Научная статья на тему 'Разработка комплексных жаростойких покрытий для деталей из естественно-композиционного материала на основе ниобия'

Разработка комплексных жаростойких покрытий для деталей из естественно-композиционного материала на основе ниобия Текст научной статьи по специальности «Технологии материалов»

CC BY
147
24
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Труды ВИАМ
ВАК
RSCI
Ключевые слова
ЖАРОСТОЙКИЕ ПОКРЫТИЯ / ИОННО-ПЛАЗМЕННЫЕ ПОКРЫТИЯ / ВЫСОКОТЕМПЕРАТУРНАЯ ГАЗОВАЯ КОРРОЗИЯ / ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИОБИЯ / БАРЬЕРНЫЙ СЛОЙ / СИЛИЦИРОВАНИЕ / HEAT RESISTANT COATINGS / ION-PLASMA COATINGS / HIGH-TEMPERATURE GAS CORROSION / NIOBIUM BASED HEAT-PROOF ALLOY / BARRIER LAYER / SILICONIZING

Аннотация научной статьи по технологиям материалов, автор научной работы — Кашин Д. С., Стехов П. А.

Проведены исследования изотермической жаростойкости образцов из естественно-композиционного материала на основе ниобия для деталей ГТД с жаростойкими покрытиями при температуре 1350°С на базе испытаний 30 ч. Проведены испытания на циклическую жаростойкость образцов с комплексным покрытием по режиму 500⇄1300°С с охлаждением на воздухе до 500°С. Проведены исследования микроструктур покрытий в исходном виде и после испытаний на жаростойкость образцов из естественно-композиционного материала на основе ниобия с комплексными покрытиями. Покрытие системы Si+(Fe-Cr-Al-Y)+Si обладает более высокой трещиностойкостью по сравнению с диффузионным жаростойким покрытием. Комплексное жаростойкое покрытие обеспечивает защиту деталей из естественно-композиционного материала на основе ниобия при рабочих температурах до 1350°С и сохраняет защитные свойства в условиях термоциклирования.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Development of combined heat-resistant coatings for parts made of natural-composite material based on niobium

Researches of isothermal heat resistance of samples from natural-composite material are based on niobium for GTE parts with heat-resistant coatings at a temperature of 1350°C on the basis of tests of 30 hours. Tests on the cyclic heat resistance of samples with a combined coating at a temperature of 500⇄1300°C with air cooling up to 500°C have been carried out. Investigations of the microstructures of the coatings in their original form and after tests on the heat resistance of samples from a naturally-composite material based on niobium with complex coatings were carried out. The coating of the Si+(Fe-Cr-Al-Y)+Si system has a higher crack resistance than the diffusion heat-resistant coating. Combined heat-resistant coating provides protection of parts from natural-composite material based on niobium at operating temperatures up to 1350°C, and preserves protective properties under thermal cycling conditions.

Текст научной работы на тему «Разработка комплексных жаростойких покрытий для деталей из естественно-композиционного материала на основе ниобия»

УДК 629.7.023.224 Д.С. Кашин1, П.А. Стехов1

РАЗРАБОТКА КОМПЛЕКСНЫХ ЖАРОСТОЙКИХ ПОКРЫТИЙ

ДЛЯ ДЕТАЛЕЙ ИЗ ЕСТЕСТВЕННО-КОМПОЗИЦИОННОГО МАТЕРИАЛА

НА ОСНОВЕ НИОБИЯ

DOI: 10.18577/2307-6046-2017-0-6-4-4

Проведены исследования изотермической жаростойкости образцов из естественно-композиционного материала на основе ниобия для деталей ГТД с жаростойкими покрытиями при температуре 1350°С на базе испытаний 30 ч. Проведены испытания на циклическую жаростойкость образцов с комплексным покрытием по режиму 500^1300°С с охлаждением на воздухе до 500°С. Проведены исследования микроструктур покрытий в исходном виде и после испытаний на жаростойкость образцов из естественно-композиционного материала на основе ниобия с комплексными покрытиями. Покрытие системы Si+(Fe-Cr-Al-Y)+Si обладает более высокой трещиностойкостъю по сравнению с диффузионным жаростойким покрытием. Комплексное жаростойкое покрытие обеспечивает защиту деталей из естественно-композиционного материала на основе ниобия при рабочих температурах до 1350°С и сохраняет защитные свойства в условиях термоциклирования.

Ключевые слова: жаростойкие покрытия, ионно-плазменные покрытия, высокотемпературная газовая коррозия, жаропрочный сплав на основе ниобия, барьерный слой, си-лицирование.

Researches of isothermal heat resistance of samples from natural-composite material are based on niobium for GTE parts with heat-resistant coatings at a temperature of1350°C on the basis of tests of 30 hours. Tests on the cyclic heat resistance of samples with a combined coating at a temperature of 500^1300°C with air cooling up to 500°C have been carried out. Investigations of the microstructures of the coatings in their original form and after tests on the heat resistance of samples from a naturally-composite material based on niobium with complex coatings were carried out. The coating of the Si+(Fe-Cr-Al-Y)+Si system has a higher crack resistance than the diffusion heat-resistant coating. Combined heat-resistant coating provides protection of parts from natural-composite material based on niobium at operating temperatures up to 1350°C, and preserves protective properties under thermal cycling conditions.

Keywords: heat resistant coatings, ion-plasma coatings, high-temperature gas corrosion, niobium based heat-proof alloy, barrier layer, siliconizing.

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт авиационных материалов» Государственный научный центр Российской Федерации [Federal state unitary enterprise «All-Russian scientific research institute of aviation materials» State research center of the Russian Federation]; e-mail: [email protected]

Введение

В качестве альтернативных жаропрочных материалов будущего, которые должны заменить монокристаллы жаропрочных никелевых сплавов (ЖНС) при производстве лопаток перспективных ГТД, рассматривают жаростойкие сплавы на основе тугоплавких металлов с композиционным упрочнением интерметаллидами. В качестве матрицы таких композитов наиболее перспективными являются тугоплавкие сплавы на основе ниобия, а в качестве упрочняющих интерметаллидов - силициды ниобия [1-5].

С учетом высокой температуры плавления (~1750°С) и термодинамической стабильности микроструктуры эти композиты способны работать при температуре 1350°С, что на 150-200°С превышает рабочую температуру современных монокристаллических ЖНС и безусловно является прогрессом в области создания жаропрочных сплавов для лопаток ГТД [6]. Если принять во внимание низкую плотность (6,6-7,5 г/см3), то по удельной прочности разработанные композиты будут превосходить монокристаллы ЖНС четвертого и пятого поколений, легированных такими дефицитными, дорогостоящими и тяжелыми элементами, как рений и рутений. Это обстоятельство позволит уменьшить на 20% массу перспективных турбин высокого давления (для сравнения плотность ЖНС достигает 9,0-9,2 г/см ). Большое преимущество ниобиевых композитов заключается в том, что в них отсутствуют дефицитные и дорогостоящие легирующие элементы -рений и рутений.

Существенным недостатком ниобия и его сплавов является низкая устойчивость к окислению при высоких температурах. Чистый ниобий легко окисляется при низких температурах (600-700°С) с образованием порошкообразного оксида №205. Низкая стойкость к окислению делает невозможной эксплуатацию деталей из жаропрочного сплава на основе ниобия без защитных покрытий [7, 8]. Большую проблему представляет изменение решетки ниобия и его сплавов при окислении, что приводит к очень быстрому разрушению защитного покрытия и выходу из строя детали. В настоящее время для получения защитных покрытий на деталях из ниобиевых сплавов используются следующие методы: электронно-лучевое испарение, лазерная наплавка, ионно-плазменное осаждение, термодиффузионные методы [9-15].

Для защиты естественно-композиционного материала на основе ниобия также могут применяться теплозащитные покрытия (ТЗП). Используемые ТЗП для никелевых сплавов могут применяться до температуры 1200°С (кратковременно). Такое ТЗП для естественно-композиционного материала на основе ниобия представляет собой керамический слой из оксида циркония, стабилизированного 7% диоксида иттрия. Слой толщиной 300 мкм обладает низкой теплопроводностью и обеспечивает тем самым понижение температуры на поверхности охлаждаемой подложки. Для предотвращения окисления подложки и обеспечения ее совместимости с керамическим слоем наносят соединительный подслой. В качестве соединительного подслоя используется ниобие-вый сплав, содержащий кремний, титан, хром в концентрациях больших, чем таковые в основном материале [16]. Поэтому проблема защиты деталей из естественно-композиционного материала на основе ниобия от высокотемпературного окисления путем использования комплексного жаростойкого покрытия весьма актуальна [17].

Работа выполнена в рамках реализации комплексного научного направления 17.3. «Многослойные жаростойкие и теплозащитные покрытия, наноструктурные упрочняющие коррозионные и коррозионностойкие, износостойкие, антифреттинговые покрытия для защиты деталей горячего тракта и компрессора ГТД и ГТУ» («Стратегические направления развития материалов и технологий их переработки на период до 2030 года») [18].

Материалы и методы

Исследования проведены на цилиндрических образцах из естественно-композиционного материала на основе ниобия.

Для повышения жаростойкости покрытий выбрано комплексное (диффузион-ное+ионно-плазменное) жаростойкое покрытие (рис. 1).

Рис. 1. Система комплексного покрытия для сплавов на основе ниобия

Ионно-плазменный слой покрытия наносили с помощью катода на основе железа на установке типа МАП:

- слой 1 - жаростойкий диффузионный подслой на основе кремния;

- слой 2 - ионно-плазменный жаростойкий слой системы Fe-Cr-Al-Y;

- слой 3 - жаростойкий слой на основе кремния.

Нанесение на поверхность образцов из естественно-композиционного материала на основе ниобия композиций жаростойких покрытий проводили диффузионным способом в камерной электропечи сопротивления в контейнере с подачей аргона для процесса насыщения кремнием и с помощью установки типа МАП для ионно-плазменного жаростойкого слоя системы Fe-C-A-Y. Перед нанесением диффузионного покрытия образцы промывали в ацетоне и нефрасе. При термодиффузионном насыщении образцы загружали в контейнер с рабочей смесью, а затем помещали в предварительно разогретую до температуры процесса печь. Процесс нанесения ионно-плазменного слоя проводили в вакуумной ионно-плазменной установке с автоматизированной системой управления технологическим процессом типа МАП-2. Подготовка поверхности образцов из естественно-композиционного материала на основе ниобия с жаростойким диффузионным подслоем перед нанесением ионно-плазменного покрытия включала обезжиривание в бензине и ацетоне, а также финишную очистку с помощью ионного травления в плазме вакуумной дуги непосредственно в рабочей камере установки перед нанесением покрытия. После каждого этапа нанесения и отжига производили визуальный осмотр каждого образца на предмет сколов или частичного отслоения слоя защитного покрытия.

Для проведения испытаний и исследований выбраны композиции следующих составов:

1. Покрытие на основе Si.

2. Покрытие системы Si+(Fe-Cr-Al-Y).

3. Покрытие системы Si+(Fe-Cr-Al-Y)+Si.

После нанесения ионно-плазменного покрытия проводили вакуумный отжиг образцов с целью окончательного формирования покрытия. При визуальном осмотре образцов после последовательного нанесения диффузионного жаростойкого подслоя и последующего нанесения ионно-плазменного жаростойкого покрытия обнаружено, что при толщине ионно-плазменного жаростойкого покрытия >40 мкм происходит растрескивание и отслоение покрытия с поверхности образцов.

Испытания на изотермическую жаростойкость образцов из естественно-композиционного материала на основе ниобия с комплексным защитным жаростойким покрытием проводили на цилиндрических образцах 025 мм и высотой 4 мм в камерной электропечи Nabertherm в закрытых керамических тиглях на воздухе при температуре 1350°С в соответствии с ГОСТ 6130.

Исследования на циклическую жаростойкость проводили на цилиндрических образцах 025 мм и высотой 4 мм в камерной электропечи Nabertherm: один цикл продолжительностью 1 ч включал выдержку при температуре 1300°С в течение 55 мин и охлаждение на воздухе в течение 5 мин до температуры 500°С.

Оценку жаростойких свойств после изотермической и циклической жаростойкости образцов из ниобия с защитным жаростойким покрытием осуществляли гравиметрическим методом на весах Sartorius без учета массы окалины, осыпавшейся с их поверхности. Измерение массы образцов проводили после 30 ч испытаний. Удельное изменение массы образцов рассчитывали по формуле Amt=(mt-mo)/S, где mt - масса образца после испытаний, г; m0 - масса образца в исходном состоянии, г; S - площадь поверхности образца, м2

Микроструктуру композиций «сплав-покрытие» исследовали на оптическом микроскопе Olympus GX-51 после отжига в вакууме и высокотемпературных испытаний на воздухе.

Определение локального состава образцов проведено методами качественного и количественного микрорентгеноспектрального анализа на аппарате «Суперпроб-733» (фирма Jeol, Япония), оснащенном приставкой для энергодисперсионного анализа Inca Energy.

Результаты

Проведены металлографические исследования образцов из естественно-композиционного материала на основе ниобия с комплексными жаростойкими покрытиями в исходном состоянии. Установлено, что комплексные жаростойкие покрытия систем Si+(Fe-Cr-Al-Y) и Si+(Fe-Cr-Al-Y)+Si на образцах из естественно-композиционного материала на основе ниобия в исходном состоянии имеют многослойную структуру:

1 - внутренний слой - жаростойкий подслой Si на границе «покрытие-сплав»;

2 - следующий за ним ионно-плазменный слой системы Fe-Cr-Al-Y;

3 - для образца с комплексным жаростойким покрытием состава Si+(Fe-Cr-Al-Y)+Si -жаростойкий слой Si.

На поле шлифа наблюдаются границы между слоями. Видно, что после высокотемпературного вакуумного отжига - рекристаллизации и диффузионного взаимодействия слоев не наблюдается; слои имеют равномерную, гомогенную и однородную структуру; сколы, трещины и отслоения отсутствуют (рис. 2).

а)

шт i" т щ

*»« * -»

' ^ 5 - Ч У '- С

Рис. 2. Микроструктура естественно-композиционного материала на основе ниобия с жаростойкими покрытиями систем Si+(Fe-Cr-Al-Y) (а) и Si+(Fe-Cr-Al-Y)+Si (б) в исходном состоянии

В результате проведенных исследований микроструктур образцов из естественно-композиционного материала на основе ниобия получены данные о толщине слоев:

Тип покрытия (система) Si Si+(Fe-Cr-Al-Y) Si+(Fe-Cr-Al-Y)+Si

Толщина покрытия, мкм 78,6 64,7 77,4

После нанесения комплексных жаростойких покрытий систем Si+(Fe-Cr-Al-Y) и Si+(Fe-Cr-Al-Y)+Si образцы подвергнуты испытаниям на изотермическую жаростойкость при температуре 1350°С в течение 30 ч (табл. 1).

Таблица 1

Результаты испытаний на изотермическую жаростойкость при температуре 1350°С образцов из естественно-композиционного материала на основе ниобия с комплексным (ионно-плазменное+диффузионное) жаростойким покрытием

Тип покрытия (система) Удельное изменение массы, г/м2, после испытаний в течение, ч

15 30

Комплексное жаростойкое покрытие системы Si+(Fe-Cr-Al-Y) 20,5 55,2

Комплексное жаростойкое покрытие системы Si+(Fe-Cr-Al-Y)+Si 20,1 44,7

Диффузионное жаростойкое покрытие на основе Si 21,2 45,2

Анализ результатов испытаний образцов из естественно-композиционного материала на основе ниобия с комплексными жаростойкими покрытиями систем Si+(Fe-Cr-Al-Y) и Si+(Fe-Cr-Al-Y)+Si показал (рис. 3):

- все покрытия обладают высокими характеристиками жаростойкости по сравнению с защищаемым естественно-композиционным материалом на основе ниобия (рис. 3, а);

- диффузионное жаростойкое покрытие на основе Si сохранилось - очаги коррозии, трещины и сколы в результате визуального осмотра не обнаружены; данное покрытие обеспечивает защиту сплава при температуре до 1350°С на базе 30 ч (рис. 3, б);

- покрытие системы Si+(Fe-Cr-Al-Y) сохранилось, однако на поверхности образца наблюдаются множественные очаги коррозии, сколы и трещины (Дm=55,2 г/м2) (рис. 3, в);

- покрытие состава Si+(Fe-Cr-Al-Y)+Si сохранилось; очаги коррозии, трещины и сколы в результате визуального осмотра не обнаружены; данное покрытие обеспечивает защиту сплава при температуре до 1350°С на базах до 30 ч (Дm=44,7 г/м2) (рис. 3, г).

а) 6) в/ г)

Рис. 3. Внешний вид образцов из естественно-композиционного материала на основе ниобия после испытания на изотермическую жаростойкость при температуре 1350°С на базе 30 ч образцов без покрытия (а), с покрытием на основе Si (б) и с комплексными жаростойкими покрытиями систем Si+(Fe-Cr-Al-Y) (в) и Si+(Fe-Cr-Al-Y)+Si (г)

После испытания на изотермическую жаростойкость на образце с комплексным жаростойким покрытием $1+(Ее-Сг-А1-У)+$1 наблюдаются изменения на границах слоев, входящих в состав комплексного покрытия, что, по-видимому, связано с развитием процессов диффузионного взаимодействия между слоями при высокой температуре испытаний. На поверхности внешнего слоя (диффузионный слой Si) наблюдаются светлые фазы, которые предположительно являются оксидом кремния. Анализ внутреннего слоя (жаростойкий подслой Si) показал, что слой утратил гомогенность в результате диффузионных процессов между жаростойким подслоем Si и подложкой на основе имеющих место при высокой температуре (1350°С). На образцах с ком-

плексным жаростойким покрытием Si+(Fe-Cr-A1-Y)+Si видно отслоение покрытия; сколы и трещины не наблюдаются (рис. 4).

Рис. 4. Микроструктура (*1000) естественно-композиционного материала на основе ниобия с жаростойкими покрытиями систем 81+(Ре-Сг-А1^)+81 (а) и 81+(Ре-Сг-А1^) (б) после испытаний на изотермическую жаростойкость при температуре 1350°С на базе 30 ч

Проведены испытания на циклическую жаростойкость образцов с покрытием на основе Si и с покрытием состава 81+(Ре-Сг-А1^)+81 по режиму 500^1300°С с охлаждением на воздухе до 500°С. Результаты испытаний представлены в табл. 2, внешний вид образцов - на рис. 5.

а) 6) в>

Комплексно« жаростойкое покрытие состава

81-<Те-Сг-М-У}-8|

Диффузионное жаростойкое покрытие на основе

Рис. 5. Внешний вид образцов из естественно-композиционного материала на основе ниобия с покрытиями в ходе испытаний на циклическую жаростойкость по режиму 500^1300°С при количестве циклов 10 (а), 30 (б) и 50 (в)

Таблица 2

Результаты испытаний на циклическую жаростойкость по режиму 500-1300°С

образцов из естественно-композиционного материала на основе ниобия с комплексным (ионно-плазменное+диффузионное) жаростойким покрытием

Тип покрытия (система) Удельное изменение массы, г/м2, после п-циклов

10 20 30 40 50

Комплексное жаростойкое покрытие системы Si+(Fe-Cr-Al-Y)+Si 26,8 51,3 81,2 114,7 140,1

Диффузионное жаростойкое покрытие на основе Si 35,2 67,1 136,4 544,8 2433,6

Анализ результатов испытаний на циклическую жаростойкость по режиму 500^1300°С в течение 50 циклов показал (рис. 5), что комплексное (ионно-плазменное+диффузионное) жаростойкое покрытие системы Si+(Fe-Cr-Al-Y)+Si обеспечивает защиту естественно-композиционного материала на основе ниобия.

Диффузионное жаростойкое покрытие на основе Si не сохранилось - очаги коррозии, трещины и сколы, возникшие после 10-20 циклов, привели к потере защитных свойств покрытия, следовательно данное покрытие не обеспечивает защиту естественно-композиционного материала на основе ниобия в условиях термоциклирования (образец разрушен).

По результатам испытаний на жаростойкость видно, что естественно-композиционный материал на основе ниобия при температуре 1350°С катастрофически быстро окисляется и без защитного покрытия применять его при данной температуре не рекомендуется.

Микроструктура комплексного (ионно-плазменного+диффузионного) жаростойкого покрытия после испытаний на циклическую жаростойкость представлена на рис. 6. Такое жаростойкое покрытие обладает более высокой трещиностойкостью по сравнению с диффузионным жаростойким покрытием. Трещины в покрытии не достигают границы «покрытие-подложка» и окисления основного материала не происходит.

. I_ • 1Ы

Рис. 6. Микроструктура (*1000) естественно-композиционного материала на основе ниобия с комплексным (ионно-плазменным+диффузионным) жаростойким покрытием после испытаний на циклическую жаростойкость по режиму 500^1300°С

Проведены металлофизические исследования образцов из естественно-композиционного материала на основе ниобия с комплексным жаростойким покрытием системы Si+(Fe-Cr-Al-Y)+Si. Установлено, что среднее содержание ЫЬ в комплексном (ионно-плазменном+диффузионном) жаростойком покрытии после испытаний

составляет 25,9% (в диффузионном покрытии после испытаний 39,4%). Разница в количестве ниобия, перешедшего в покрытие, объясняется слоистой структурой комплексного покрытия. Жаростойкий подслой на основе Si играет роль барьерного слоя (за счет образования силицидов ниобия и других элементов, входящих в состав сплава), затрудняя диффузию элементов подложки в покрытие, что положительно сказывается на жаростойкости.

Таким образом, результаты металлографических и металлофизических исследований структуры комплексного жаростойкого покрытия системы Si+(Fe-Cr-Al-Y)+Si подтверждают, что комплексное (ионно-плазменное+диффузионное) жаростойкое покрытие обеспечивает защиту неохлаждаемых деталей ТВД из естественно-композиционного материала на основе ниобия при рабочих температурах до 1350°C, в том числе в условиях термоциклирования.

Обсуждение и заключения

На основании проведенных исследований установлено:

- естественно-композиционный материал на основе ниобия при температуре 1350°С катастрофически быстро окисляется и без защитного покрытия применять его при данной температуре не рекомендуется;

- предварительное силицирование поверхности подложки из естественно-композиционного материала на основе ниобия позволяет уменьшить активную диффузию материала подложки в покрытие за счет образования силицидов ниобия и других компонентов подложки на границе «сплав-покрытие»;

- разработан состав жаростойкого комплексного (ионно-плазменного+ +диффузионного) покрытия состава Si+(Fe-Cr-Al-Y)+Si на рабочую температуру 1350°С (до 30 ч) для защиты деталей из естественно-композиционного материала на основе ниобия;

- проведенные испытания образцов из естественно-композиционного материала на основе ниобия с комплексным покрытием показали, что комплексное жаростойкое покрытие обеспечивает защиту деталей при рабочих температурах до 1350°С и сохраняет защитные свойства в условиях термоциклирования.

ЛИТЕРАТУРА

1. Литые лоиатки газотурбинных двигателей: сплавы, технологии, покрытия / под общ. ред. E.H. Каблова. 2-е изд. М.: Наука, 2006. 632 с.

2. Kablov E.N., Petrushin N.V., Sidorov V.V. Rhenium in the thermally stable nickel alloys for single-crystal blades of gas-turbine engines // 7th International Symposium on Technetium and Rhenium Science and Utilization. 2011. P. 1-7.

3. Матвеев П.В., Будиновский C.A., Мубояджян C.A., Косьмин A.A. Защитные жаростойкие покрытия для сплавов на основе интерметаллидов никеля // Авиационные материалы и технологии. 2013. №2. С. 12-15.

4. Каблов E.H., Петрушин Н.В., Светлов И.Л., Демонис И.М. Никелевые литейные жаропрочные сплавы нового поколения // Авиационные материалы и технологии. 2012. №S. С. 36-52.

5. Захарова Г.В., Попов И.А., Жорова Л.П., Федин Б.В. Ниобий и его сплавы. М.: Гос. науч.-техн. изд-во лит-ры по черной и цветной металлургии, 1961. 196 с.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

6. Светлов И.Л. Высокотемпературные Nb-Si композиты // Материаловедение. 2010. №9-10. С.18-38.

7. Kablov E.N., Muboyadzhyan S.A. Heat-resistant coatings for the high-pressure turbine blades of promising gtes // Russian metallurgy (Metally). 2012. No. 1. P. 1-7.

8. Каблов E.H., Мубояджян C.A. Жаростойкие и теплозащитные покрытия для лопаток турбины высокого давления перспективных ГТД // Авиационные материалы и технологии. 2012. №S. С. 60-70.

9. Hayashi S., Takagi S., Yamagata R., Narita T., Ukai S. Formation of Exclusive Л120з Scale on Nb and Nb-Rich Alloys by Two-Step Oxygen-Aluminum Diffusion Process // Oxidation of Metals. 2012. No. 78. P. 167-178.

10. Сосновский Л.А., Каплина Г.С., Астахова Ж.А., Король Е.А. Комплексные силицидные покрытия на ниобии // Высокотемпературная защита материалов. Л.: Наука, 1981. С. 83-86.

11. Каблов Е.Н., Мубояджян С.А., Будиновский С.А., Луценко А.Н. Ионно-плазменные защитные покрытия для лопаток газотурбинных двигателей // Металлы. 2007. №5. С. 23-34.

12. Streiff R. Protection of materials by advanced high temperature Coatings // Journal de physique IV. 1993. Vol. 3. No. 111. P. 17-41.

13. Fukumoto M., Matsumura Y., Hayashi S. et al. Coatings of Nb-based Alloy by Cr and/or Al Pack Cementations and Its Oxidation Bahavior in Air at 1273-1473 K // Materials Transactions. 2003. Vol. 44. No. 4. P. 731-735.

14.Novak M., Levi C. Oxidation and Volatilization of Silicide Coatings for Refractory Niobium Alloys // Proceedings of IMECE. Seattle, 2007. P. 3-5.

15. Tsirlin M.S., Kasatkin A.V., Byalobzheskii A.V. An oxidation-resistant silicide coating for niobium alloys // Poroshkovaya metallurgiya. 1978. No. 12. P. 31-34.

16. Oxidation resistant coating for Niobium - based silicide Composites: pat. 6521356 US; publ. 18.02.03.

17. Stupik D., Donovn M.M., Barronj A.R. et al. The interfacial mixing of silicon coatings on niobium metal: a comparative study // Thin Solid Films. 1992. No. 207. P. 138-143.

18. Каблов E.H. Инновационные разработки ФГУП «ВИАМ» ГНЦ РФ по реализации «Стратегических направлений развития материалов и технологий их переработки на период до 2030 года» // Авиационные материалы и технологии. 2015. №1 (34). С. 3-33. DOI: 10.18577/20719140-2015-0-1-3-33.

i Надоели баннеры? Вы всегда можете отключить рекламу.