Научная статья на тему 'REFINEMENT OF THE PHASE DIAGRAM OF THE MNTE-IN2TE3 SYSTEM'

REFINEMENT OF THE PHASE DIAGRAM OF THE MNTE-IN2TE3 SYSTEM Текст научной статьи по специальности «Химические науки»

CC BY
194
35
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Azerbaijan Chemical Journal
Область наук
Ключевые слова
MNTE-IN2TE3 SYSTEM / PHASE DIAGRAM / MANGANESE AND INDIUM TELLURIDES / SOLID SOLUTIONS

Аннотация научной статьи по химическим наукам, автор научной работы — Mammadov F.M.

The MnTe-In2Te3 system was re-investigated by DTA and XRD methods, and its phase diagram was constructed somewhat differently from the previously known ones. It was found that the system is characterized by the formation of the MnIn2Te4 compound congruently melting at 1025 K with a wide (49-67 mol% In2Te3) homogeneity region. This phase is in eutectic equilibrium (1015 K) with solid solutions based on lt -MnTe ( lt - low temperature) and in peritectic equilibrium with solid solutions based on In2Te3. A comparative analysis of the results obtained with the literature data is carried out

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «REFINEMENT OF THE PHASE DIAGRAM OF THE MNTE-IN2TE3 SYSTEM»

ISSN 2522-1841 (Online) AZERBAIJAN CHEMICAL JOURNAL № 2 2021 37

ISSN 0005-2531 (Print)

UDC 546 (711.682.24)

REFINEMENT OF THE PHASE DIAGRAM OF THE MnTe-In2Te3 SYSTEM

F.M.Mammadov

M.Nagiyev Institute of Catalysis and Inorganic Chemistry, NAS of Azerbaijan

faikmamadov@mail.ru

Received 11.12.2020 Accepted 15.03.2021

The MnTe-In2Te3 system was re-investigated by DTA and XRD methods, and its phase diagram was constructed somewhat differently from the previously known ones. It was found that the system is characterized by the formation of the Mn!n2Te4 compound congruently melting at 1025 K with a wide (4967 mol% In2Te3) homogeneity region. This phase is in eutectic equilibrium (1015 K) with solid solutions based on lt-MnTe (lt - low temperature) and in peritectic equilibrium with solid solutions based on In2Te3. A comparative analysis of the results obtained with the literature data is carried out.

Keywords: MnTe-In2Te3 system, phase diagram, manganese and indium tellurides, solid solutions.

doi.org/10.32737/0005-2531-2021-2-37-41 Introduction

Ternary and more complex chalcogenides based on 3d-elements, in particular manganese, are of great practical interest as materials combining magnetic and semiconducting properties [1-8]. Recent studies have shown that some of them are magnetic topological insulators and extremely promising for use in spintronics and quantum computing [9-15].

The development and creation of new methods for directed synthesis of complex phases and materials require the study of phase equilibria in the corresponding systems [16-19].

With purpose of search and development a physicochemical basis for the creation of new magnetic semiconductors, we have undertaken a study of phase equilibria in MX- Ga2X3-M2X3 (M - Mn, Fe; X - S, Se, Te) systems. The results obtained for some systems of this type [20-25] displayed the formation of wide areas of solid solutions along the MGa2X4-MIn2X4 sections. At the same time, an analysis of the literature data has revealed that the phase diagrams of some boundary quasi-binary components of the indicated quasi-ternary systems require clarifying. In papers [26, 27] we presented refined T-x diagrams of some similar systems.

Our preliminary experimental results obtained under the study of the MnTe-Ga2Te3-In2Te3 system found out their inconsistency with the known [28] phase diagram of the MnTe-

In2Te3 boundary system. Taking into account it the purpose of our work was to re-study phase equilibria in the MnTe-In2Te3 system.

The initial compounds of the investigated system have been studied in detail. The MnTe compound melts with decomposition by a peritectic reaction at 1425 K and undergoes polymorphic transitions at 1270 and 1305 K [29]. At the low-temperature modification MnTe (lt-MnTe) crystallizes in a hexagonal structure (Sp.Gr. P63/mmc) with lattice parameters a = 0.41498 nm, c = 0.67176 nm [12].

The In2Te3 compound melts congruently (940 K) [29] and crystallizes in a cubic structure (Sp.Gr.F43m) with lattice parameters a = 0.616 nm or 1.850 nm [30].

Experimental part

Materials and synthesis

MnTe and In2Te3 compounds were synthesized using high-purity manganese (Mn -99.99%), indium (In - 99.999%), tellurium in granules (Te - 99.999%) purchased from Alfa Aesar. During the synthesis of In2Te3 stoichio-metric amounts of elements were placed in an evacuated ~10-2 Pa quartz ampoule and melted in a single-zone furnace at 990 K. MnTe synthesis was also carried out under vacuum conditions in a glass-graphite crucible, placed in a quartz ampoule, at 1450 K.

The individuality of both synthesized compounds was controlled by DTA and XRD. The

obtained melting points and crystal lattice parameters coincided within the error limits (±2 K and ±0.0003 A) with the above literature data.

The alloys of the studied system were prepared by melting the initial compounds in various ratios in evacuated quartz ampoules, followed by homogenizing annealing at 850 K for ~500 h.

Research methods

Differential thermal analysis (DTA) was carried out on a Netzsch 404 f1 Pegasus System (chromel-alumel thermocouples) in the temperature range from room temperature to ~1450 K at a heating rate of 10 K/min. Phase and structural studies were carried out based on powder diffraction data obtained on a D2 Phaser diffractometer using the Eva and Topas 4.2 software (Bruker, Germany; CuK „-radiation, interval of angles 5 < 29 < 800, recording rate 0.030/0.2 min).

Results and discussion

The analysis of powder diffraction patterns showed that alloys with compositions 5067 mol% In2Te3 have a new diffraction pattern differed from the initial compounds. Figure 1

presents as an example the diffraction patterns of alloys with compositions of 50 and 65 mol% In2Te3. It is also seen from this Figure 1 that the diffractogram of the 80 mol% In2Te3 alloy is qualitatively are identical to the diffraction pattern of pure In2Te3 with some shift in the reflection angles. Also, according to the XRD data (Figure 1), the diffraction pattern of an alloy containing 30 mol% In2Te3 includes accumulation of reflection lines of phases based on MnTe and MnIn2Te4, and an alloy with a composition of 70 mol% In2Te3 consists of reflection lines of phases based on In2Te3 and MnIn2Te4.

The phase diagram of the MnTe- In2Te3 system was constructed using the joint processing of data obtained by methods DTA and RFA (Figure 2). As can be seen, the system is non-quasi-binary due to the incongruent character melting of MnTe, but it is stable below the peritectic temperature (1425 K). The liquidus consists of 5 curves responcible for the primary crystallization of Mn, a'- and a-solid solutions based on two modifications of MnTe, y-phase based on MnIn2Te4 and P-phase based on In2Te3 (Figure 2).

Fig.1. Powder diffraction patterns of some alloys of the MnTe-In2Te3 system.

Fig.2. Phase diagram of the MnTe-In2Te3 system.

The MnIn2Te4 compound melts congru-ently at 1025 K and has a wide (□49-67 mol% In2Te3) homogeneity region (y-phase).

The intermediate y-phase forms a eutectic with the a-phase (e). Eutectic has coordinates: 45 mol.% In2Te3 and 1015 K. The system has a peritectic equilibrium L+y o- P at 970 K. The peritectic point (P) has a composition of 83 mol% In2Te3. The horizontal lines at 1420 and 1295 K correspond to peritectic (L+Mn o- a') and metatectic (a' o- L+ a) equilibria.

The T-x diagram we constructed differs significantly from the one given in [28]. Thus, according to [28], the MnIn2Te4 (D) compound melts at ~1040 K and has a constant composition. Moreover, according to [28], MnIn2Te4 forms a eutectic with In2Te3 at 878 K, which was not confirmed by us. We also obtained data on phase transitions based on MnTe that differ from those given in [28].

Conclusion

In this work, we presented a new scheme of phase equilibria in the MnTe-In2Te3 system, which differs from the one presented in the literature. In contrast to literature data, we showed that this system is non-quasi-binary due to the

incongruent melting of MnTe. We have found that the ternary compound MnIn2Te4 has a wide homogeneity region and is in peritectic equilibrium with solid solutions based on In2Te3, that it is also differed from data [28].

The new phases of the variable composition obtained in this work are of interest as potential magnetic materials.

References

1. Jeongyong Choi, Sungyoul Choi, Jiyoun Choi, Y.

H. Hwang, Y. H. Um, Soon Cheol Hong and Sunglae Cho. Magnetic and Optical Properties of MnIn2Se4 Single Crystal Journal of the Korean Physical Society. 2004.V. 45. No 3. P. 672-674.

2. Yang J., Zhou Z., Fang J., Wen H., Lou Z., Shen G. Magnetic and transport properties of a ferromagnetic layered semiconductor MnIn2Se4. Appl. Phys. Lett. 2019. V. 115. Is. 22. P. 2221019(1-4). https://doi.org/10.1063/1.5126233.

3. Morocoima M., Quinter M., Quintero E. et al. (17 authors) Magnetic properties of MnGa2Se4 in the temperature range of 2-300 K. J. Applied Physics. 2006. V. 100. Is. 5. P. 053907(1-5) doi: 10.1063/

I.2337255.

4. Medvedkin G.A., Rud Yu.V., Tairov M.A. Fundamental Optical Absorption Edge in MnIn2Te4 Single Crystals. Physica Status Solidi (a), 1989. V. 111. Is. 1. P. 289-300. doi:10.1002/pssa. 2211110131

5. Sagredo V, Morón M.C., Betancourt L., Delgado G.E. Antiferromagnetic versus spin-glass like be-

havior in MnIn2S4. J. Magnetism and Magnetic Mater. 2007. V. 312. Is. 2. P. 294-297.

6. Niftiev N.N., Tagiev O.B., Muradov M.B., Mame-dov F.M. Dielectric properties of MnGa2S4 single crystals in an alternating electric field. Semiconductors. 2014. V. 48. Issue. 2. P. 204-206.

7. Sagredo V, Morón M.C., Betancourt L., Delgado G.E. Antiferromagnetic versus spin-glass like behavior in MnIn2S4. J. Magnetism and Magnetic Mater. 2007. V. 312. Issue. 2. P. 294-297.

8. Djieutedjeu H., Makongo J., Rotaru A., Palasyuk. A, Takas N.J., Zhou X. Crystal Structure, Charge Transport, and Magnetic Properties of MnSb2Se4. European J. Inorganic Chem. 2011. V. 26. P. 3969-3977.

9. Otrokov M. M., Klimovskikh I. I., Bentmann H., Zeugner A. and others. Prediction and observation of the first antiferromagnetic topological insulator Nature. 2019. V. 576 . P. 416 -422.

10. Klimovskikh, I.I., Otrokov, M.M., Estyunin, D. et al. (20 authors)Tunable 3D/2D magnetism in the (MnBi2Te4) (Bi2Te3)m topological insulators family. Quantum Mater. 2020. V. 5. Is. 54. https://doi. org/ 10.1038/s41535-020-00255-9

11. Estyunin D.A., Klimovskikh I.I., Shikin A.M. et al. (11authors). Signatures of temperature driven antiferromagnetic transition in the electronic structure of topological insulator MnBi2Te4. 2020. P. 021105(1-7). doi.org. 10.1063/1.5142846.

12. Aliev Z.S., Amiraslanov I.R., N. D.I., Shevelkov A.V. et al. (11 authors). Novel ternary layered manganese bismuth tellurides of the MnTe- Bi2Te3 system: Synthesis and crystal structure. J. Alloys and Compounds. 2019. No 789. P. 443-450.

13. Jahangirli Z.A., Alizade E.H., Aliev Z.S., Otrokov M.M. et al. (12 authors). Electronic structure and dielectric function of Mn-Bi-Te layered compounds. J. Vacuum Science & Technology B. 2019. V. 37. 062910.

14. Yonghao Y., Xintong W., Hao L., et al. (13 authors). Electronic States and Magnetic Response of MnBi2Te4 by Scanning Tunneling Microscopy and Spectroscopy. Nano Lett. 2020. V. 20. P. 3271-3277Liqin Z., Zhiyun T., Dayu, Fang Z., Shi E., Wng H. Topological phase transition in the layered magnetic compound MnSb2Te4: Spin-orbit coupling and interlayer coupling dependence. Physical review B. 2020. V. 102. 085114(1-8).

15. Zlomanov V.P., Khoviv A.M., Zavrazhnov A.Yu. Physicochemical Analysis and Synthesis of Non-stoichiometric Solids. In: InTech. Materials Science - Advanced Topics 2013. P. 103-128.

16. Babanly M.B., Chulkov E.V., Aliev Z.S., Shevelkov A.V., Amiraslanov I.R. Phase diagrams in materials science of topological insulators based on metal chalkogenides. Russ. J. Inorg. Chem. 2017. V. 62. No 13. P. 1703-1729.

17. Imamaliyeva S.Z., Babanly D.M., Tagiev D.B.,

Babanly M.B. Physicochemical Aspects of Development of Multicomponent Chalcogenide Phases Having the Tl5Te3 Structure: A Review. Russ. J. Inorg. Chem. 2018. No 13. P. 1703-1730.

18. Babanly M.B., Mashadiyeva L.F., Babanly D.M., Imamalieva C.Z., Tagiev D.B., Yusibov I.A. Some Issues of Complex Studies of Phase Equilibria and Thermodynamic Properties in Ternary Chalcogenide Systems Involving Emf Measurements (Review) Russ. J. Inorg. Chem. 2019. V. 64. No 13. P. 1649. https://doi.org/10.1134/ S0036023619130035

19. Mammadov F.M., Amiraslanov I.R., Efendiyeva N.N., Imamaliyeva S.Z. Phase diagrams of the FeGa2S4-FeIn2S4 and FeS-FeGaInS4 systems. Chemical Problems. 2019. № 1. P. 65-68.

20. Mamedov F.M., Imamaliyeva S.Z.,Amiraslanov

1.R., Babanly M.B., Fazovaya diagramma sistemy FeGa2Se4-FeIn2Se4 i kristallicheskaya struktura FeGaInSe4. Kondensirovannyye sredy i mezhfaz-nyye granitsy. 2018. T. 20. № 4. C. 604-610.

21. Mammadov F.M., Amiraslanov I.R., Imamaliyeva S.Z., Babanly M.B. Phase relations in the FeSe-FeGa2Se4-FeIn2Se4 system. Refinement of the crystal structures of the FeIn2Se4 and FeGaInSe4. J. Phase Equilib. Diffus. 2019. V. 40. Issue 6. P. 787-796.

22. Mammadov F. M., Amiraslanov I. R., Aliyeva Y. R., Ragimov S.S., Mashadiyeva L. F., Babanly M. B. Phase Equilibria in the MnGa2Te4-MnIn2Te4 System, Crystal Structure and Physical Properties of MnGaInTe4. Acta Chim. Slov. 2019. V. 66. P. 466-472.

23. Mamedov F.M., Babanly D.M., Amiraslanov I.R., Tagiev D.B., Babanly M.B. Physicochemical analysis of the FeSe-Ga2Se3-In2Se3 systems. Russian Journal of Inorg. Chem. 2020. V. 65. No 11. P. 1747-1755. doi: 10.1134/S0036023620110121.

24. Mammadov F.M. FeS-FeGa2S4-FeGaInS4 system. Chemical problems. 2020. No 2. V. 18. P.214-221. doi: 10.32737/2221-8688-2020-2-214-221

25. Mammadov F.M. Refinement of the phase diagrams of the FeSe-Ga2Se3 and Ga2Se3-In2Se3 systems. Azerb. Chem. J. 2018. No 3. P. 46-49.

26. Mammadov F.M. Phase diagram of the FeSe-In2Se3 system. Azerb. Chem. J. 2019. No 3. P. 6267. https://doi.org/10.32737/0005-2531-2019.

27. Babayeva P.K., Rustamov P.G. Vzaimodeystviye v troynoy sisteme Mn-In-Te po razrezam In2Te3-MnTe i InTe-Mn. Azerb.khim.zhurnal. 1983. No

2. P. 124-127.

28. Massalski T.B. (Ed.). Binary Alloy Phase Diagrams. Sec. ed. ASM International Materials, Park, Ohio, 1990. 387 p.

29. Desai R.R., Lakshminarayana D., Patel P.B., Patel P.K., Panchala C.J. Growth and structural properties of indium sesquitelluride (In2Te3) thin film. Materials Chemistry and Physics. 2005. V. 94. P. 308314.

MnTe-In2Te3 SÍSTEMÍNÍN FAZA DÍAQRAMININ DOQÍQLa§DÍRÍLMOSÍ

F.M.Mammadov

MnTe-In2Te3 sistemi DTA va XRD metodlan ila yenidan tadqiq edilmi§ уэ avvallar adabiyyatda gostarilandan bir qadar farqlanan faz diaqrami qurulmu§dur. Sistemda geni§ (49-67 mol.% In2Te3) homogenlik sahasi ila xarakteriza olunan va 1025 K-da konqruyent ariyan MnIn2Te4 birla§masinin amala galmasi a§kar edilmi§dir. Bu faza lt MnTe asasindaki bark mahlulla evtektik (1015 K), In2Te3 asasindaki bark mahlulla isa peritektik tarazliqdadir. Olda olunan naticalarin adabiyyat malumatlari ila müqayisali tahlili apanlmi§dir.

Agar sozlar: MnTe-In2Te3 sistemi, faz diaqrami, manqan va indium telluridlari, bark mahlullar.

УТОЧНЕНИЕ ФАЗОВОЙ ДИАГРАММЫ СИСТЕМЫ MnTe-In2Te3

Ф.М.Мамедов

Система MnTe-In2Te3 повторно исследована методами ДТА и XRD, и построена ее фазовая диаграмма, которая несколько отличается от ранее приведенной в литературе. Установлено, что в системе наблюдается образование конгруэнтно плавящегося при 1025 K соединения MnIn2Te4 с широкой (49-67 мол.% In2Te3) областью гомогенности. Эта фаза находится в эвтектическом равновесии (1015 K) с твердыми растворами на основе lt-MnTe и в перитектическом равновесии с твердыми растворами на основе In2Te3. Проведен сравнительный анализ полученных результатов с литературными данными.

Ключевые слова: система MnTe-In2Te3, фазовая диаграмма, теллуриды марганца и индия, твердые растворы.

i Надоели баннеры? Вы всегда можете отключить рекламу.