Научная статья на тему 'Recent advances in quantum frequency standards and other quantum sensors'

Recent advances in quantum frequency standards and other quantum sensors Текст научной статьи по специальности «Физика»

CC BY
21
6
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по физике , автор научной работы — S.N. Bagayev, D.V. Brazhnikov, S.V. Chepurov, A.N. Goncharov, O.N. Prudnikov

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Recent advances in quantum frequency standards and other quantum sensors»

Recent advances in quantum frequency standards and other

quantum sensors

S.N. Bagayev1,2, D.V. Brazhnikov1,2, S.V. Chepurov1, A.N. Goncharov1-3, O.N. Prudnikov1, M.N. Skvortsov1, A.V. Taichenachev12*, V.I. Yudin1-3

1-Institute of Laser Physics SB RAS, Novosibirsk 630090, Russia 2- Novosibirsk State University, Novosibirsk 630090, Russia 3- Novosibirsk State Technical University, Novosibirsk 630073, Russia

* [email protected]

In this talk we give a brief overview of our recent works on quantum sensors based on two different platforms: i) ultracold atoms and ions, including optical frequency standards [1,2] and atomic interferometers for inertial force sensing (gravimetry and gyroscopy) [3,4]; ii) alkali-metal vapors at room temperature, including atomic clocks based on coherent population trapping resonances [5], optical frequency standards based on saturation absorption resonances [6], and optically pumped magnetometers for ultra-weak magnetic field sensing [7]. Several new spectroscopic methods [8-10], including generalized Ramsey spectroscopy [11], are discussed as well as new methods of laser cooling and trapping of neutral atoms and ions [12-14], specially tailored for needs of quantum sensors.

These studies were partially supported by the Russian Science Foundation grant No. 23-12-00182, https://rscf.ru/project/23 -12-00182/.

[1] A.N. Goncharov, et al, Quantum Electronics, 48, 410-414 (2018).

[2] S.V. Chepurov, et al, Quantum Electronics, 51, 473-478 (2021).

[3] A.V. Taichenachev, et al, Journal of Physics: Conference Series, 1508, 012002 (2020).

[4] D.N. Kapusta, et al, Source of ultracold rubidium atoms for atomic interferometer-gravimeter, JETP, accepted (2024).

[5] M.N. Skvortsov, et al, Quantum electronics, 50, 576 (2020).

[6] D. Brazhnikov, et al, In European Frequency and Time Forum (2020, April).

[7] D. Brazhnikov, et al, Optics Letters, 45, 3309-3312 (2020).

[8] D.V. Brazhnikov, et al, Quantum Electronics, 50, 1015 (2020).

[9] D.V. Kovalenko, et al, Quantum Electronics, 51, 495-501 (2021).

[10] V.I. Yudin, et al, New Journal of Physics, 23, 023032 (2021).

[11] A.V. Taichenachev, V.I. Yudin, Generalized Ramsey Methods in Precision Laser Spectroscopy: from Atomic Clocks to Interferometers, Journal of Physics : Conference series, accepted (2024).

[12] O.N. Prudnikov, et al, Phys. Rev. A, 108, 043107 (2023).

[13] D.S. Krysenko, et al, Phys. Rev A, 108, 043114 (2023).

[14] O.N. Prudnikov, et al, Laser cooling of ytterbium-171 ion without the use of magnetic field, JETP, accepted (2024).

i Надоели баннеры? Вы всегда можете отключить рекламу.