Научная статья на тему 'Removal of heavy metals from sewage sludge by electrokinetics'

Removal of heavy metals from sewage sludge by electrokinetics Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
138
26
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ELECTROKINETICS / SEWAGE SLUDGE / HEAVY METAL POLLUTANTS / ЭЛЕКТРОКИНЕТИКА / ОСАДОК СТОЧНЫХ ВОД / ТЯЖЕЛЫЕ МЕТАЛЛЫ

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Chang Jih-Hsing, Cheng Shu-Fen, Timofeeva Svetlana S., Shen Shan-Yi

The sewage sludge contains high nutrients and organic matter, and can be used as compost, building materials, etc., which has considerable economic benefits. However, the sludge produced in sewage treatment sites still contains heavy metals and other toxic substances. If these hazardous substances cannot be removed from the sludge, it can not only be used for agricultural composting, but also needs to be greatly improved. If it is accidentally discharged into the environment, the impact level and consequences will be more serious. In this study, the heavy metals in the sewage sludge were removed by electrokinetic technology. The effects of different operating conditions were explored to achieve the goal of removing heavy metals in the sewage sludge. The sewage sludge was collected from a real-field treatment plant in Taichung. Stainless steel was used as the cathode plate material, and 0.01 M Na2CO3 was prepared as the electrolyte. Different types of anode electrode plates (graphite and DSA) were used at different voltage gradients. The period time of all tests were conducted in 5 days. Results show that the better removal efficiency could be achieved by DSA electrode plate. The removal efficiency of heavy metals such as nickel, cadmium and chromium was the most significant, that is, 72.2%, 56.8% and 38.6%, respectively. The higher removal efficiency of cadmium, nickel, copper and lead (100%, 96.7%, 17.9%, and 52.9%, respectively) could be obtained at a voltage gradient of 2.0 V cm-1. The chromium and zinc could be removed at 2.5 V cm-1 with removal rates of 80.1% and 44.1%.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Электрокинетический метод удаления тяжелых металлов из сточных вод

Сточные воды содержат большое количество питательных и органических веществ и могут использоваться в качестве компоста, строительных материалов и т. д. Однако шлам, образующийся в местах очистки сточных вод содержит тяжелые металлы и другие токсичные вещества. Если эти опасные вещества нельзя удалить из сточных вод, их можно использовать для сельскохозяйственного компостирования. Попадание тяжелых металлов в окружающую среду имеет серьезные экологические последствия. Тяжелые металлы предлагается удалять с помощью электрокинетического метода. С этой целью было изучено влияние различных условий эксплуатации. Шлам был взят с очистной установки в Тайчжуне. В качестве материала катодной пластины была использована нержавеющая сталь, а в качестве электролита раствор 0,01 М Na2CO3. Различные типы анодных электродных пластин (графит и DSA) использовались при разных градиентах напряжения. Интервал испытаний составил 5 дней. Результаты показывают, что использование электродной пластиной DSA дает наилучшие результаты. Эффективность удаления таких тяжелых металлов, как никель, кадмий и хром, составила 72,2%, 56,8% и 38,6% соответственно. Более высокая эффективность удаления кадмия, никеля, меди и свинца (100%, 96,7%, 17,9% и 52,9%) может быть достигнута при градиенте напряжения 2,0 В см-1. Хром и цинк могут быть удалены при 2,5 В см-1 (эффективность удаления 80,1% и 44,1% соответственно).

Текст научной работы на тему «Removal of heavy metals from sewage sludge by electrokinetics»

БЕЗОПАСНОСТЬ ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА HUMAN LIFE SAFETY

Original article / Оригинальная статья УДК 5.504

DOI: https://doi.org/10.21285/2500-1582-2019-3-306-315

Removal of heavy metals from sewage sludge by electrokinetics

© Jih-Hsing Chang1, Shu-Fen Cheng2, Svetlana S. Timofeeva3, Shan-Yi Shen4

1,2,4Chaoyang University of Technology, Taiwan, China 3Irkutsk National Research Technical University, Irkutsk, Russia

Abstract: The sewage sludge contains high nutrients and organic matter, and can be used as compost, building materials, etc., which has considerable economic benefits. However, the sludge produced in sewage treatment sites still contains heavy metals and other toxic substances. If these hazardous substances cannot be removed from the sludge, it can not only be used for agricultural composting, but also needs to be greatly improved. If it is accidentally discharged into the environment, the impact level and consequences will be more serious. In this study, the heavy metals in the sewage sludge were removed by electrokinetic technology. The effects of different operating conditions were explored to achieve the goal of removing heavy metals in the sewage sludge. The sewage sludge was collected from a real-field treatment plant in Taichung. Stainless steel was used as the cathode plate material, and 0.01 M Na2CO3 was prepared as the electrolyte. Different types of anode electrode plates (graphite and DSA) were used at different voltage gradients. The period time of all tests were conducted in 5 days. Results show that the better removal efficiency could be achieved by DSA electrode plate. The removal efficiency of heavy metals such as nickel, cadmium and chromium was the most significant, that is, 72.2%, 56.8% and 38.6%, respectively. The higher removal efficiency of cadmium, nickel, copper and lead (100%, 96.7%, 17.9%, and 52.9%, respectively) could be obtained at a voltage gradient of 2.0 V cm-1. The chromium and zinc could be removed at 2.5 V cm-1 with removal rates of 80.1% and 44.1%.

Keywords: electrokinetics, sewage sludge, heavy metal pollutants

Information about the article: Received June 27, 2019; accepted for publication August 27, 2019; available online September 30, 2019.

For citation: Jih-Hsing Chang, Shu-Fen Cheng, Svetlana S. Timofeeva, Shan-Yi Shen. Removal of heavy metals from sewage sludge by electrokinetics. XXI century. Technosphere Safety. 2019;4(3):306—315. (In Russian) DOI: 10.21285/2500-1582-2019-3-306-315.

Электрокинетический метод удаления тяжелых металлов из сточных вод

Джих-Син Чанг1, Шу-Фен Ченг2, Светлана С. Тимофеева3, Шан-Йи Шень4

1,4Чаоянский технологический университет, Тайвань, Китай

3Иркутский национальный исследовательский технический университет, Иркутск, Россия

Резюме: Сточные воды содержат большое количество питательных и органических веществ и могут использоваться в качестве компоста, строительных материалов и т. д. Однако шлам, образующийся в местах очистки сточных вод содержит тяжелые металлы и другие токсичные вещества. Если эти опасные вещества нельзя удалить из сточных вод, их можно использовать для сельскохозяйственного компостирования. Попадание тяжелых металлов в окружающую среду имеет серьезные экологические последствия. Тяжелые металлы предлагается удалять с помощью электрокинетического метода. С этой целью было изучено влияние различных условий эксплуатации. Шлам был взят с очистной установки в Тайчжуне. В качестве материала катодной пластины была использована нержавеющая сталь, а в качестве электролита - раствор 0,01 М Na2CO3. Различные типы анодных электродных пластин (графит и DSA) использовались при разных градиентах напряжения. Интервал испытаний составил 5 дней. Результаты показывают, что использование электродной пластиной DSA дает наилучшие результаты. Эффективность удаления таких тяжелых металлов, как никель, кадмий и хром, составила 72,2%, 56,8% и 38,6% соответственно. Более высокая эффективность удаления кадмия, никеля, меди и свинца (100%, 96,7%, 17,9% и 52,9%) может быть достигнута при градиенте напряжения 2,0 В см-1. Хром и цинк могут быть удалены при 2,5 В см-1 (эффективность удаления - 80,1% и 44,1% соответственно).

Jih-Hsing Chang, Shu-Fen Cheng, Svetlana S. Timofeeva, Shan-Yi Shen. Removal of heavy metals from sewage sludge by electrokinetics Джих-Син Чанг, Шу-Фен Ченг, Тимофеева С.С., Шань-Йи Шен. Электрокинетический метод удаления тяжелых металлов из сточных вод

Ключевые слова: электрокинетика, осадок сточных вод, тяжелые металлы

Информация о статье: Дата поступления 27 июня 2019 г.; дата принятия к печати 27 августа 2019 г.; дата онлайн-размещения 30 сентября 2019.

Для цитирования: Джих-Син Чанг, Шу-Фен Ченг, Тимофеева С.С., Шань-Йи Шен. Электрокинетический метод удаления тяжелых металлов из сточных вод. XXI век. Техносферная безопасность. 2019;4(3):306—315. DOI: 10.21285/2500-1582-2019-3-306-315.

1. Introduction

The construction of sewer system is one of the important indicators for entering a modern country. However, with the increase in the sewage sewer, it is accompanied by a huge amount of sewage sludge generated after sewage treatment. At present, sludge treatment technology is more selective, but Taiwan is still generally treated by solidification or incineration. The landfills in Taiwan are becoming saturated and new landfill disposal sites are no longer built. If sewage sludge treated by incineration, it will increase the combustion efficiency and will increase many additional energy consumption. In addition, it may also produce toxic dioxin or greenhouse gases, which will significantly increase the risk of biological health and environmental load (Huang et al., 2011). The sludge produced from sewage contains high-value nutrients (such as nitrogen, phosphorus, potassium, etc.) and abundant organic substances. It can be used as a fertilizer or soil improver to enhance the physical, chemical and biological properties of the soil. Characteristics (Hanay et al., 2009; Li et al., 2012). The sewage sludge is rich in economic value and has great potential for resource reuse. However, due to the large amount of sewage received by sewage sewers, the sludge contains inorganic pollutants such as heavy metals (Houhou et al., 2009). If the pollutants cannot be effectively removed and meet the regulatory standards, such sludge can not only be reused, but also treated as hazardous waste, which will greatly increase the subsequent processing cost of the sludge.

At present, a large amount of research has been invested in the removal and recovery of heavy metals in sludge, and many related technologies have been developed. Common techniques such as solvent extraction, phytoremediation and electrodynamic methods (Amaral et al., 2014; Gao Et al., 2013; Shukla et al., 2011). In the solvent extraction method, after the chemical solution and the contaminated sludge are uniformly stirred, the heavy metal in the sludge is dissolved in the solution, and the concentration of heavy metals in the sludge can be reduced. The phy-toremediation method uses plants to adsorb heavy metals, but the treatment required longer time, and high concentration of pollution is not conducive to plant growth. In addition, it needs to consider factors such as climate and planting environment, which results in the processing efficiency of this technology is difficult to control. Electrokinetics (EK) technology is to make the electrode across the two sides of the pollutant and then apply DC power to make the water molecules in the pores of the sludge to be transport through sludge. The mechanism of EK composes of the reaction of permeate flow, ion migration and redox reduction, which controls the pollutant removal. The EK treatment technology has the advantages of simple operation and easy installation in processing time. Therefore, this study employed the EK technology to treat sewage sludge containing heavy metal pollution. By setting different relevant operating parameters, the remove of heavy metal pollutants from sewage sludge was evaluated.

2019;4(3):306-315

XXI ВЕК. ТЕХНОСФЕРНАЯ БЕЗОПАСНОСТЬ XXI CENTURY. TECHNOSPHERE SAFETY

ISSN 2500-1582

(print) ISSN 2500-1574 (online)

307

БЕЗОПАСНОСТЬ ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА HUMAN LIFE SAFETY

2. Experimental material and methods

Basic characteristics of sewage sludge. The sludge samples used in this test were collected from a water recycling center in Taichung City. The collected sludge samples are pre-treated: the samples were laid flat and air-dried at room temperature for 24 hours. The impurities of samples such as paper, gravel, weeds and hair were separated from the sludge, and then broken with ceramic grinding tools. Standard screens of ASTM 10 (2 mm) were used to sieve sludge. The basic properties of the sewage sludge were analyzed according to standard methods, including pH, conductivity, water content, organic matter content and content of heavy metals. The basic properties of such sludge sample are listed in Table.

The setup of EK system. The schematic diagram of EK system is shown in Fig. 1. The EK system tank is made of polyvinyl chloride (PVC) with a length of 26 cm * width 11 cm * height 11 cm (inner diameter). The tank is separated by a PVC partition in the tank. The specification is 15 cm * width 11 cm *

height 6 cm (inside diameter). The gap between the electrode compartment and the sludge sample is covered with gauze-coated porous PVC sheets. After filling the sludge sample and the electrolyte, the DC voltage is applied on the electrode. The EK system was operated under the condition of 0.01 M sodium carbonate, with graphite electrode plate and Dimensionally Stable Anode (DSA) as anode, respectively. The stainless-steel plate was deployed as a cathode. The EK procedure to remove heavy metals from sludge is to place the sludge sample in the storage tank (about 450 g sludge), and then inject the electrolyte into the electrolyte storage tank. The electrode plates are all 10.5 cm long and 6.5 cm wide and different voltage gradients (1.0~2.5 V cm-1) was controlled as the operating factor. During the tests, the system voltage and current were recorded and the pH value and conductivity of the electrolyte were measured daily. The concentration of heavy metals including cadmium, chromium, nickel, copper, lead and zinc was determined.

The basic properties of such sludge sample Основные свойства образца шлама

Item value Analytical method

pH 6.11±0.03 NIEA R208.04C, 2009

Water content (%) 78 NIEA R213.21C, 2009

Organic matter (%) 47 Nelson and Sommers, 1980

Cd (mg kg-1) 5.60±0.13 NIEA S321.63B, 2003

Cr (mg kg-1) 317±13.8

Ni (mg kg-1) 830±1.81

Cu (mg kg-1) 533±2.60

Pb (mg kg-1) 147±3.86

Zn (mg kg-1) 2501 ±2.21

Jih-Hsing Chang, Shu-Fen Cheng, Svetlana S. Timofeeva, Shan-Yi Shen. Removal of heavy metals from sewage sludge by electrokinetics Джих-Син Чанг, Шу-Фен Ченг, Тимофеева С.С., Шань-Йи Шен. Электрокинетический метод удаления тяжелых металлов из сточных вод

a. DC power supplier

b. sludge storage tank Fig. 1. The schematic diagram of EK system

Рис. 1. Схема системы ЭК

3. Results and discussion

Removal efficiency of heavy metals under various type of electrode. Different electrode plates (graphite and DSA) was operated at the voltage gradient of 1.5 V cm-1 was used. Based on the experiment, the heavy metal removal of sewage sludge near the anode section, the middle section and the cathode section were discussed. Fig. 2 shows variation of cadmium concentration in the sludge. It is observed that the concentration of cadmium heavy metal near the anode segment is lower than that of the middle segment and the cathode segment, and removal on the first day can be observed. The removal efficiency of cadmium on the first day can reach 71.79% and 93.75% by graphite and DSA plates, respectively. With increasing operation time, the removal efficiency of both electrodes can reach 100%. In addition, cadmium removal in the middle section and near the cathode section is 28.39% and 22.86% by the graphite plate, respectively, while the DSA plate is 70.82% and 0%. In terms of the overall cadmium removal efficiency, the DSA plate performs better than graphite. Fig. 3 shows the variation of chromi-

um concentration in the sludge. From the change of chromium concentration, it is found that the major change of the chromium concentration of the two electrode plates occurs the first day. The removal of chromium decreases from the initial 317.3 mg kg-1 to 205.46~301.28 mg kg-1 (i.e., removal efficiency is about 5~34%) by graphite plate. In contrast, the removal efficiency of chromium is 6~41% by DSA electrode plate. Thereafter, the removal efficiency gradually becomes flat.

From the above results, it can be seen that the higher removal efficiency of heavy metals appears near the anode segment, followed by the middle segment, and that near the cathode segment is the least one. This phenomenon is caused by the electroosmotic flow and ion migration generated when the electrical voltage is applied in the EK system. The positively charged metal ions transport from the anode to the cathode due to the electroosmotic flow and ion migration. In addition, the electrolyzed water produces hydroxide ions at the cathode end, which maintains the alkali phase near the cathode end. Heavy metals may combine with hydroxide ions form

2019;4(3):306-315

XXI ВЕК. ТЕХНОСФЕРНАЯ БЕЗОПАСНОСТЬ XXI CENTURY. TECHNOSPHERE SAFETY

ISSN 2500-1582

(print) ISSN 2500-1574 (online)

309

БЕЗОПАСНОСТЬ ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА HUMAN LIFE SAFETY

the hydroxide precipitates that block pores in the sludge and reduce electricity. That in turn causes accumulation of heavy metals near the

cathode end, which results in a higher concentration of heavy metal in the sludge.

8 -

6 -

SO ЫЭ

~o

О

2 -

5

Time ( Day )

Fig. 2. Variation of cadmium concentration in the sludge Рис. 2. Изменение концентрации кадмия в шламе

4

0

0

1

2

4

400 -

Variation of Cr

( 1.5 V cm-1, 0.01 M Na2CO3, Cathode: Stainless steel )

О

300 -

SO

m

зд

200

100 -

-V-

-B-

Graphite, near the anode Graphite, medium Graphite, near the cathode DSA, near the anode DSA, medium DSA, near the cathode

Time ( Day )

Fig. 3. Variation of chromium concentration in the sludge Рис. 3. Изменение концентрации хрома в шламе

0

0

2

3

4

5

Jih-Hsing Chang, Shu-Fen Cheng, Svetlana S. Timofeeva, Shan-Yi Shen. Removal of heavy metals from sewage sludge by electrokinetics Джих-Син Чанг, Шу-Фен Ченг, Тимофеева С.С., Шань-Йи Шен. Электрокинетический метод удаления тяжелых металлов из сточных вод

Removal efficiency of heavy metals under different voltage gradients. Fig. 4 to Fig. 6 show the variation of cadmium, chromium and nickel concentrations under different voltage gradients. In terms of overall trends, cadmium, chromium and nickel have a tendency to decline under different voltage gradient operations, and the increase of voltage gradient presents a positive impact on removal efficiency. When the voltage gradient is 1.0, 1.5, 2.0 and 2.5 V cm-1, the cadmium removal efficiency is respectively 39.11%, 53.49%, 100% and 89.58%. The chromium removal efficiency is 11.23%, 38.07%, 77.17% and 80.07%. The removal efficiency of nickel is 51.76%, 72.21%, 96.67% and 86.3%. Due to the application of DC voltage, the EK system can produce electroosmotic flow and ion migration.

Such mechanism can effectively carry heavy metal ions the cathode plate. Chromium has the highest removal efficiency at a voltage gradient of 2.5 V cm-1. The higher the applied voltage gradient, the faster the migration of metal chromium ions, which in turn increases the removal efficiency.

Fig. 7 show the variation of copper concentrations under different voltage gradients. The copper removal efficiency was not significant with a maximum removal rate of 17.89% at 2.0 V cm-1 only. It is speculated that the relatively strong bond type of copper exists in the sludge. The copper species is mainly in the organic bond type and the residual state. The ratio of the two forms is about 80%, therefore, copper is difficult to be removed via electrochemical reactions (Liang et al., 2013).

t« öß

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

О

Time ( Day )

Fig. 4. Variation of cadmium concentration under different voltage gradients Рис. 4. Изменение концентрации кадмия при разных градиентах напряжения

6

5

4

3

2

1

0

0

1

2

3

4

5

2019;4(3):306-315

XXI ВЕК. ТЕХНОСФЕРНАЯ БЕЗОПАСНОСТЬ XXI CENTURY. TECHNOSPHERE SAFETY

ISSN 2500-1582

(print) ISSN 2500-1574 (online)

311

БЕЗОПАСНОСТЬ ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА HUMAN LIFE SAFETY

Time ( Day )

Fig. 5. Variation of chromium concentration under different voltage gradients Рис. 5. Изменение концентрации хрома при разных градиентах напряжения

1200

1000 -

800

йО M

ÜO 600

400 -

200

Variation of Ni

( 0.01 M Na2CO3, Anode: DSA, Cathode: Stainless steel )

1.0 V cm' 1.5 V cm"

-1

Time ( Day )

Fig. 6. Variation of nickel concentration under different voltage gradients Рис. 6. Изменение концентрации никеля при разных градиентах напряжения

0

0

1

2

3

4

5

Jih-Hsing Chang, Shu-Fen Cheng, Svetlana S. Timofeeva, Shan-Yi Shen. Removal of heavy metals from sewage sludge by electrokinetics Джих-Син Чанг, Шу-Фен Ченг, Тимофеева С.С., Шань-Йи Шен. Электрокинетический метод удаления тяжелых металлов из сточных вод

400 -

3

Ü

Time ( Day )

Fig. 7. Variation of copper concentration under different voltage gradients Рис. 7. Изменение концентрации меди при разных градиентах напряжения

Fig. 8 shows the variation of lead concentrations under different voltage gradients. It can be observed that there is a significant decrease of lead concentration on the first- day of operation except for 1.5 V cm-1. Experimental data remained almost stable afterwards. However, the lead concentration continued to drop to about 70 mg kg-1 under 2.0 V cm-1 operation. The removal efficiency of lead with different voltage gradients was 2.0 V cm-1

(52.88%) > 2.5 V cm-1 (38.32%) >1.5 V cm-1 (25.97%) >1.0 V. cm-1 (28.58%). Fig. 9 shows the variation of zinc concentrations under different voltage gradients. At the end of the operation, the removal efficiency of voltage gradients of 1.0 V cm-1, 1.5 V cm-1, 2.0 V cm-1 and 2.5 V cm-1 was 18.20%, 21.35%, 32.36% and 44.09%, respectively. Zinc will have a better removal efficiency by the EK system as the applied voltage increases.

ВД M OD

См

80 -, 60 -40 -20 -00 -80 -60 -40 -20 -0 -

Variation of Pb

( 0.01 M Na CO Anode: DSA, Cathode: Stainless steel )

1.0 V cm"

2.5 V cm"

0

Time ( Day )

Fig. 8. Variation of lead concentration under different voltage gradients Рис. 8. Изменение концентрации свинца при разных градиентах напряжения

2019;4(3):306-315

XXI ВЕК. ТЕХНОСФЕРНАЯ БЕЗОПАСНОСТЬ XXI CENTURY. TECHNOSPHERE SAFETY

ISSN 2500-1582

(print) ISSN 2500-1574 (online)

313

800

0

0

2

3

4

5

.5 V cm

2.0 V cm

2

3

4

5

БЕЗОПАСНОСТЬ ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА HUMAN LIFE SAFETY

3500

3000

2500

ад 2000

6fl В

с N

1500

1000

500

Time ( Day )

Fig. 9. Variation of zinc concentration under different voltage gradients Рис. 9. Изменение концентрации цинка при разных градиентах напряжения

4. Conclusions

Based on experimental results, the following conclusions could be drawn:

1. The better removal efficiency could be achieved by DSA electrode plate. The removal effi-ciency of heavy metals such as nickel, cadmium and chromium was the most significant, that is, 72.2%, 56.8% and 38.6%, respectively.

2. The higher removal efficiency of cadmium, nickel, copper and lead (100%, 96.7%, 17.9%, and 52.9%, respectively) could be obtained at a voltage gradient of 2.0 V

cm

3. The chromium

л

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

removed at 2.5 V cm-1 of 80.1% and 44.1%.

and zinc could be with removal efficiency

References

1. Huang H, Yuan X, Zeng G, Zhu H, Li H, Liu Z et al. Quantitative evaluation of heavy metals' pollution hazards in liquefaction residues of sewage sludge. Biore-source Technology. 2011; 102(22): 10346-10351. DOI: 10.1016/j.biortech.2011.08.117 2 Hanay O, Hasar H, Kocer N. Effect of EDTA as washing solution on removing of heavy metals from sewage sludge by electrokinetic. Journal of Hazardous Materials. 2009;169(1-3):703-710. DOI: 10.1016/j.jhazmat.2009.04.008 3. Li L, Xu Z, Zhang C, Bao J, Dai X. Quantitative evaluation of heavy metals in solid residues from sub- and

super-critical water gasification of sewage sludge. Bio-resource Technology. 2012;121:169-175. DOI: 10.1016/j.biortech.2012.06.084

4. Chen H, Ma X, Dai H. Reuse of water purification sludge as raw material in cement production. Cement and Concrete Composites. 2010;32(6):436-439. DOI: 10.1016/j.cemconcomp.2010.02.009

5. Houhou J, Lartiges B, Montarges-Pelletier E, Sieliechi J, Ghanbaja J, Kohler A. Sources, nature, and fate of heavy metal-bearing particles in the sewer system. Science of The Total Environment. 2009;407(23):6052-6062.

314

ISSN 2500-1582

(print) ISSN 2500-1574 (online)

XXI ВЕК. ТЕХНОСФЕРНАЯ БЕЗОПАСНОСТЬ XXI CENTURY. TECHNOSPHERE SAFETY

2019;4(3):306-315

0

0

1

2

3

4

5

Jih-Hsing Chang, Shu-Fen Cheng, Svetlana S. Timofeeva, Shan-Yi Shen. Removal of heavy metals from sewage sludge by electrokinetics Джих-Син Чанг, Шу-Фен Ченг, Тимофеева С.С., Шань-Йи Шен. Электрокинетический метод удаления тяжелых металлов из сточных вод

DOI: 10.1016/j.scitotenv.2009.08.019

6. Amaral F, dos Santos V, Bernardes A. Metals recovery from galvanic sludge by sulfate roasting and thiosul-fate leaching. Minerals Engineering. 2014;60:1-7.

DOI: 10.1016/j.mineng.2014.01.017

7. Gao J, Luo Q, Zhu J, Zhang C, Li B. Effects of elec-trokinetic treatment of contaminated sludge on migration and transformation of Cd, Ni and Zn in various bonding states. Chemosphere. 2013;93(11):2869-2876. DOI: 10.1016/j.chemosphere.2013.08.079

Contribution

Jih-Hsing Chang, Shu-Fen Cheng, Timofeeva S.S., Shan-Yi Shen have equal authors' rights and responsibility for plagiarism.

Conflict of interests

The authors declare no conflict of interests.

Information about the authors Jih-Hsing Chang,

Department of Environmental Engineering and Management,

Chaoyang University of Technology,

168, Jifeng E. Rd., Wufeng District, Taichung, 41349,

Taiwan, China,

e-mail: shanyi0226@gmail.com Shu-Fen Cheng,

Department of Environmental Engineering and Management,

Chaoyang University of Technology,

168, Jifeng E. Rd., Wufeng District, Taichung, 41349,

Taiwan, China,

e-mail: shufen@cyut.edu.tw

Svetlana S. Timofeeva,

Dr. Sci. (Eng.), Professor, Head of the Department of industrial ecology and life safety, Irkutsk National Research Technical University, 83 Lermontov St., Irkutsk, 664074, Russia, e-mail: timofeeva@istu.edu

Shan-Yi Shen,

Department of Environmental Engineering and Management,

Chaoyang University of Technology,

168, Jifeng E. Rd., Wufeng District, Taichung, 41349,

Taiwan, China,

H e-mail: shanyi0226@gmail.com

8. Shukla O, Juwarkar A, Singh S, Khan S, Rai U. Growth responses and metal accumulation capabilities of woody plants during the phytoremediation of tannery sludge. Waste Management. 2011;31(1):115-123.

DOI: 10.1016/j.wasman.2010.08.022

9. Liang X, Ning X, Chen G, Lin M, Liu J, Wang Y. Concentrations and speciation of heavy metals in sludge from nine textile dyeing plants. Ecotoxicology and Environmental Safety. 2013;98:128-134.

DOI: 10.1016/j.ecoenv.2013.09.012

Критерии авторства

Джих-Син Чанг, Шу-Фен Ченг, Тимофеева С.С., Шан-Йи Шен имеют равные авторские права и несут равную ответственность за плагиат.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Сведения об авторах Джих-Син Чанг,

Факультет инженерной экологии и менеджмента,

Чаоянский технологический университет, 168, Джифенг E., Вуфенг, Тайджун, 41349, Тайвань, Китай, e-mail: shanyi0226@gmail.com Шу-Фен Ченг,

Факультет инженерной экологии и менеджмента,

Чаоянский технологический университет,

168, Джифенг E., Вуфенг, Тайджун, 41349,

Тайвань, Китай,

e-mail: shufen@cyut.edu.tw

Тимофеева Светлана Семеновна,

доктор технических наук, профессор,

заведующая кафедрой промышленной

экологии и безопасности жизнедеятельности,

Иркутский национальный исследовательский

технический университет,

664074, г. Иркутск, ул. Лермонтова, 83, Россия,

e-mail: timofeeva@istu.edu

Шань-Йи Шен,

Факультет инженерной экологии и менеджмента,

Чаоянский технологический университет, 168, Джифенг E., Вуфенг, Тайджун, 41349, Тайвань, Китай,

И e-mail: shanyi0226@gmail.com

2019;4(3):306-315

XXI ВЕК. ТЕХНОСФЕРНАЯ БЕЗОПАСНОСТЬ XXI CENTURY. TECHNOSPHERE SAFETY

ISSN 2500-1582

(print) ISSN 2500-1574 (online)

315

i Надоели баннеры? Вы всегда можете отключить рекламу.