Разработка технологии получения неподогревных сенсоров газа на основе полиакрилонитрила для гибридных сенсорных систем
С.П. Коноваленко, Т.А. Бедная, Т.В. Семенистая, В.В. Петров, Е.В. Мараева
Антропогенные источники выбрасывают в атмосферу множество загрязняющих веществ, в том числе: СО (предельно допустимая концентрация (ПДК) 17,18 ppm), С12 (ПДК = 0 ,339 ppm), CHCI3 (ПДК = 0,5 ppm). Наиболее удобно разные по природе загрязняющие вещества контролировать с помощью сенсоров, имеющих также различную природу. Такая задача хорошо решается в гибридных сенсорных систем, в которых в сенсорах газов в качестве газочувствительных материалов (ГЧМ) используются неорганические и органические материалы. Нанокомпозитные материалы на основе металлсодержащих органических полимеров успешно применяются в качестве ГЧМ сенсоров газов [1 - 3]. Их достоинством является возможность функционирования при температуре в диапазоне 17 - 32 °С. Таким образом, цель настоящей работы - разработка технологии получения неподогревных сенсоров СО, С12 и CHC13 на основе полиакрилонитрила (ПАН) с чувствительностью к газам на уровне ПДК для гибридных сенсорных систем.
Известно, что пленки металлсодержащего ПАН имеют нанокомпозитную структуру и проявляют полупроводниковые свойства [4]. В результате термической обработки происходят изменения структуры и формы линейного полимера ПАН, который становится полимером с сопряженными связями и приобретает полупроводниковые свойства [5]. Оптимизация физико-химических свойств ПАН также может достигаться в результате введения в его структуру различных солей и соединений переходных металлов в небольших концентрациях, например, таких, как Ag, Cu, Co [6 - 7].
Газочувствительный материал формировали в виде пленки, которую получали из плёнкообразующих растворов ПАН и металлсодержащего ПАН методом пиролиза под воздействием некогерентного ИК-излучения. ИК-отжиг пленок ПАН, ПАН/Co и ПАН/Cu проводили в ИК-камере (рис. 1). ИК-отжиг образцов проводили при разной продолжительности и интенсивности ИК-излучения на каждом этапе при невысоком вакууме (8 10-2 мм рт. ст.). Оптимальные времена ИК-отжига, которые обеспечивают получение пленок с высокой газочувствительностью, были подобраны экспериментальным путем. Интенсивность излучения на первом этапе ИК-отжига соответствовала температуре 250 - 350 °С в течение 5 - 20 мин, а интенсивность излучения на втором этапе ИК-отжига - температуре 350 - 500 °С в течение 2 - 10 мин. Далее пленки остывали постепенно в течение часа.
Газочувствительность к детектируемым газам полученных образцов определяли при комнатной температуре (18 - 25 °С). Контролируемым параметром являлось сопротивление образца R, измеряемое между металлическими контактами тестового образца, величина которого изменялась в зависимости от концентрации детектируемого газа в измерительной камере. Продувку камеры воздухом после подачи газа осуществляли компрессором WAC0-9901. Чувствительность сенсора оценивали с помощью коэффициента газочувствительности S, который рассчитывался как:
S = А., при при Rо > Rg (1)
Rg
А
R0
при Rо < Rg (2)
S
где Яо - значение сопротивления плёнки на воздухе, - значение сопротивления пленки в атмосфере детектируемого газа.
Остывание образцов на воздухе (1 = 60 мин)
Рисунок 1 - Технологический маршрут формирования газочувствительного слоя на
основе металлсодержащего ПАН
Присутствие небольших количеств соединений кобальта в пленках ПАН (от 0 до 1.0 массс.%) приводило к снижению сопротивления плёнок по сравнению с пленками ПАН, не содержащих модифицирующих добавок - рис.2,а. Это можно объяснить тем, что электропроводность кобальтсодержащих пленок ПАН определятся не только электропроводностью самого ПАН, но и влиянием соединений кобальта, встраиваемых в структуру ПАН. В то же время, повышение содержания меди в составе пленок ПАН (от
0,2 до 1,0 масс.%) приводит, в основном к обратному эффекту, а именно к увеличению значения сопротивления образцов пленок медьсодержащего ПАН - рис. 2,б. То есть хлориды меди и кобальта, встраиваемые в структуру ПАН, по-разному влияют на его проводимость.
Измерения температурной зависимости сопротивления образцов пленок кобальт- и медьсодержащего ПАН показали, что она описывается экспоненциальным выражением
п п ( № )
Я = Я”Ч— Ш ) ■ (3)
где ДБ - изменение энергии реагирующих частиц; к - постоянная Больцмана; Т -абсолютная температура.
Г рафики, построенные по экспериментальным точкам в координатах 1п Я — —,
аппроксимируются прямой линией, что говорит о полупроводниковом характере проводимости материала пленки (рис. 3).
а) б)
Рисунок 2 - Зависимость сопротивления пленок кобальт- (а) и медьсодержащего (б) ПАН от содержания модифицирующих добавок в составе пленок.
-0,25
-0,5
-0,75
-1
2,5
1.5
1
0,5
0
0.0017
0.0022
1/ТД-1
0,0027
ІЛ'.К'1
0,00.42
0.00.47
а) б)
Рисунок 3 - Температурные зависимости логарифма сопротивления образцов пленок от 1/Т для образцов: а) кобальтсодержащего ПАН (Т 1=300 °C, t1=5 мин.; T2=450 °С, t2=5 мин.); б) медьсодержащего ПАН (Т 1=300 °C, t1=5 мин.; T2=450 °С, t2=5 мин.)
По экспериментальным данным видно (таблица 1 ), что технологические режимы формирования структуры газочувствительного материала и массовая концентрация модифицирующей добавки являются определяющими параметрами для управления селективностью газочувствительных пленок ПАН и пленок кобальт- и медьсодержащего ПАН.
Определены технологические режимы формирования материала для достижения максимального газочувствительных характеристик при комнатной температуре. Установлено, что максимальные коэффициенты газочувствительности к СО (при 200 ppm) достигаются при использовании в качестве газочувствительного слоя пленки кобальтсодержащего ПАН ю (Со)=0,75 масс.%, сформированной при следующих технологических параметрах: T1=250 °C, t1=15 мин, T2=350 °C, t2=5 мин. Преимущества пленок кобальтсодержащего ПАН является то, что они реагируют на газ-восстановитель СО при комнатной температуре, что позволяет создавать неподогревные сенсоры монооксида углерода. Максимальный коэффициент газочувствительности к С12 (34 ppm) достигается при модифицировании пленок ПАН медью ю (Си)=0,5 масс.% и использовании следующих температурно-временных режимов при ее формировании: T1=250°C, t1=20 мин, T2=500 °C, t2=2 мин. К хлороформу CHC13 (150 ppm) чувствительны
только пленки чистого ПАН (немодифицированного переходными металлами), полученные при Т1=300 °С, 11=20 мин, Т2=350 °С, 1;2=10 мин.
Таблица 1
Технологические режимы формирования образцов плёнок состава ПАН/Со и ПАН/Си и значения их коэффициента газочувствительности при рабочей температуре (18 - 25) °С
Газ ю (Со), масс.% Т1,°С - І4, мин. Т2,°С -12, мин. 3, отн. ед. Газ ю (Си), масс.% Т1,°С - І4, мин. Т2,°С -І2, мин. 3, отн. ед.
СО 0,75 250-15 350-5 2,40 СІ2 0,5 300-20 350-5 3,80
0,75 250-15 350-2 1,63 1 250-20 350-2 3,00
N02 0,25 300-20 350-10 11,43 NHз 0,5 250-20 350-2 3,33
СНС1з 0 300-20 350-10 2,73 0,75 300-15 350-5 5,00
Таким образом, в результате выполнения работы, изготовлены образцы тестовых образцов сенсоров газов на основе ПАН и металлсодержащего ПАН применяемых в гибридных сенсорных системах. Установлено, что газочувствительность и селективность полученных образцов зависит от состава исходного пленкообразующего раствора и технологических параметров формирования материала чувствительного слоя. Обнаружено, что пленки ПАН и металлсодержащего ПАН демонстрируют селективную чувствительность к газам - СО, С12, СНС13. при температурах 18-25 °С.
Исследование выполнено при поддержке Министерства образования и науки Российской Федерации, соглашение 14.А18.21.2052 «Разработка технологии формирования наноструктурированных материалов и гибридных сенсорных систем на их основе»
Литература
1. Аль-Хадрами И.С., Королев А.Н., Семенистая Т.В. Назарова Т.Н., Петров В.В. Исследование газочувствительных свойств медьсодержащего полиакрилонитрила // Известия высших учебных заведений. Электроника. - 2008. - № 1. - С. 20 - 25.
2. Лу П., Горбатенко Ю.А., Семенистая Т.В., Воробьев Е.В., Королев А.Н. Получение чувствительных элементов сенсоров газов на основе пленок полиакрилонитрила и серебросодержащего полиакрилонитрила и определение их характеристик // Нано- и микросистемная техника. - 2011. - № 9. - С. 5 - 12.
3. Бедная Т.А., Коноваленко С.П., Семенистая Т.В., Петров В.В., Королев А.Н. Изготовление газочувтствительных элементов сенсора диоксид азота и хлора на основе кобальтсодержащего полиакрилонитрила // Известия высших учебных заведений. Электроника. - 2012. - № 4(96). - С. 66 - 71.
4. Королев А.Н., Семенистая Т.В., Аль-Хадрами И.С., Логинова Т.П., Брунс М. Нанокомпозитные пленки медьсодержащего полиакрилонирила: состав, структура, морфология поверхности // Перспективные материалы. - 2010. - №5. - С. 52 - 56.
5. Земцов Л.М., Карпачева Г.П. Химические превращения полиакрилонитрила под действием некогерентного инфракрасного излучения // Высокомолекулярные соединения - 1994. - Т. 36, № 6. - С. 919 - 924.
6. Коноваленко С.П., Бедная Т.А., Семенистая Т.В. Выбор модифицирующей добавки при создании газочувствительного элемента сенсора на основе ПАН // Материалы III Международной научно-инновационной молодежной конференции: (Тамбов, 31 октября - 2 ноября, 2011). - Тамбов: Изд-во ТПУ, 2011. С. 214 - 216.
7. Коноваленко С.П., Семенистая Т.В. Влияние технологических режимов формирования пленок полиакрилонитрила на селективность сенсорного элемента на его основе. // Труды международной научно-технической конференции «Нанотехнологии 2012» (Таганрог, 25-29 июня, 2012). ~ Таганрог: Изд-во ТТИ ЮФУ, 2012. ~ С. 70 ~ 71.