and vessels surrounding it, provides regulation of organ blood filling, transcapillary exchange and drainage-uptake function. Each organ has its specific features of configuration, diameter and density of the hemomicrocirculatory bed blood vessels location according to its function. Vessels of the microcirculatory bed are plastic while changing the blood flow, they can deposit formed elements, contract and pass only plasma as well as change their permeability for tissue fluid [1]. According to the outstanding morphologist V.V. Kupriianov and co-authors, arterioles and capillaries, arteriolovenular anastomoses and venules are not passive, inert tubes, but constitute a living substrate, which adequately responds to physical conditions and chemical agents [4].
The perpouse of research is to study hemomicrocirculatory bed response of the internal organs to the various external factors influence at the morphological level.
Materials and methods. The bibliosemantic and morphological methods of investigation were used in research. The analysis of recent scientific studies regarding the issues of morphological changes in the hemomicrocirculatory bed in response to various external factors exposure was carried out. Morphological research was carried out on 40 white male Wistar rats with body weight 240-260 grams, aged 8-10 months; 20
rats were exposed to acute stress (group 1), and 20 animals were included to the control group. Acute immobilization stress was simulated by one-time fixation of rats on the back for 6 hours. Decapitation was carried out under thiopental anesthesia. The experimental part of the study complies with the requirements of the international principles of the "European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes" (Strasbourg, 1985), the corresponding Law of Ukraine "On the Protection of Animals against Cruelty" (No. 3446-IV as of 21.02.2006, Kyiv). The obtained materials (fragments of heart, lungs, bronchi, liver and kidneys) were fixed in 10% neutral formalin solution and passed through gradually increasing alcohol concentration; then they were placed into paraffin according to the generally accepted technique. Microtome sections were stained with hematoxylin and eosin according to Hart-Van Gieson and Mallory.
Results and their discussion. The analysis of recent studies of the scientists of the Ukrainian Medical Stomatological Academy regarding the issues of the hemomicrocirculatory bed morphological changes, caused by the various factor exposures has determined that these vessels were extremely sensitive to external exposure. The study of rat myocardial vessels response to physical activity indicated that after running 1000 meters distance, the increase in the volume of the microcirculatory bed and content of red blood cells was observed in myocardium. Under such conditions the myocardial muscle component received the optimal amount of oxygen and nutrients, the metabolic wastes removal was activated. The decrease in erythrocytes content was registered at maximum loads (2000 meters), which resulted in the myocardial hypoxia development [8]. The study of platyphylline and proserin effect on the major salivary glands of rats determined that the exchange and capacitive links of their hemomicrocirculatory bed were extremely sensitive to these drugs effect and responded with increasing metric indicators with predominance of values when introducing proserin. The submandibular gland was characterized by the evident dilation of microvessels, the smallest dilation was observed in parotid gland. The average diameter of the capillaries lumen in case of platyphylline introduction significantly increased by 72.6%, the introduction of proserin caused the increase in the average values of the capillaries lumen diameter by 81.8%. The average diameter of the post-capillaries lumen in case of platyphylline introduction was significantly increased by 37.3%, compared with the control group of animals, proserin introduction caused the increase by 42.4%. The average diameter of the venule lumen after platyphylline administration was significantly increased by 16.8% compare to the control group of animals, proserin introduction caused the significant increase by 66.6% in the average diameter of the venule lumen, compared to the control group of animals [14, 15].
The study of dynamics in the metric indices changes of the microcirculatory bed links of the palatine glands of rats with experimental xerostomia determined that adrenaline administration caused a narrowing of the resistive and exchange links of the hemomicrocirculatory bed and resulted in the stable dilatation of the capacitive link during the experiment, the latter was the result of tissue hypoxia developing in hard palate tissues due to the decrease in the arterial blood flow. When using 1% methyl ester solution of methacrylic acid to simulate the experimental hypofunction of the palatine salivary glands, the spasm of the resistive link was registered on the 14th day of observation, followed by dilatation up to 30 days of the experiment. The exchange and capacitive links of the microcirculatory bed presented constant dilatation during the whole experimental period. The observed features were caused by direct irritant effect of 1% methyl ester solution of methacrylic acid on the mucous membrane of the glandular area of the hard palate of rats [10].
The hemomicrocirculatory bed response of the submandibular salivary gland in white male Wistar rats while introducing cryopreserved placenta in case of acute sialadenitis and its correction by a single injection of cryopreserved placenta were also studied. It was determined, that a single injection of placenta caused the significant changes in the hemomicrocirculatory bed diameters during 2-7 days of the experiment. The restoration of the examined parameters to the control indicators was registered on the 14th day, which indicated the slight immune response and reaction within physiological limits. In case of acute sialadenitis, the hemomicrocirculatory bed response was determined during the whole periods of the experiment. The introduction of cryopreserved placenta on the background of experimental sialadenitis caused the restoration of the hemomicrocirculatory bed to the control group values from 5-7 days, which indicated the therapeutic properties of the biologically active substances of placenta [11]. The introduction of placental tissue caused reactive changes in the hemomicrocirculatory bed of the red bone marrow of rats. A single injection of placental tissue affected the red bone marrow by dynamic changes, namely, increased erythropoiesis, which caused the increase in erythroblast-islet cells number at different stages of maturation, with basophilic and oxyphilic erythroblasts predominance. Influence of placenta on the elements of the hemomicrocirculatory bed was characterized by evident dilation or narrowing of their average diameters, especially at the early stages of the experiment [3]. Transplantation of the cryopreserved placenta on the background of acute aseptic inflammation of the peritoneum in rats could also cause the response of the hemomicrocirculatory bed of the
small intestinal mucosa. The response of all hemomicrocirculatory bed links included the increase in their average diameter with maximum values during 3-5 days at p <0.05. Simulation of acute aseptic inflammation of the peritoneum initially led to the decrease in arterioles and capillaries diameter, significantly marked on 23 days at p <0.05 and then to the increase in their diameters, significantly marked on 14 day of the experiment at p <0.05. The venular link significantly increased in diameter on 14 day at p <0.05. When transplanting the cryopreserved placenta on the background of acute aseptic inflammation of the peritoneum, the arterioles and capillaries first decreased in diameter (significantly - on 2 day at p <0.05), then the evident diameter increase was observed on 3-10 day at p <0.05 [13]. The research data of other scientists have also proved the relation of the hemocrocirculatory bed blood vessels state to aseptic inflammation duration. Morphological analysis of structural changes of hemomicrocirculatory bed of red bone marrow in case of experimental aseptic inflammation of peritoneum in rats determined that the condition of arterioles, capillaries and venules was directly dependent on duration of experimental aseptic inflammation [2]. The study of the hemomicrocirculatory bed of adrenal cortex and medulla response to acute aseptic peritonitis has confirmed these data. Changes in diameters of examined vessels were directly related to aseptic peritonitis duration and synthetic activity of the adrenal gland, providing elimination of the inflammatory process [12]. Stress response has also affected the hemomicrocirculatory bed blood vessels.
r W ~
Fig. 1. Lungs of rat after simulation of the acute immobilization stress experimental model. Staining with hematoxylin and eosin: Ob: 20:
Fig. 2. Lungs of rat after simulation of the acute immobilization stress. Staining with hematoxylin and eosin: Ob: 40: Oc: 15: 1 - alveole
Oc: 15: 1 - Hlvlllqi 2 - aonilq 3 - small brUittus; 4 - Yttulq 5 - lumen; 2 - OOhrHJiq 3 - OvQUO mQHIhqgq 4 - aQDIlnwEEh
leukocytes accumulation.
erythrocyte sludge.
Thus, chronic stress has caused the hemomicrocirculatory disorders in the lungs of rats with erythrocyte diapedesis in the interstitial connective tissue and the alveoli lumen; inflammatory infiltration was observed perivascularly [5-7, 9]. Experimental morphological studies of the authors have determined that the acute stress caused marked response of the hemomicrocirculatory bed vessels in the respiratory tract of the lungs, as well as destructive changes in the alveoli.
The increase in the lumen diameter of the vessels segments was determined, especially in capillaries, for which this index increased more than twice as compared with the control group (7.31 ± 0.71 and 3.62 ± 0.25 ^m in the left lung and 7.64 ± 0.69 and 3.68 ± 0.22 ^m in the right one). The walls of the capacitive vessels were thinner. The blood stasis was determined in all the links of the hemomicrocirculatory bed - the lumens were filled with erythrocytes (Fig.1). The foci of erythrocytes diapedesis from the dilated metabolic and capacitive hemomicrovessels into interstitial connective tissue and alveolal lumen were identified perivascularly.
A large number of interstitial and alveolar macrophages were observed in the examined areas (Fig. 2). Similar changes were observed in the vessels of the extrapulmonary bronchi. The dilated cardiac hemomicrocirculatory bed vessels with blood stasis actively responded to acute stress according to the results of our study. Their lumens were densely filled with erythrocytes that stuck together. Perivascular connective tissue in myocardial interstitium determined the signs of swelling - loosening of collagen and elastic fibers with amorphous substance.The renal microcirculatory bed vessels also significantly narrowed under the influence of acute stress. In this case their walls thickened, the smooth muscle cells were hyperchromic and contracted, the endothelium of vessels intima had a cubic shape. The erythrocytes aggregation and
Fig. 3 Rat kidney under the influence of experimental acute immobilization stress. Microphoto. Staining with hematoxylin and eosin: Ob: 40: Oc: 15: 1 -spasmed arteriole; 2 - venous plethora.
microclotting were observed (Fig. 3). The vessels of the renal bodies were anemic, arterioles were spasmodic. Venous plethora in response to the acute stress effect was observed in the hemomicrocirculatory bed of the liver. Leukocyte infiltration was determined perivascularly. Thus, the analysis of recent scientific studies and the results of our morphological research indicate that the hemomicrocirculatory bed of the body is extremely sensitive to the effects of various factors, which always responds to the development of specific or nonspecific reactions, for example, stress.
1. The hemomicrocirculatory bed is extremely sensitive to the influence of various factors, which responds to the development of specific or nonspecific reactions.
2. The similar morphological changes occur in the hemomicrocirculatory bed of various internal organs under the influence of acute stress, which indicates their nonspecificity.
Prospects for further research. To study the patterns of ultrastructural changes in the hemomicrocirculatory bed of internal organs resulting under the stressors influence.
1. Afanasyev Yul, Kotovskiy YeF, Yurina NA. Gistologiya, tsitologiya, embriologiya: Uchebnik dlya vuzov. 5-ye izd., ispr. i dop. Moskva: Meditsina; 2002. 744 s.
2. Boruta NV. Morfolohichni zminy strukturnykh elementiv chervonoho kistkovoho mozku shchuriv pry hostromu aseptychnomu zapalenni ocherevyny. Visnyk problem biolohiyi i medytsyny. 2017; 135 (1): 273-7.
3. Boruta NV. Morfofunktsionalnyy stan strukturnykh elementiv ta hemomikrotsyrkulyatornoho rusla chervonoho kistkovoho mozku u shchuriv pry odnorazovomu pidshkirnomu vvedenni kriokonservovanoyi platsenty. Visnyk Vinnytskoho natsionalnoho medychnoho universytetu. 2017; 21 (1): 235-8.
4. Kupriyanov VV, Karaganov YaL, Kozlov VI. Mikrotsirkulyatornoye ruslo. Moskva: Meditsina, 1975. 216 s.
5. Koptev MM. Morfo-funktsionalna kharakterystyka strukturnykh elementiv lehen shchuriv u normi. Aktualni problemy suchasnoyi medytsyny: Visnyk Ukrayinskoyi medychnoyi stomatolohichnoyi akademiyi. 2011; 11 (36): 92-4.
6. Koptev MM. Morfolohichna kharakterystyka lehen shchuriv, shcho zaznaly vplyvu eksperymentalnoho khronichnoho stresu. Aktualni problemy suchasnoyi medytsyny: Visnyk Ukrayinskoyi medychnoyi stomatolohichnoyi akademiyi.2012;12 (37-38): 186-188.
7. Koptev MM, Pronina OM, Danylchenko SI, Nikolenko DYe, Zyuzina LS. Morfo-funktsionalni zminy u bronkhakh shchuriv pislya vplyvu khronichnoyi immobilizatsiyi. Tavrycheskyy medyko-byolohycheskyy vestnyk. 2013; 16 (61): 113-5.
8. Lysachenko OD. Reaktsiya sudyn mikrotsyrkulyatornoho rusla miokarda shchuriv na fizychni navantazhennya. Svit medytsyny ta biolohiyi. 2012; 35 (4): 138-40.
9. Pronina OM, Koptev MM, Pidmohylnyy YuV, Nikolenko DYe. Vplyv eksperymentalnoho khronichnoho stresu na leheni shchuriv. Visnyk problem biolohiyi i medytsyny. 2011; 2 (2): 230-2.
10. Senchakovych YuV, Yeroshenko GA. Morfometrychna kharakterystyka lanok mikrotsyrkulyatornoho rusla pidnebinnykh zaloz shchuriv pry eksperymentalniy hiposalivatsiyi. Visnyk problem biolohiyi i medytsyny. 2014; 45 (3): 275-9.
11. Shepitko IV, Shepitko VI, Yeroshenko GA, Lysachenko OD. Stan hemomikrotsyrkulyatornoho rusla pidnyzhnoshchelepnoyi slynnoyi zalozy shchuriv pry vvedenni kriokonservovanoyi platsenty ta eksperymental'nomu sialadeniti. Svit medytsyny ta biolohiyi. 2012; 32 (1): 162-6.
12. Shepitko VI, Skotarenko TA. Reaktsiya hemomikrotsyrkulyatornoho rusla kirkovoyi ta mozkovoyi rechovyny nadnyrnykiv pry hostromu aseptychnomu perytoniti. Svit medytsyny ta biolohiyi. 2015; 54 (4): 139-41.
13. Shepitko KV. Reaktsiya hemomikrotsyrkulyatornoho rusla slyzovoyi obolonky porozhnoyi kyshky pry transplantatsiyi kriokonservovanoyi platsenty na tli hostroho aseptychnoho zapalennya ocherevyny u shchuriv. Visnyk problem biolohiyi i medytsyny. 2015; 121 (4): 255-60.
14. Tsukanov DV, Yeroshenko GA, Lysachenko OD. Morfometrychna kharakterystyka obminnykh i yemnisnykh lanok HMTSR slynnykh zaloz pislya vvedennya platyfilinu i prozerynu. Materialy Naukovoyi konferentsiyi, prysvyacheniy 90-richchyu z dnya narodzhennya KS Kabaka. Kyyiv, 2014. S.100.
15. Tsukanov DV, Yeroshenko GA, Hasyuk NV, Chernyak VV. Morphometric characteristic of microcircular rate of salivary glands after administration of Platyphyllinum and Proserinum. European International Journal of Science and Technology. 2014; 3 (8): 29-34.
РЕАКЦ1Я ГЕМОМ1КРОЦИРКУЛЯТОРНОГО РУСЛА ВНУТР1ШН1Х ОРГАН1В НА ВПЛИВ Р1ЗНИХ ЗОВН1ШН1Х ФАКТОР1В ЗА РЕЗУЛЬТАТАМИ МОРФОЛОГ1ЧНИХ ДОСЛЩЖЕНЬ Прошна О.М., Коптев М.М., Биаш С.М., Срошенко Г.А.
1з використанням бiблюсемантичного методу та морфолопчних методiв дослщження вивчалися закономiрностi змш гемомкроциркуляторного русла внутршшх оргашв, яю виникають у вщповщь на вплив рiзних зовншшх фагах^в. Морфолопчш дослщження проводилися i3 залученням 40 дорослих бших щурiв-самщв лшп Вютар, i3 яких 20 зазнавали впливу гострого стресу, а решта, 20 тварин, складали контрольну групу. Проведене дослщження свщчить, що
гемомкроциркуляторне русло внутршшх оргашв е надзвичайно чутливим до впливу рiзноманiтних
РЕАКЦИЯ ГЕМОМИКРОЦИРКУЛЯТОРНОГО РУСЛА ВНУТРЕННИХ ОРГАНОВ НА ВЛИЯНИЕ РАЗЛИЧНЫХ ВНЕШНИХ ФАКТОРОВ СОГЛАСНО РЕЗУЛЬТАТАМ
МОРФОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ Пронина Е.Н., Коптев М.М., Билаш С.М., Ерошенко Г.А.
С использованием библиосемантического метода и морфологических методов исследования изучались закономерности изменений гемомикроциркуляторного русла внутренних органов, возникающих в ответ на воздействие различных внешних факторов. Морфологические исследования проводились с использованием 40 взрослых белых крыс-самцов линии Вистар, из которых 20 подверглись воздействию острого стресса, а остальные, 20 животных, составили контрольную группу. Проведенное исследование показывает, что гемомикроциркуляторное русло внутренних органов является чрезвычайно чувствительным к воздействию различных
чинниюв, на яю вщповщае розвитком спец^чних або неспец^чних реакцш. Шд впливом гострого стресу у гемомщоциркуляторному русл р1зних внутрших оргашв вщбуваються под1бн1 морфолопчш змши, що свадчить про 1х неспециф1чн1сть.
Ключовi слова: гемомкроциркуляторне русло, зовшшш фактори, стрес, щури.
Стаття надшшла 4.12.2017 р.
факторов, на которые отвечает развитием специфических или неспецифических реакций. Под влиянием острого стресса в гемомикроциркуляторном русле различных внутренних органов происходят подобные морфологические изменения, что свидетельствует об их неспецифичности.
Ключевые слова: гемомикроциркуляторное русло, внешние факторы, стресс, крысы.
Рецензент Старченко 1.1.
DOI 10.26.724 / 2079-8334-2018-1-63-157-160 УДК 591.481.3 + 616.005
МОРФОЛОГ1ЧН1 ОСОБЛИВОСТ1 КРОВОПОСТАЧАННЯ ШИШКОПОД1БНОГО Т1ЛА В ЗАЛЕЖНОСТ1 В1Д ЙОГО ЛОКАЛ1ЗАЦП В ГОЛОВНОМУ МОЗКУ ЩУР1В
e-mail: pshychenko85@gmail.com
Проведене дослщження з метою встановлення морфолопчинх особливостей кровопостачання шишкоподiбного тiла в залежност вiд його локалiзацii в головному мозку у щурiв. Виявлено два варiанти розмiщення шишкоподiбного тiла в головному мозку щурiв. У першому випадку шишкоподiбне тiло знаходиться в борозш мiж заднiми краями потиличних часток твкуль головного мозку i iнтенсивно кровопостачаеться за рахунок судинного сплетшня Ш шлуночка головного мозку, а в другому випадку шишкоподiбне тшо виявляеться в борознi мiж переднiми зоровими горбками чотиригорбикового тша, а кровопостачання в цьому випадку здшснюеться поодинокими кровоносними судинами.
Kjii040Bi слова: шишкопод1бне тшо, головний мозок, судинне сплетшня, чотиригорбикове тшо
Робота е фрагментом НДР «nopieHimbHa морфологiя пазух твердоi оболони головного мозку хребетних», № державно! реестраци 0115U000176.
Шишкоподiбне тшо - непарний орган центрально! ендокринно! системи, що тюно пов'язаний з центральною нервовою системою, зокрема гiпоталамусом, i координуе дiяльнiсть периферiйних ендокринних залоз [4] Вщомо, що шишкоподiбне тiло притаманне майже всiм хребетним тваринам, о^м мiксин i крокодилiв [9, 14]. У вшх видiв тварин його основною функщею е передача шформацл про особливостi свiтлового режиму навколишнього середовища у внутрiшне середовище оргашзму [8]. Незважаючи на iстотне тдвищення iнгересу до шишкоподiбного тiла, обумовленого широким спектром ди гормону, який воно синтезуе - мелагонiну i успiшним його застосуванням в рiзних сферах медицини, воно е найменш дослiдженою залозою внутр^то! секрецп [3]. А вщомосп щодо топографп шишкоподiбного гiла нечисленнi. Це пояснюеться перш за все тим фактом, що активне дослщження пстолопчно! структури i функцiй шишкоподiбного гiла почалося лише в 70-х рр. ХХ ст. [2], i обумовлено труднощами, головним чином пов'язаних з незначними розмiрами залози, особливостями ii локалiзацii i множиннiсгю функцiональних зв'язкiв з рiзними частинами промiжного мозку, ендокринними залозами i деякими iншими органами. Крiм того, згiдно з лiгерагурними даними iснуюгь варiацii розташування шишкоподiбного тша в головному мозку ссавщв [15]. J. Arendit [7] i E. M. Lima [10] вщзначають, що у ссавщв, навпъ у межах одного виду, юнуе велика варiабельmсть розмiрiв i iндивiдуальних особливостей розташування шишкоподiбного гiла.
Метою роботи було з'ясування морфологiчних особливостей кровопостачання шишкоподiбного гiла в залежносгi вiд його локалiзацii в головному мозку щурiв.
Матер1ал i методи дослщження. Експериментальне дослiдження проведено на 24 статевозрших самцях щурiв mmi Вiсгар, масою 240 -280 г Тварини утримувались у стандартних умовах вiварiю. Щцдослщних тварин пiдцавали евтаназп в читай вiдповiдносгi до положень «Свропейсько! конвенцл про захист хребетних тварин, яю використовуються в експериментальних та iнших наукових щлях» (Страсбург, 1986), а також «Загальних етичних принципiв експерименпв на тваринах» ухвалених першим нацюнальним конгресом з бiоегики (Кив, 2001).
Исля дека^таци проводили скальпування черепа тварин з подальшим видаленням склетння черепа разом з твердою мозковою оболоною. Поим обережно вiдокремлювали головний мозок разом з м'якою мозковою оболоною вщ основи черепа. Отримаш макропрепарати занурювали у фiксуючий розчин 10 % нейтрального формалiну. Для своечасного та повноцiнного проникнення фшсуючого розчину в тканини шишкоподiбного тша попередньо розсшали м'яку оболону головного мозку тварин, в мюцях найбшьш наближених до зони його розташування [1]. Подiбного роду машпуляцл, обумовлеш гiею обставиною, що отримати iзольований макропрепарат шишкоподiбного гiла щура з