Разработка технологии очистки природной воды для питьевых целей на период чрезвычайных ситуаций: производство активного хлора электролизом воды
1 2 3
С.А. Бреус , А.Ю. Скрябин , Л.Н. Фесенко
1 Государственное унитарное предприятие Ростовской области « Управление развития систем водоснабжения» 2Акционерное общество «Ростовводоканал» 3Общество с ограниченной ответственностью научно-производственное предприятие «ЭКОФЕС», Новочеркасск
Аннотация: Рассмотрена возможность получения активного хлора из пресных, природных вод путем её прямого электролиза. Определен интервал изменения времени анодного полупериода тока. Установлена коррозионная стойкость анодов с разной закладкой оксидов рутения и иридия, а также их характеристики: выход хлора по току, напряжение на ячейке, динамика роста концентрации активного хлора в обработанной донской воде.
Ключевые слова: Чрезвычайные ситуации, водоснабжение, обеззараживание, электролиз природной воды, хлориды, активный хлор, плотность тока, время «жизни» электрода
В период чрезвычайных ситуаций (далее ЧС) качественное водоснабжение может стать одним из основных, а иногда и самым главным жизненно важным фактором для каждого жителя Российской федерации [1].
Оперативным способом для обеспечения подачи доброкачественной воды населению в период ЧС, а также отдалённых вахтовых поселков и деревень являются водоочистные мобильные станции (далее МВС) различной производительности, осуществляющие очистку из поверхностных и подземных водоисточников.
Известные технологии и конструкции, эксплуатируемых МВС для очистки природных вод представлены в работах [2 - 5]. Наилучшая из них предложена В.А. Онкаевым[5] и предназначена для децентрализованного водоснабжения малых населенных мест. Водоочистка включает ряд унифицированных блоков: предварительная очистка на металлокомплексных каталитических фильтрах; реагентный узел и напорное фильтрование через двухслойную каталитически активированную загрузку;
глубокуюдоочисткуводы на фильтрах с активным углем, катализатором и при необходимости на обратноосмотической установке и обеззараживание воды с использованием УФ или консервантов («БИНГСТИ» и ССД-200).
Основной недостаток предлагаемой технологии - применение реагентов имеющие определенный срок хранения. Кроме того эксплуатация даннойводоочистной системы нуждается в постоянном присутствии квалифицированных технологов.
С целью упрощения эксплуатации МВС и её оперативного управления нами были сформулированы два критерия: отказ от традиционного реагентного хозяйства и быстрая замена технологических узлов водоочистной станции.
На основании вышеизложенного предлагается технологическая схема водоподготовки на период ЧС (рис. 1).
Рис. 1. -Технологическая схема водоподготовки в период ЧС
Схема включает два основных метода водоочистки: обеззараживание электролизом природной воды и электрохимическое коагулирование в условиях кантатного фильтрования [6,7].
Следует особенно подчеркнуть, что обеззараживание является самым важным в водоочистке на период ЧС, так как оно отвечает за эпидемиологическое благополучие воды, а использование электролиза воды может позволить еще и пролонгированную консервацию питьевой воды за счет получения активного хлора [10,17].
Обеззараживание воды путем её электролиза является разновидностью прямого электрохимического окисления и протекает в два этапа -
электрохимическое получение окислителей и смешивание их с обрабатываемой природной водой.
Основные закономерности образования окислителей в воде за счет её прямой электролитической обработки должны соответствовать двум основным требованиям: наличие в воде хлоридов и использованию эффективных малоизнашивающихся электродов [12].
Известно,что электролитический гипохлорит натрия по своей бактерицидной эффективности не только не уступает газообразному хлору, а в отдельныхслучаях, при высоком бактериальном загрязнении воды, даже превосходит его. Полное обеззараживание наступает при дозе по активному хлору 0,8 мг/дм , в то время как при той же дозе в случае обычного хлорирования бактерицидный эффект составляет лишь 97 - 98 % [9].
Объяснение этому Л.А. Кульский[8,15] видит в том, что во многих природных водах имеются соединения, например, йода, брома и другие, которые в процессе электролиза образуют сильные окислители (вплоть до пероксидов), ускоряющие процесс обеззараживания.
Вопросу энергозатрат на производство активного хлора из природных вод было дано в работе Д.Л. Басина[10]. Им установлено, что при обработке природных вод с содержанием хлоридов 20-350 мг/дм выход хлора на электродах из ОРТА составляет 4-30% при затратах электроэнергии 20-200 кВт*ч на 1 кг активного хлора. На основании проведенных исследований, рекомендовано проведение обеззараживания прямым электролизом природных вод с содержанием хлоридов более 20 мг/дм [10].При этом также происходит электроокисление примесей воды, насыщение кислородом, умягчение и ряд других сопутствующих процессов.
На основании данных лабораториями МУП «Горводоканала» г. Новочеркасска и ОАО «Аксайского ПМК РСВС» было установлено, что среднее количество хлоридов в донской воде - 109,4 мг/дм , а в подземной
воде с.п. Грушевское - 392,5 мг/дм3.Это дает возможность (количество хлоридов более 20 мг/дм ) получать активный хлор в обрабатываемой подземной и поверхностной воде.
Для эффективной работы прямого электролитического обеззараживания воды требуется обоснованный выбор материала электродов и оптимальные электрические параметры.
Недостаточность исследований электролиза хлоридсодержащих природных водопределило необходимостьнастоящих экспериментов.
Исследования электрохимического обеззараживания воды путем её электролиза вели по трем направлениям:
- оценивали влияние плотности постоянного анодного тока на концентрацию активного хлора;
- изучали роль частоты реверса тока на концентрацию активного хлора, напряжение электролизной ячейки, характеристику образования катодных отложений и времени «жизни» электродов;
- определяли влияние природы металлооксидных покрытий на время «жизни» электродов и концентрацию активного хлора.
Под словом «жизнь» подразумевается объективная возможность использовать электрод в качестве анода при электрохимическом получении активного хлора из хлоридов воды.
Опыты проводили на лабораторной установке (рис. 2). Висследованиях использовали донскую воду. Количество хлоридов в ней было 100 -117 мг/дм3, а температура изменялась от 10 до 17 0С. Расход воды через электролизер составлял 1 дм3/ч.
Электролизная ячейка (рис. 2) была изготовлена из органического стекла и включала в себя прямоугольный корпус (1) (объем 66 см ) и электроды (2). Рабочая площадь каждого составляла 16 см . Межэлектродное пространство было 4 мм[8]. В качестве анода и катода использовали
титановые пластины толщиной 1 мм, покрытыеметаллооксидным активным слоем на основе диоксида иридия (ОИРТА) [12-14]. В крышке электролизной ячейки был установлен ртутный термометр (3) ТТ (16) со шкалой 0-100 оС. Измерительная часть его находилась в средней части корпуса (1), где достигалось полное перемешивание воды при электролизе. Получаемые при электролизе газы отводили через газоотвод (5). Он был вмонтирован в герметичный корпус ячейки. Это препятствовало выделению газов в помещение.
Рис. 2. - Схема экспериментальной электролизной установки: 1 - корпус электролизной ячейки; 2 - электроды;3 - термометр; 4 - блок - генератор переменного тока; 5 - газоотвод; 6 - аккумулирующая емкость;7 -пробоотборник
Для определения концентрации активного хлора в воде раствор отбирали при помощи пробоотборника (7), расположенный в нижней части аккумулирующей емкости (6).
Анализы содержания активного хлора вели по общеизвестным методикам. Так же в опытах определяли величину рН с помощью рН-метра МУ 88 Prazisions-Labor-pH-Messgeratсо стеклянным лабораторным электродом типа ЭСЛ-63-07 (рН1=7, Б1=-25 тУ, 25... 100 оС) и электродом типа ЭВЛ-1МЗ.Для регулирования напряжения на электродах использовали
6
блок-генератор переменного тока (4), изготовленный в ООО НПП «Экофес».В нем заложена функциональная возможность регулирования силы тока (0,01-0,16) мА и времени его подачи от 1 секунды до 10 часов. Ток устанавливали вручную с помощью кнопок и тумблеров, расположенных на его лицевой панели. Источник тока работал в режиме гальваностата. На экране блока (4) отображалось общее время наработки, максимальное значение которого составляет 100 ч. Во всех исследованиях проводили замеры напряжения на клеммах электролизера при помощи мультиметра ЫУ-68.
Влияние плотности постоянного анодного тока на концентрацию активного хлора
Титановые электроды были покрыты оксидами Яли 1гв соотношении 1:1 по металлу с суммарной удельной закладкой 7,5 г/м2.Плотность тока в исследованиях составила 25, 50, 75 и 100 А/м . Продолжительность каждого опыта - 50 ч.
На рис. 3 приведена зависимость концентрации активного хлора от плотности анодного тока. Из неё следует, что при увеличении плотности тока в 4 раза, содержание активного хлора в обработанной воде выросла в 9 раз и достигла 31,28 мг/дм3.
Ход экспериментальной зависимости САХ - I показывает, что на кривой изменения концентрации активного хлора можно выделить три отрезка:
- на участке 25 - 50 А/м концентрация выросла в 3,5 раза;
- на участке 50 - 70 А/м наблюдали уменьшение концентрации активного хлора на 10,4 %;
- при увеличении плотности тока до 100 А/м отмечен значительный рост концентрации активного хлора (в 2,8 раза) по сравнению с показателем при 75 А/м .
Рис. 3. - Влияние плотности анодного тока на концентрацию активного хлора
В контрольных опытах при плотности тока 100 А/м наблюдали образование осадка на поверхности катода (см. рис. 6 (1)) и изменение во времени напряжения на клеммах электролизера.
Влияние продолжительности электролиза при постоянной плотности тока 100 А/м на величину напряжения электролизера (данные представлены в процентном отношении к начальному его значению) представлено на рис. 4. Из него следует, что к 25 часам работы электролизной ячейки напряжение выросло на 2,03%. Далее наблюдали уменьшение на 14,9 % от первоначального значения и = 7,4 В.
105
^ 100
^ 95 К
! 90
& 85
К 80
а/ б
а - Напряжение %; б - Аппроксимация, Я2=1 (И=100+0,46-т-0,0151-т2) -1-1-1-1-
0
5
50
10 15 20 25 30 35 40 45 Время электролиза (т), ч
Рис. 4. - Влияние продолжительности электролиза на напряжение ячейки электролизера
Изучение роли частоты реверса тока на концентрацию активного хлора, напряжение электролизной ячейки, характеристику образования катодных отложений и времени «жизни» электродов
Время изменения анодного полупериода электрического тока составило (т - - 1ч; т + - 25, 60, 120, 210, 300 сек). Плотность анодного тока -100 А/м .Опыты
вели в течение 100 ч.
На рис. 5 приведено влияние изменения времени анодного полупериода тока на концентрацию активного хлора и количество отложений на поверхности электродов. Из рисунка следует, что при переходе на переменный электрический ток с изменяющимся временем его реверса (опыт 2) концентрация активного хлора, по сравнению с опытом 1, выросла на 27,7% и составила 24,3 мг/дм3. Кроме того при сравнении работ электролизера на постоянном (опыт 1) и переменном токе (опыт 6), было зафиксировано увеличение САХ на 38,2 % (кривая «а»).
30 25
сз
а
О «
О
« т| 20 * ^ 15
л з
|В 10 «
<а Я Я О
5 0
1 2 3 4 5 6
Номер опыта (К)
Рис. 5. - Влияние изменения времени полярноститока на массу осадка на поверхности катода и выхода активного хлора в ряде опытов: 1 - постоянный ток; 2 - (т -- 1ч, т + - 25 сек); 3 - (т -- 1ч, т + - 60 сек); 4 - (т -- 1ч, т + -120 сек); 5 -(т - 1ч, т + - 210 сек); 6 - (т - 1ч, т + - 300 сек)
N
Одновременно в исследованиях вели контроль за массой катодных отложений (рис. 5). Из него видно, что при работе электролизерах - - 1ч, т + -300 сек, вес отложений уменьшился (в 90 раз) по сравнению с опытом 1 и составил 0,009г.
В качестве иллюстрации уменьшения количества осадка на катоде при изменении анодного полупериода тока представлены фотографии электродов (рис.6).
Рис. 6. - Характер образования отложений на катоде во время электролиза при изменении анодного полупериода тока в различных опытах: 1 -постоянный ток; 2 - (т- - 1ч, т+ - 25 сек); 3 - (т- - 1ч, т+ - 60 сек); 4 - (т- - 1ч, т+ - 120 сек); 5 - (т- - 1ч, т+ - 300 сек)
Из рисунка видно, что при постоянном токе катод покрывался плотными, рыхлыми отложениями светло-жёлтого цвета. Основной объем образований был на верхней части электрода (опыт 1) в границе раздела воздух-вода.
Также наблюдали флотацию мелких взвесей и оседание крупных частиц. Дальнейшее увеличение времени анодного полупериода тока (опыт 2-3) привело к интенсивному снижению количества осадка на пластинах. При частоте реверса (т - - 1ч, т + - 120, 300 сек) осадок на электродах не образовывался.
Влияние продолжительности электролиза на изменение напряжения электролизной ячейки представлено на рис. 7.
т 8
§ 7
(и К
я 6
*
& 5 8 * К 4 +
0
=3
25 50 75
Время электролиза (т), ч
4В
I
100
1 2 ■3
4
5
6
Рис. 7. - Влияние продолжительности электролиза на напряжение тока в различных опытах: 1 - постоянный ток; 2 - (т- - 1ч, т+ - 25 сек); 3 - (т- - 1ч, т+ - 60 сек); 4 - (т- - 1ч, т+ - 120 сек); 5 - (т- - 1ч, т+ - 210 сек); 6 - (т- - 1ч, т+ -300 сек)
Из рис. 7 следует, что при электролизе на постоянном токе (опыт 1) значение напряжения снижается на 20 %, а для режимов на переменном токе (опыт 2 - 6) изменения напряжения незначительно зависят от времени электролиза. Для наиболее характерных кривых Ц-т (рис. 7 опыт 1 и 6) представлены уравнения аппроксимации:
Ц1=7,53 + (-0,0174- т), (Я2=0,9096); Ц6=5,428 + 0,00064- т, (Я2=0,8928).
Известно, что материал электрода и его состав покрытия оказывает существенное влияние на эффективность и продолжительность его «жизни» [12]. В работе [13] установлено, что коррозионная стойкость оксидных покрытий напрямую зависит от изменения их состава. С повышением процентного соотношения иридия в оксидном слое коррозионная стойкость увеличивается. Как, утверждает автор [14], время работы повышается в 5-8 раз по сравнению с электродом, не содержащий 1г. Опыты проводили на постоянном электрическом токе, с плотностью
2
анодного тока 600 - 800А/м . Исследования были выполнены на морской воде [14].
Связи с тем, что донская вода, является пресной, то представлял интерес оценить эффективность работы ОИРТА при электролизе с различным временем анодного полупериода и плотностью тока 100 А/м . Таких исследований, как нам известно, не проводили.
На рис.8 представлены диаграммы влияниявремени анодного полупериода тока на «жизнь» электродов. Результаты исследований показывают, что продолжительность работы титановых пластин, в основном зависит от частоты реверса электрического тока.
^ 140 120
? 100
к
5 80
к
* 60 I 40
<и
И 20 0
1 2 3 4 5 6
Номер опыта (К)
Рис.8. -Изменение времени анодного полупериода тока на «жизнь» электродов в различных опытах: 1 - постоянный ток; 2 - (т-- 1ч, т+ - 25 сек); 3 - (т-- 1ч, т+ - 60 сек); 4 - (т-- 1ч, т+ - 120 сек); 5 - (т-- 1ч, т+ - 210 сек); 6 - (т- 1ч,т+ - 300 сек); а - время «жизни» электродов до экспериментов; б -остаточное время «жизни» анода; в - остаточное время «жизни» катода
Из диаграмм (рис. 8) видно, как при продолжительности изменении полярности тока (опыт 5) остаточное время «жизни» катода выросло на 26,26 % в сравнении с исходным электродом. «Жизнь» анода в свою очередь уменьшилась в 0,7 раз при рассмотрении с опытами 2-4. Однако при
изменении времени анодного полупериода тока в опыте 6 наблюдали общее уменьшение работоспособности электродов на 17 % в сравнении с «жизнью» титановых пластин до экспериментов (столбец «а»).
Для изучения времени «жизни» электродов при влиянии плотности
2 + анодного тока (25,50,75,100 А/м ) со временем реверса т"- 1ч,т - 300 сек
были проведены дополнительные исследования (рис. 9). Из рисунка следует,
что при анодных плотностях тока (25 - 75 А/м ) остаточное время «жизни»
электродов снизилось на 43 %, а при 100 А/м (столбец «б») уменьшилось
всего на 4%. На основании полученных данных построили
аппроксимирующую зависимость (1) тж =71,5834 - 0,704001/ + 0,009/ .
^100
^ 80
х 60
со
К
* 40
и а
т
20
25 50 75
Плотность тока (/), А/м2
100
Рис.9. - Влияние плотности тока на время «жизни» электродов: а -время «жизни» электродов до экспериментов; б - остаточное время «жизни» электродов; 1 - аппроксимирующая зависимость тжот/
0
Влияние природы металлооксидных покрытий на время «жизни» электродов и концентрацию активного хлора
Известно, что материал оксидного покрытия электрода оказывает существенное влияние на количество образовавшегося активного хлора [8, 10,11]. В природных минерализованных водах(с содержанием хлоридов более 10 г/дм ) получение активного хлора наиболее эффективно протекает на анодах из ОИРТА [14,17].
В эксперименте значения частоты реверса тока приняли т - - 1ч, т -300 сек, с плотностью 100 А/м . Использовали титановые пластины с оксидным покрытием разным соотношением рутения к иридию. Продолжительность опыта - 270 ч. Результаты опытов представлены на рис. 10.
Из рисунка видно, что использование иридия влияет на изменение концентрации активного хлора (кривая 1). Прирост САХв воде с увеличением доли 1гот 0 до 80 % составил 20,5 %. Также наличие иридия значительно влияет на время «жизни» электродов. Кривая 2 (рис. 10) показывает, что присутствие в оксидном слое 1г в массовом соотношении к Яи (20:80) увеличивает время эксплуатации анода в 10,6 раз.
0 и
к ^
£ I * 2
1 ^
л ^
н X <и
а х
о «
16 14 12 10 8 6 4 2 0
\1
- 2
8 6 4 2
к х
3 *
и а и и о
X р
о
Й н о
О
Яи-100/1г-0 Яи-50/1г-50 Яи-20/1г-80
Покрытие электрода
Рис.10. - Влияние соотношения металлов в оксидном покрытии электродовна
концентрацию активного хлора и времени «жизни»: 1 - зависимость САХот
ОИРТА; 2- остаточное время «жизни» электродов
0
Исследования показали, что значимыми параметрами, влияющими на электролиз пресной воды в электролизной ячейке являются: продолжительность анодного полупериода тока (т); количество хлоридов в воде, (С/"); плотность электрического тока (). Эти параметры были приняты для проведения полного факторного эксперимента по методике, изложенной
[16]. Статистическая обработка результатов эксперимента позволила получить значения коэффициентов переменных электролиза донской воды. Ниже приведено уравнение регрессии концентрации активного хлора (САХ).
Сах = - 28,34 + 0,7138-1 + 0,8844-01' - 2,8718-/, мг/дм3.
В заключение можно констатировать, что полученные лабораторные данные прямого электролиза в проточном режиме донской воды позволили, во-первых, дополнить знания в области обеззараживания природных вод путем её электролитической обработки и во-вторых, подтвердить целесообразное использование электролизера в технологической схеме указанной на рис. 1.
Выводы:
1. Полученные результаты исследований доказывают возможность обеззараживания природной, хлоридсодержащей воды путем её прямого электролиза. Это позволит упростить эксплуатацию малогабаритных водоочистных станций и отказаться от привозных хлорсодержащих реагентов (жидкий хлор, хлорная известь и т.д.).
2. Изменение времени анодного полупериода тока (т- - 1ч, т+ - 300 сек) при его плотности 100 мА/см положительно влияет на рост концентрации активного хлора (38,2 %) в сравнении с постоянным электрическим током. Устраняет отложения на поверхности электродов (вес отложений уменьшился в 90 раз) и продлевает остаточную «жизнь» электродам.
3. Использование иридия для покрытия электродов напрямую влияет на изменение концентрации активного хлора. Прирост САХ в воде с увеличением доли 1г от 0 до 80 % составил 20,5 %. Также наличие иридия значительно влияет на время «жизни» электродов. Доказано, что присутствие в оксидном слое 1г в массовом соотношении к Ял (20:80) увеличивает время эксплуатации анода в 10,6 раз.
Литература
1. Безопасность жизнедеятельности. Защита населения и территорий при чрезвычайных ситуациях / Под ред. В.В. Денисова. - Ростов-на-Дону: Издательский центр «МарТ», 2007. - 720 с.
2. Стаценко М.И. Водоочистные установки «Исток»: современные технологии и решения // Водоснабжение и канализация. - 2011. - №9-10. - С. 108-112.
3. Васильев, А.Л. Разработка и испытание малогабаритных установок подготовки питьевых вод: автореф. дис. ... канд. тех. наук: 05.23.04. - Нижний Новгород, 1992. - 20 с.
4. Зайцев, С.В. Совершенствование водоочистных установок малой производительности с использованием электрообработки: автореф. дис. ... канд. тех. наук: 05.23.04. - СПб., 1995. - 23 с.
5. Онкаев, В. А. Разработка и исследование процессов водоподготовки в мобильно-картриджных системах децентрализованного водоснабжения малых населенных мест: дис. ... канд. тех. наук: 05.23.04. Ростов-на-Дону, 2010. - 170 с.
6. Линевич С.Н., Бреус С. А., Гетманцев С.В. Модернизация коагуляционного метода водообработки // Водоснабжение и водоотведения мегаполиса «Шестые Яковлевские чтения»// Материалы 11-й международной научной - практической конференции, посвященной памяти академика РАН и РААСН С.В.Яковлева. - М.: 2011. - С. 214 - 220.
7. С.Н. Линевич, С. А. Бреус Эффективный способ осветления и обесцвечивания природных вод электродистабилизационно-контактной коагуляцией // Новые достижения в областях водоснабжения, водоотведения, гидравлики и охраны водных ресурсов// Международная конференция ПГУПС, посвященная памяти проф. В.С. Дикаревского. - СПб.: 2011. - С. 3942.
8. Кудрявцев, С. В. Совершенствование технологических параметров установок получения электролитического гипохлорита натрия для обеззараживания воды: дис. ... канд. тех. наук: 05.23.04. - Новочеркасск, 2009. - 162 с.
9. И.А. Денисова, А.Ю. Скрябин, Л.Н. Фесенко, Под ред. Фесенко, Л.Н. Активированные технологии обеззараживания питьевой воды / Ростов-на-Дону: СКНЦ ВШ ЮФУ, 2013. - 192 с.
10. Медриш Г.Л., Тайшева А.А., Басин Д.Л., Обеззараживание природных и сточных вод с использованием электролиза / М.: Стройиздат, 1982. - 81 с.
11. Kerwick, M.I., Reddy, S.M, Chamberlain, A.H.L., Holt, D.M. (2005), Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection? ElectrochimicaActa. 50, 5270. p. 8
12. Пчельников И.В. , Игнатенко С.И., Бабаев А.А. , Фесенко Л.Н. Исследование коррозионных и электрохимических свойств оксидных покрытий анодов для производства низкоконцентрированного гипохлорита натрия // Инженерный вестник Дона, 2014, №1URL: ivdon.ru/ru/magazine/archive/n1y2014/2242.
13. Denton D. A., HarrisonJ. A., KnowlesR. I. ChlorineevolutionandreductiononRu2O/Ti2Oelectrodes. Electrochim. Acta, 1979. pp. 521-527.
14. Пчельников И.В. Совершенствование технологии производства обеззараживающего реагента - гипохлорита натрия электролизом морской воды (на примере Черного моря): дис. ... канд. тех. наук: 05.23.04. -Новочеркасск, 2014. - 155 с.
15. Кульский Л.А. Теоретические основы и технология кондиционирования воды / Киев: Наукова думка, 1980. - 558 с.
16. Глуходедова В.Н., Корохов В.В., Скребнева И.А., Статистическое моделирование технологических процессов. Учебное пособие / Ростов-на-Дону: СКНЦ ВШ ЮФУ, 2010. - 44 с.
17. Амин Абдулфаттах Ахмад Амин Исследование формирования тригалогенметанов в системе водоснабжения Багдада // Инженерный вестник Дона, 2013, №3 URL: ivdon.ru/ru/magazine/archive/n3y2013/1753.
References
1. Denisov V.V. Bezopasnost' zhiznedeyatel'nosti. Zashchita naseleniya i territoriy pri chrezvychaynykh situatsiyakh [Security at vital activity. Protection of population and territories in emergency situations] Rostov-na-Donu, 2007, pp. 720.
2. Statsenko M.I. Vodosnabzhenie i kanalizatsiya. 2011.№9-10. рр. 108-112.
3. Vasil'ev A.L. Razrabotka i ispytanie malogabaritnykh ustanovok podgotovki pit'evykh vod [Development and testing of small plants of drinking water]. Nizhniy Novgorod, 1992. 20 p.
4. Zaytsev S.V. Sovershenstvovanie vodoochistnykh ustanovok maloy proizvoditel'nosti s ispol'zovaniem eektroobrabotki[Improving the performance of small water treatment plants with the use of electric treatment]St. Petersburg. 1995. 23 p.
5. OnkaevV.A. Razrabotka i issledovanie protsessov vodopodgotovki v mobil'no-kartridzhnykh sistemakh detsentralizovannogo vodosnabzheniya malykh naselennykh mest [Development and research of water treatment processes in the mobile-cartridge systems, decentralized water supply of small localities] Rostov-na-Donu 2010. 170 p.
6. Linevich S.N. Breus S.A., Getmantsev S.V. Vodosnabzhenie i vodootvedeniya megapolisa «ShestyeYakovlevskie chteniya». Moscow, 2013, pp. 214 - 220.
7. Linevich S.N., Breus S.A. Novye dostizheniya v oblastyakh vodosnabzheniya, vodootvedeniya, gidravliki i okhrany vodnykh resursov (International conference) St. Petersburg, 2011, pp.39-42.
8. Kudryavtsev S. V. Sovershenstvovanie tekhnologicheskikh parametrov ustanovok polucheniya elektroliticheskogo gipokhloritanatriya dlya obezzarazhivaniya vody [Improving the technological parameters of plants for electrolytic sodium hypochlorite for water disinfection]Novocherkassk. 2009. 162 p.
9. Denisova, A. Yu. Skryabin, L.N. Fesenko Aktivirovannye tekhnologii obezzarazhivaniya pit'evoy vody [Activated technology of drinking water disinfection] Rostov-na-Donu. 2013. 192 p.
10. Medrish G.L., Taysheva A.A., Basin D.L Obezzarazhivanie prirodnykh istochnykh vod s ispol'zovaniem elektroliza [Disinfection of natural and waste water using electrolysis]. Moscow. 1982. 81 p.
11. Kerwick, M.I., Reddy, S.M, Chamberlain, A.H.L., Holt, D.M. (2005), Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection? ElectrochimicaActa. 50, 5270. p. 8
12. I.V. Pchel'nikov, S.I. Ignatenko, A.A. Babaev, L.N. Inzenernyjvestnik Dona (Rus), 2014, №1 URL: ivdon.ru/ru/magazine/archive/n1y2014/ 2242.
13. Denton D. A., Harrison J. A., Knowles R. I. Chlorine evolution and reduction on Ru2O/Ti2O electrodes. Electrochim. Acta, 1979. pp. 521-527.
14. Pchel'nikov I.V. Sovershenstvovanie tekhnologii proizvodstva obezzarazhivayushchego reagenta - gipokhloritanatriya elektrolizom morskoy vody (na primere Chernogo morya) [Improving the technology of production of disinfecting agent - sodium hypochlorite by electrolysis of seawater (by the example of the Black Sea)] Novocherkassk. 2014. 155 p.
15. Kul'skiy L.A. Teoreticheskie osnovy i tekhnologiya konditsionirovaniya vody [Theoretical bases and technology of water conditioning] Kiev, 1980. 558 p.
16. Glukhodedova V.N., Korokhov V.V., Skrebneva I.A. Statisticheskoe modelirovanie tekhnologicheskikh protsessov. Uchebnoe posobie [Statistical modeling of technological processes. Study Guide] Rostov-na-Donu, 2010. - 44 s.
17. Amin Abdulfattakh Akhmad Amin Inzenernyj vestnik Dona (Rus), 2013, №3 URL: ivdon.ru/ru/magazine/archive/n3y2013/1753.