1мп = 3 гопез = 3
X, тт
в)
win = 3 гопег = 3 1уре = 4
200 ... ! 1 ;
150 : : : : : : : : :
100 ... ; ■. ;
: : :
: : : : : :
-50 :■&> •
100 ... : : \ \ 1 :
: : : : : : : : :
: \ \
-200 -150 -100 -50 0 50 100 150 200
X, тт
г)
Рис. 5
Иллюстрация этапов алгоритма классификации зон локализации ЦД по типам Разработанная классификация была апробирована на экспериментальных данных и позволила выявить наиболее часто встречающиеся типы зон локализации ЦД. Полученные результаты позволили выявить корреляцию между типами поз, принимаемых оператором в процессе деятельности и его функциональным состоянием.
УДК 612.76
РАЗВИТИЕ ФУНКЦИОНАЛЬНЫХ ВОЗМОЖНОСТЕЙ СТАБИЛОАНАЛИЗАТОРА "СТАБИЛАН-01"
С. С. Слива
ЗАО «ОКБ «РИТМ», 347900, Таганрог, ул. Петровская, 99, тел.:(8634) 363-190, факс:36-31-70, [email protected]
Началом развития компьютерной стабилографии в ЗАО «ОКБ «РИТМ» как научно-технического направления принято считать 1990 г., когда были созданы первые опытные образцы. Только в 2001 г. разработку удалось завершить сертификацией стабилографического комплекса под названием «стабилоанализатор компьютерный с биологической обратной связью «Стабилан-01». Он стал первым отечественным серийным компьютерным стабилографом, который по основным техническим показателям соответствовал уровню мировых достижений в своем классе, а по ряду показателей, например, диапазону оценки координат центра давления, массе стабилоплатформы, разрешающей способности, собственной частоте колебаний стабилоплатформы, временному дрейфу существенно превосходит в настоящее время как отечественные, так и зарубежные аналоги.
Однако законы рынка не позволяют разработчикам новой техники останавливаться в своем развитии на организации серийного производства и совершенствовании технологии изготовления технических средств. Конкуренция, с которой приходится сталкиваться с первых же шагов начинающему производителю
даже на внутреннем рынке, в нынешних условиях обязывает искать возможности расширения функциональных возможностей нового изделия для повышения его потребительских свойств. Основываясь на опыте разработчиков стабилоанализатора «Стабилан-01», можно выделить несколько приемов для решения этой задачи, а именно:
- разработка новых показателей в оценке исследуемых свойств человека;
- реализация дополнительных измерительных функций;
- Введение в стабилоанализатор дополнительных каналов для регистрации физиологических сигналов, синхронно с регистрацией стабилограмм и последующим их совместным анализом;
- реализация возможности двухплатформенного варианта обследования человека и многоплатформенного;
- реализация возможности совместной работы с другими изделиями медицинской техники;
- совершенствование программно-методического обеспечения.
Варианты реализации этих приемов приведется ниже на примере развития
функциональных возможностей стабилоанализатора «Стабилан-01».
Разработка новых показателей
На этапе создания первых отечественных опытных образцов компьютерных стабилографов было известно 20 показателей в оценке процесса поддержания человеком вертикальной позы [1]. Тогда отставание отечественной стабилографии от зарубежного уровня оценивалось в 10-15 лет. Исследователей, использующих методы и средства компьютерной стабилографии, не устраивало обилие стабилографических показателей, а еще больше их недостаточная информативность и высокая вариабельность. Под руководством профессора Военно-медицинской Академии (г.Санкт-Петербург), д.м.н. В.И.Усачева удалось найти показатель, названный «качество функции равновесия» (КФР), который обладал интегральными свойствами и малой вариабельностью в оценке постуральной системы человека, оказался более чувствительным к изменению его функционального состояния. Вычисляется он на основе анализа векторов скоростей в точках дискретизации траектории центра давления, оказываемого испытуемым на опорную поверхность стабилоплатформы. На метод вычисления показателя КФР, получен патент [2], а сам показатель использован в методике быстрой и комфортной оценки функционального состояния человека.
Данная методика прошла апробацию на пилотах сверхмалой авиации еще в 1999г, затем в трамвайном парке г. Санкт-Петербурга. Однако основы формирования групповых и индивидуальных норм были определены после обработки и анализа 1000 обследований летного состава полка военно-транспортной авиации в г. Таганроге, проведенных в 2003г. Обработка базы данных показала, что логарифмически нормальное распределение наиболее адекватно отражает статистику показателя КФР. Именно это распределение может быть рекомендовано для формирования индивидуальных и групповых норм, т. к. позволяет обоснованно выделить зоны допуска, условного допуска и недопуска. Этот метод может быть использован для любых профессий.
В ходе регулярных обследований летного состава отработана технология выявления доклинических отклонений в здоровье испытуемых. Показатель КФР положен также в основу методов подбора лекарственных средств и оценки динамики лечения [3, 4], которые могут быть использованы в решении задач
восстановительной медицины и санаторно-курортного оздоровления.
На основе методики оценки функционального состояния человека фактически создано самостоятельное направление в компьютерной стабилографии, обеспечивающее предполетный контроль в авиации, предрейсовый контроль локомотивных бригад на железнодорожном транспорте, допусковый контроль для лиц, чья профессия связана с повышенными требованиями к человеческому фактору,
например специалистов энергетических предприятий РАО ЕЭС. Ведется подготовительная работа по использованию методики экспресс-оценки функционального состояния человека в автотранспорте и в спорте, для процесса тренировки спецназа и солдат ВДВ, для выявления факта перегрузки школьников в учебном процессе.
Реализация дополнительных измерительных функций
В компьютерной стабилографии, как в России, так и за рубежом, обычно ограничиваются регистрацией стабилограмм, т. е. траектории центра давления, оказываемого человеком на плоскость опоры, а также регистрацией статокинезиграммы, т.е. двумерного представления этой траектории в координатах X и У. При этом исходно измеряются реакции опор с помощью датчиков силы. К чисто инженерной задаче можно отнести переход от реакций опор к оценке веса испытуемого. Реализация этой функции в стабилоанализаторе «Стабилан-01» позволила существенно расширить возможности двухплатформенного варианта стабилографа в оценке нарушений опорно-двигательного аппарата, что более подробно будет показано ниже.
Для исключения функции масштабирования входного сигнала в зависимости от метода обследования испытуемого в стабилоанализаторе «Стабилан-01» использованы аналого-цифровое преобразование с повышенным динамическим диапазоном. Это существенно упростило работу исследователя и позволило регистрировать с приемлемым разрешением баллистограмму испытуемого, которая определяется в основном механической работой сердца и движением крови в крупных кровеносных сосудах. С использованием относительно простой математической обработки баллистограммы вычисляется среднее значение пульса испытуемого в процессе стабилографического обследования, что в ряде случаев бывает весьма полезным в оценке его состояния.
Введение в стабилоанализатор дополнительных каналов
Еще на этапе апробации опытных образцов компьютерных стабилографов с целью отработки комфортного и быстрого предрейсового контроля, т.е. еще задолго до сертификации стабилоанализатора, выявилась необходимость съема пульса испытуемого для случаев, когда по стабилографическим показателям он попадает в зону условного допуска, т.е. в зону риска. Такой подход оправдан тем, что, как показывает статистика, в транспорте наибольшую опасность в состоянии водителей представляют внезапные отказы, вызванные инфарктом и инсультом, приводящим к потере сознания.
На модификацию стабилоанализатора со встроенным каналом пульсометрии по одному отведению ЭКГ с руки человека с помощью многоразовых электродов получен сертификат соответствия Минздрава РФ в 2001г. Программнометодическое обеспечение такого комплекса дополнительно включает пять вариантов представления и обработки сердечного ритма, называемых «анализаторами»: «Ритмограмма», «Вариационная пульсограмма»,
«Скаттерограмма», «Автокорреляционный анализ» и «Спектральный анализ».
Процесс съема и регистрации пульсограммы проводится в анализаторе «Ритмограмма» и позволяет наглядно дифференцировать нормосистолию, тахикардию или брадикардию, а в итоге судить о состоянии сердечно-сосудистой системы. Предусмотрена возможность устранения артефактов, вывода на печать, экспорта данных и перехода к другому анализатору.
Анализатор «Вариационная пульсограмма» реализуется на основе гистограммного анализа пульсограммы и позволяет оценивать: среднее значение пульса, показатель адекватности процессов регуляции сердечного ритма, индекс вариационного размаха, отражающий уровень вагусной регуляции сердечного ритма, вегетативный показатель ритма, а также индекс напряженности систем регуляции сердечного ритма по Р.М. Баевскому.
Анализатор «Скаттерограмма» позволяет достаточно просто и наглядно оценивать состояние сердечно-сосудистой системы испытуемого путем сопоставления вида полученной скаттерограммы с характерными ее типами, представленными также на экране монитора.
Автокорреляционная функция ряда кардиоинтервалов пульсограммы построена на анализе внутренней структуры этого ряда как случайного процесса и позволяет дополнительно оценивать психофизиологическое состояние человека.
Спектральный анализ пульсограммы на основе преобразования Фурье расширяет возможности анализа ее волновой структуры.
В итоге совместное проведение стабилографического обследования с использованием вариабельности сердечного ритма позволяют:
- оценивать реабилитационный потенциал обследуемых пациентов и оперативно контролировать нагрузку на сердечно-сосудистую систему пациента в процессе реабилитации с биологической обратной связью (БОС) по стабилограмме, т. е. дозировать длительность тренинга, например, при реабилитации больных с хронической мозговой недостаточностью, а также в спорте для определения нагрузки на этапе тренировки, исключающей явление перетренировки;
- дополнительно проводить оценку функционального состояния испытуемого в случаях, если он при предрейсовом, предсменном или предстартовом контроле по стабилографическим показателям попадает в зону риска или условного допуска.
Затем были введены каналы, использующие тензометрические датчики периметрического дыхания, кистевой и становой силометрии. Важно отметить, что при использовании этих каналов реализуется синхронная регистрация силометрических и стабилографических сигналов.
Канал периметрического (внешнего) дыхания позволил:
- дифференцировать мозжечковые нарушения при стабилографическом обследовании по модуляции стабилограмм дыхательной волной [3];
- оценивать степень усталости при переутомлении, например, в процессе спортивной тренировки по степени модуляции стабилограмм дыхательной волной
[4];
- контролировать правильность дыхания в логопедических стабилографических тренажерах, например, при сочетанной реабилитации нарушений речи и опорно-двигательного аппарата у лиц, перенесших инсульт.
Для реализации таких возможностей в программном обеспечении стабилографического комплекса с каналом периметрического дыхания предусмотрены контроль правильности крепления пояса с датчиком дыхания, обеспечена оценка частоты дыхания, визуализация дыхательной волны, а также ее спектральный анализ в сопоставлении с амплитудным спектром стабилограмм. Это позволяет наглядно и качественно оценить наличие в нем составляющих соответствующих спектру дыхательной волны.
Каналы силометрии позволяют:
- объективно оценивать состояние и выносливость испытуемого по времени удержания заданного порога силы, а также асимметрию силовых показателей левой и правой кисти с помощью кистевых силомеров. А также сопоставлять их с нормативами для условно здоровых людей с учетом возраста;
- проводить реабилитацию нарушений функции кисти в сочетании с реабилитацией двигательных нарушений опорно-двигательного аппарата с БОС по стабилограмме и кистевой силе;
- с помощью станового силомера с опорной плитой, располагаемой на стабилоплатформе, удается не только оценить становую силу и выносливость испытуемого по времени удержания заданного порога, но и получить принципиально новое представление о реакции опорно-двигательного аппарата испытуемого при таком силовом воздействии.
Наличие базы данных и методов математической обработки позволяет силометрические каналы в сочетании со стабилографическим эффективно использовать для оценки физического состояния, например, призывников на этапе медицинского освидетельствования перед призывом в вооруженные силы РФ, а также для контроля процесса тренировок спортсменов силовых видов спорта и для разработки методик профориентации.
Основным силовым приводом в поддержании человеком вертикальной позы являются мышцы ног. Логичным представляется съем огибающих миограмм для оценки активности мышц в процессе выполнения диагностических и реабилитационных стабилографических тестов.
Эффект от реализации возможности встраивания 4-х каналов в стабилоанализатор «Стабилан-01» для съема огибающих миограмм существенно превзошел ожидания.
Каналы огибающих миограмм позволяют:
- обеспечить БОС по миограмме в процессе тренировки гипотрофированных мышц в сочетании с реабилитацией нарушений опорнодвигательного аппарата за счет тренинга по стабилограмме;
- проводить дифференциальную оценку активности симметричных мышц, участвующих в процессе поддержания вертикальной позы, выполнения реабилитационного тренинга и активных диагностических проб;
- расширить возможности анализа взаимосвязи позы, прикуса, реакций опорно-двигательного аппарата, например, с удержанием груза, импульсного внешнего воздействия и т.п.;
- проводить фундаментальные исследования по адекватности математических моделей двигательной активности человека, фазовых соотношений между изменением огибающих миограмм и перемещением корпуса человека и т. п.
Программное обеспечение предусматривает визуализацию сигналов огибающих миограмм по четырем каналам совместно со стабилограммами, которые регистрируются синхронно. Это позволяет наглядно оценивать активность мышц при выполнении движений обследуемым человеком. В цифровом варианте на экране монитора визуализируются длительности латентного периода и работы мышцы, оценка энергетических затрат контролируемой группы мышц по площади огибающих миограмм, а также их максимальная амплитуда. Разработаны специальные компьютерные игры-тренажеры с использованием БОС по стабилограмме и огибающей миограмм.
Реализация возможности двух- и многоплатформенного варианта
Двухплатформенный вариант компьютерного стабилографов используют в Германии и Японии. В варианте стабилоанализатора «Стабилан-01» удалось не только технически решить возможность использования в двухплатформенном варианте, но и существенно расширить функциональные возможности этого варианта в сравнении с зарубежными аналогами.
В отличие от одноплатформенного варианта двухплатформенный вариант стабилоанализатора позволяет проводить регистрацию:
- проекции стоп на опорную поверхность стабилоплатформ;
- статокинезиграммы каждой конечности на проекции соответствующих
стоп;
- статокинезиграммы общего центра давления (ОЦД), как и в одноплатформенном варианте;
- распределения веса испытуемого на его правую и левую ногу;
- зон предпочтения в статокинезиграммах каждой стопы, в которых центр давления конечности находится чаще.
При оценке оптимальности статики опорно-двигательного аппарата пациентов с различными клиническими проявлениями остеохондроза позвоночника, сочетающегося с нарушением статического двигательного стереотипа в виде
сколиоза и изменений физиологических изгибов позвоночника в сагиттальной плоскости, а также людей с отсутствием клинических жалоб на опорно-двигательный аппарат учитываются [5]:
- положение ОЦД человека относительно центров давления каждой из
ног;
- разница в площадях статокинезиграмм;
- асимметрия расположения центров давления ног относительно проекций
стоп;
- расположение зон предпочтения в статокинезиграммах каждой конечности;
- угол отклонения линии, связывающей центры давления ног от фронтали, т.е. оси х.
Таким образом, двухплатформенный компьютерный стабилографический комплекс позволяет развивать на новом технологическом уровне направление по оценке оптимальности статики опорно-двигательного аппарата человека и может использоваться для экспресс-диагностики возможности сколиотических деформаций, а также для разработки новых видов тренажеров с БОС по стабилограммам в 2-х платформенном варианте комплекса для реабилитации нарушений опорнодвигательного аппарата человека.
В отечественном варианте двухплатформенного варианта стабилоанализатора задача ставится шире. Разрабатываются стабилографические игры, которые реализуются одновременно двумя испытуемыми, каждый из которых стоит на своей стабилоплатформе и смотрит на свой монитор. Это позволяет оценивать и тренировать сработанность малых групп, оценивать психологическую совместимость, что важно во многих видах спорта, в военном деле и в профессиях, где приходится работать в паре. В ближайшей перспективе можно решать вопрос в реализации игры хоть всей футбольной команды, если стабилоплатформы объединить через компьютерную сеть.
Реализация возможности совместной работы с другими медицинскими приборами
При различных исследованиях с использованием методов и средств компьютерной стабилографии, особенно при фундаментальных исследованиях, приходится сталкиваться с необходимостью совмещения съема различных физиологических сигналов со стабилографическими. Реализация встройки дополнительных каналов в стабилоанализатор «Стабилан-01» в какой-то мере решила эту проблему, но не полностью.
Например, при объективации перехода человека в измененное состояние сознания потребовалось совмещение съема энцефалограмм и стабилограмм. С этой целью пришлось, объединив усилия разработчиков ЗАО «ОКБ «РИТМ» и НПКФ «Медиком МТД» (г. Таганрог), разработать специальный протокол обмена для синхронизации процесса регистрации стабилограмм с помощью стабилоанализатора «Стабилан-01» и энцефалограмм, с помощью «Энцефалан-131». Аналогов такого сочетания пока не выявлено. Реализована также возможность совместной работы стабилоанализатора «Стабилан-01» и устройства для реабилитации и коррекции различных функциональных расстройств человека «Реакор» той же фирмы.
Значимость и польза от таких совмещений очевидна, но пользователю самостоятельно решение таких задач, как правило, не под силу.
Совершенствование программно-методического обеспечения является постоянной задачей в расширении функциональных возможностей стабилоанализатора, как в диагностике заболеваний в неврологии и отоларингологии, нарушений опорно-двигательного аппарата, так и в реабилитации выявленных нарушений.
Сочетание дополнительных каналов съема физиологических сигналов со стабилограммами существенно расширяет возможности комплекса как при
проведении диагностических методик и сеансов реабилитации, так и при контроле проводимого процесса реабилитации. Стабилографические реабилитационные методики сводятся к тренировке двигательных навыков у пациентов, выполняющих задания компьютерной игры изменением положения центра давления на стабилографическую платформу в соответствии со сценарием выбранной игры и этиологией заболевания.
Вариант совмещения БОС по стабилограмме и миограмме позволяет развивать функцию равновесия одновременно с воздействием на восстанавливаемую группу мышц. Совмещение кистевой силометрии со стабилограммой не только улучшает координацию, но и восстанавливает двигательную функцию кисти при ее повреждениях. Такой подход в создании тренажеров с биоуправлением позволяет вовлечь многие функциональные системы организма в процесс реабилитации, обеспечивая формирование межсенсорных связей - таких, как зрительно-двигательных, слуховых и двигательных, кожно-кинестетических и др. Это способствует более быстрому восстановлению нарушенных функций. Наличие каналов кардиоритмографии и дыхания позволяет дополнительно контролировать процесс реабилитации и подбирать для каждого пациента индивидуальную стратегию тренинга и осуществлять текущий контроль эффективности процедур.
В полной мере апробацию методов и средств компьютерной стабилографии в полифункциональном варианте удалось провести в течение 2003 г. в г. Таганроге в качестве новой технологии в медицинском обеспечении полка военно-транспортной авиации. Аналогичные задачи могут решаться в спорте и уже успешно апробированы в подготовке спортсменов высокого класса к олимпийским состязаниям 2004 г.
В заключение следует отметить, что компьютерная стабилография в полифункциональном варианте уже сегодня показала себя с самой положительной стороны:
- в оториноларингологии, как в диагностике, так и в реабилитации, например, атаксий различной этиологии;
- в неврологии в диагностике и реабилитации опорно-двигательных нарушений и дефектов речи после инсульта, а также других неврологических заболеваний;
- в ортодонтии в оценке динамики изменения прикуса при его исправлении;
- в медицинском обеспечении летного состава и спорта;
- в допусковом контроле и реабилитации локомотивных бригад на Российских железных дорогах и специалистов энергетических предприятий в составе РАО ЕЭС;
- в оценке динамики лечения и в реабилитации детей в специнтернатах и центрах для реабилитации детей с физическими и умственными отклонениями.
По инициативе ЗАО «ОКБ «РИТМ» развернута программа по разработке методических рекомендаций по эффективному использованию стабилоанализатора «Стабилан-01» в здравоохранении, в спортивной медицине в медицинском обеспечении военнослужащих. Это должно упростить и ускорить внедрение новых технологий на основе полифункциональной компьютерной стабилографии во врачебную практику.
Приведенные подходы к развитию функциональных возможностей стабилоанализатора «Стабилан-01», позволяют достаточно уверенно удерживать позиции производителя на рынке медицинской техники в этом классе приборов.
ЛИТЕРАТУРА
1 Слива С.С., Девликанов Э.О., Болонев А.Г. Полифункциональный компьютерный стабилографический комплекс с биологической обратной связью // VII Международная конференция «СОВРЕМЕННЫЕ ТЕХНОЛОГИИ
ВОССТАНОВИТЕЛЬНОЙ МЕДИЦИНЫ». - Сочи, Центральный клинический Санаторий им. Ф.Э. Дзержинского, 11-16 мая 2004. - С.634-635.
2 Патент на изобретение № 2165733 РФ, МКИ А 61 В 5/130, 5/00. Способ оценки общего функционального состояния человека / И. В. Кондратьев, Г. А Переяслов, С.С. Слива, В.И. Усачев. - № 99105091; Заявлено 15.03.99; Опубл. 27.04.2001, Бюл. № 12, Приоритет 15.03.99. - 8 с.
3 Гурфинкель В.С., Коц Я.М, Шик М.Л. Регуляция позы человека. - М.: Наука, 1965. - 256 с.
4 Анисимов Е. А. Биомеханика дыхательных движений грудной клетки и колебаний общего центра массы тела в состоянии покоя и при утомлении // VI Всероссийская конференция по биомеханике «БИОМЕХАНИКА-2002». Тезисы докладов. Н.-Новгород, 20-24 мая 2004. - С.20
5 Бинеев Р.Р., Девликанов Э.О., Переяслов Г.А., Слива С.С. Двухплатформенный стабилографический комплекс для исследования статики опорно-двигательного аппарата // VII Всероссийская конференция по биомеханике «БИОМЕХАНИКА-2004». Тезисы докладов в двух томах. Н.-Новгород, 24-28 мая 2004.- Т. II. - С.29-31.
УДК 615.47; 621.37/89
НЕЙРОФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ДЕЙСТВИЯ АППАРАТОВ
СЕРИИ СКЭНАР
А.Я. Черчаго
ЗАО «ОКБ «РИТМ», Таганрог, ул. Петровская, 99, тел.:(8634) 311-917, факс: 36-31-70, [email protected]
Результаты исследований нейрофизиологических механизмов действия СКЭНАР-терапии, проведенные НИИ нейрокибернетики по заказу и при участии ЗАО «ОКБ Ритм» [1], на настоящий момент времени позволяют сделать заключение, что лечебный сигнал, формируемый аппаратами серии СКЭНАР, содержит в себе два важных для оказания помощи пациенту компонента.
Действие первого - приводит к реакции коры головного мозга и структур гипоталамуса, координирующего активность вегетативной нервной системы. Это общая реакция центральной нервной системы. Она проявляется в развитии генерализованной активности мозга, особенно - альфаподобных колебаний потенциала [1].
Известно, что во время синхронизированной активности мозга кора становится более доступной для сигналов от внутренних органов и может координировать деятельность соподчиненных нервных структур по самовосстановлению организма. Характерным для этого состояния центральной нервной системы (ЦНС) является повышенный парасимпатический тонус. В этом состоянии ЦНС происходит активизация генетически заданного многоуровневого механизма самовосстановления организма - «внутреннего доктора» [2,3]. Важным обстоятельством здесь оказалось то, что при экспериментальной проверке синхронизированная активность мозга возникала уже в первые 30 сек стимуляции и сохранялась в последействии как минимум в течение 20 минут после окончания стимуляции.
Например, в наших исследованиях развитие такой центральной реакции у практически здоровых людей наблюдалось в 17 случаях из 19. Воздействие осуществлялось на тенар, крестцовую зону, волосистую часть лба с помощью гребенчатого электрода и лабильно в проекции остистых отростков позвоночника и паравертебрально, т.е. были использованы зоны, наиболее часто применяемые в практике СКЭНАР-терапевтов. В двух случаях у двух испытуемых наблюдалось